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ABSTRACT.  We present a new method for enhancing the detection of leakage points on an oil pipeline using a fiber optic sensor 
stretched along the pipeline. The method is based on Maximum Likelihood Estimation (MLE) and is used with an Optical Time Do-
main Reflectometer (OTDR). The system depends on a series of fuse blocks, which respond to the presence of oil. The fuse blocks 
bend the fiber, when the fuse blocks are immersed in oil. The location of the bend in the fiber can be detected using an OTDR. This ap-
proach, while very effective in general, can become less successful in certain conditions including: low signal-to-noise ratio, long 
lengths of fiber (> 200 km) and low signal strength. In this work we modify the basic method to add steps including the Maximum 
Likelihood Estimation of the parameters in the method. This new modified method is tested using various signals and the approach is 
suggested to be effective for realistic situations in which the fiber is only very slightly bent or in the presence of high noise. The results 
suggest that the new method is very effective and could be implemented in field trials. 
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1. Introduction  

The detection of slow leaks and of catastrophic failures in 
oil pipelines is an increasingly important and pressing prob-
lem in today’s energy dependent world (Chen et al., 1998; 
Paranjape et al., 2002). Easily available oil reserves are 
rapidly being exhausted and more and more remote sites are 
being explored and tapped for oil reserves. The issue of 
promptly detecting the leakage and rupture of oil pipelines has 
not been given the attention it warrants given the potential 
damage to sensitive environments, the cost of clean up, and 
the loss of revenue to oil producers. 

Pinpointing the location of a leak or rupture represents a 
significant challenge. A distributed sensor with sufficient 
resolution, which can be stretched along a pipeline, is re-
quired. 

 
1.1. Fiber Optic OTDR Sensor 

A method, described in Paranjape et al. (2002), is to 
spiral a long optical fiber around the oil pipeline and wrap it 
with a plastic sheet. Many fuse devices, which bend or crimp 
the fiber when they are immersed in oil, are attached to the 
fiber at equal intervals. These bending devices alter the physi-
cal properties of the fiber when the fuse device is exposed to 
oil or oil products. At one terminal-end of the fiber, an OTDR 
(Optical Time-Domain Reflectometer) receives backscatter 
from a narrow optical pulse that has been launched into the 
fiber. A detailed description of the operation and basic princi-
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ples behind optical time-domain reflectometry are available in 
the literature (TFOM, 2000). 

 
1.2. Relationship to other Oil Pipeline Leakage Detection 
Technologies 

A number of techniques for oil leakage detection have 
been proposed previously. For example when pipeline leakage 
occurs parameters describing the flux in the oil pipeline (such 
as flow rate, accumulated volume, pressure and temperature) 
will vary at the inlet and the outlet. In this method, a complex 
mathematical model is constructed with the relationships of 
flux parameters. Once leakage occurs, these relationships are 
destroyed. In this statistical method, these flux parameters are 
monitored continuously, and leakage can be detected by using 
probability analysis and pattern recognition. The exact loca-
tion of the leakage, however, is somewhat more difficult to 
determine in this method. An additional defect of this method 
is that it requires the use of high accuracy instruments to 
measure the parameters, and the fact that slight leakage is 
hard to detect (Liu et al., 2000). 

A second method is based on analysis for acoustic signals. 
Because oil leaking will produce mechanical oscillation, 
acoustic sensors can be used to obtain the corresponding 
acoustic signal. Using certain signal processing algorithms the 
existence and even the location of leakage can be estimated. 
This method has acceptable performance in case of short pipe-
lines, however in the presence of environmental noise or in 
the case of long distance pipelines the method is of limited 
use (Beushausen et al., 2004). 

A third method is installation of a system of uniformly 
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distributed sensors connected using copper wire placed along 
the outside of the pipeline. The disadvantage of electric wire 
is that the resistance of these wires increases with the length 
of the wire. The Ohmic loss due to the wire becomes signifi-
cant in most practical situations. In addition, the wire may 
pick up other ambient electrical signals. Lastly, this system 
typically fails to detect multi-point leakage. 

 
1.3. Challenges for the Fiber Optic OTDR Sensor 

The primary challenge with the fiber Optic/OTDR ap-
proach is to develop the necessary sensitivity to bending in 
the fiber. This problem is fundamentally a signal detection 
problem (Hogg et al., 1977; Kay, 1993; Demirli et al., 2001). 

It is relatively straightforward to identify and locate 
discontinuity when the distance is short, because the energy of 
light pulse is strong compared with inherent noise in the sys-
tem. However, in order to develop a practical and useful sys-
tem, high-resolution (i.e. very short duration) light pulses and 
long distance fiber (more than 200 km) are required. A high- 
resolution light pulse has low energy. The long distance 
means great attenuation of the signal. Both of these factors 
conspire to reduce the energy of the backscattered light and 
lead to a low SNR (Signal to Noise Ratio). In addition, if 
there is only a slight bend in the fiber, the attenuation 
characteristics of the fiber are changed only slightly and again 
the discontinuity is not easily identified (TFOM, 2000). 

One simple and common approach to improve the SNR is 
through averaging many waveforms or realizations. This de-
creases the variance of noise and improves the SNR. There is, 
however, a statistical limit of how much this approach can 
improve the signal. In addition, it may be unacceptable to wait 
for the many hours necessary to collect the necessary amount 
of data. Another possible solution to the problem is to increase 
the quality of the OTDR. But again this is not a practical solu-
tion as high quality OTDRs are costly and would need to be 
placed at intervals of about 200 km along the pipeline. 

A new approach to this problem is the application of 
statistical parameter estimation, an advanced method of Digi-
tal Signal Processing (DSP). There are many DSP techniques 
to estimate model parameters in noisy signals. The technique 
of statistical parameter estimation is chosen because it can 
help find the location of discontinuity in the recorded signals 
with little added cost or delay. 

2. Methods 

2.1. Algorithm Design 
The recorded signal of the backscattered light captured 

by an OTDR can be modeled as an exponential function. In 
addition, the waveform is corrupted by noise. It can be ex-
pressed as 
 

( ) ( )ny n e w nαβ −= +         : 0n ∞∼                (1) 
 
where y(n) is the recorded signal, β is a multiplicative attenua-

tion factor, -α is the exponential term related to the loss of 
transmission through the fiber, n is the discrete time variable, 
and w(n) is Gaussian white noise with variance σ2. 

We now define a new variable, x(n). x(n) is assumed to 
be a section of the recorded signal y(n) spanning the time 
segment [m, m + N - 1] which is within the period n: 0 ~ ∞, 
given as 
 

( ) ( ) ( )n mx n e w nαβ − += +         ( ): 0 1n N +∼         (2) 
 
where α and β can be estimated as α̂  and β̂  using the 
Maximum Likelihood Estimation (MLE) method. The seg-
ment [m, m + N - 1] can then be shifted along the n axis, and 
the estimates of α̂ and β̂ can be recalculated. If the process 
generating the signal is unchanged we would expect subse-
quent estimates to be similar. If, on the other hand, the optical 
fiber has a bend in it due to a fuse block, x(n) will have a sud-
den change in the values of α and β around that point. When 
the segment [m, m + N - 1] includes this point, estimated pa-
rameters ( ˆˆ ,  α β ) will be significantly changed from the previ-
ous estimates of ( ˆˆ ,  α β ). The position of the leaking point 
can be determined based on the value of m. 

In Figure 1 below we see a typical OTDR trace. The 
leakage point is identified in the trace by the sudden and 
abrupt increase in the returned signal’s attenuation as it passed 
through a bend in the optical fiber. The horizontal axis in this 
figure is time or distance along the fiber and the vertical axis 
is the magnitude of the returned signal. The units of the re-
turned signal magnitude are somewhat as arbitrary as they 
include gain and losses that are constant within the system. 
Only the relative difference in the magnitude of the signal is 
of importance in this analysis. The figure further shows the 
sliding window [m, m + N - 1] which is moved along the trace. 
The values of ( ˆˆ ,  α β ) are estimated at each value of m. 

 
2.2. Application of the Gaussian-Newton Method 

In the MLE method, we attempt to find θ which maxi-
mize p(x, θ), where 
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is the joint probability density function obeying the normal 
distribution. 

Because w(n) is Gaussian white noise, the estimation 
problem becomes a nonlinear least squares problem. Because 
of the difficulty in obtaining an analytical solution, an 
iterative approach must be engaged. 

We define, following the textbook by Kay (1993), the 
following matrices: 
 

( ), T θ α β= ,                 (4) 
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Note: this is a typical trace from an OTDR of a section of fiber with a sharp bend in it; the estimation sliding window 
  is also shown in which application of the MLE algorithm allows estimation of model parameters (α̂ , β̂ ). 

Figure 1. Typical OTDR trace from an abrupt bend in short Fiber. 
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An iterative formula for estimation of θ is presented by 
 (1993) as: 

( ) ( )( )*k k kx sθ θ θ= + ∆ − .              (8) 

When the expression of p(x, θ) is substituted into I(θ), the 
lt is: 
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The elements of I(θ) are expanded below, using 
2e α− : 
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2.3. Selection of N 

According to Kay (1993), the ML estimated parameter 
θ̂  is asymptotically distributed according to ˆ ( ,Nθ θ∼ 1(I −  

))θ . That is to say, when the length of x(n): N → ∞, ( )ˆE θ  
θ→ , and var( θ̂ ) → I 1− (θ), which is Cramer Rao Lower 

Bounds. 
We can therefore conclude that if we allow the size of the 

sliding window, N, to become very large, we will get a very 
good estimation of α and β. However, we would like to keep 
N as small as possible because our resolution for detecting the 
leakage point is dependent on N. It is important to select N so 
that it is of the appropriate length. While the magnitude of N 
should be large enough in order that var( θ̂ ) is small, it should 
not be so large as to smooth out the effect of a change in θ̂  
caused by a discontinuity point. Otherwise, the whole point of 
the analysis, that of finding the leakage point, will be lost. 

3. Result Analysis 

3.1. Evaluation of N 
In Table 1 below, we present a set of results showing the 

effect of various lengths of N and the effectiveness of the 
method to estimate the values of α and β. 

In the table below we present values of the actual and 
estimated values of the variance of α and β for different values 
of N. We must select a value of N which will allow the differ-
ence between the actual and estimated values to be greater 
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than the Signal-to-Noise-Ratio (SNR). This will allow us to 
readily see the points at which the difference between the 
actual and the estimate is large (hence due to a leak). 

 
Table 1. Theoretical Asymptotic and Actual Variance 

N Actual 
Variance of α 

Theoretical 
Variance of α 

Actual 
Variance of β 

Theoretical 
Variance of β

50 1.1385e-05 1.0734e-05 0.0834 0.0779 

100 1.1973e-06 1.3494e-06 0.0358 0.0396 

150 4.3472e-07 4.0221e-07 0.0273 0.0266 

200 1.6633e-07 1.7070e-07 0.0196 0.0201 

250 8.9270e-08 8.7926e-08 0.0156 0.0161 

300 4.8443e-08 5.1190e-08 0.0135 0.0135 

350 3.3818e-08 3.2430e-08 0.0129 0.0116 

400 2.1591e-08 2.1857e-08 0.0102 0.0102 

When N = 350, ˆ| |α α−  and ˆ| |β β−  caused by noise 
does not exceed those caused by the discontinuity led by leak-
ing point, even when the SNR is low. A larger N results in 
smaller variance and higher sensitivity to a leaking point. But 
if N is too large, two leaking points with distance less than N 
cannot be distinguished. In addition, larger N means greater 
computation and therefore the calculation will be more time 
consuming. 

 
3.2. Examples of the Application of the Iterative Algorithm 

We now present a number of results from the application 
of the technique to simulated signals. The first example 
(Figure 2) is of the application of the iterative algorithm to a 
waveform without a discontinuity point. It is observed that 

ˆ| |α α−  and ˆ| |β β−  typically has a value which is near the 
standard deviation of CRLB. The second example (Figure 3) 
is of the application of the method to an OTDR waveform in 
which there is a discontinuity point. 

Comparing Figure 3 with Figure 2, we can observe that 
ˆ| |α α−  and ˆ| |β β−  increases abruptly as soon as the do-
 

Reflection Waveform 

Standard Deviation 
of CRLB 

Actual Bias 

Standard Deviation 
of CRLB

Actual Bias 

 

Note: This figure shows three traces. The first trace shows the returned signal at the OTDR. The second trace shows the result of 
computing ˆ| |α α−  (which is labeled the Actual Bias). This trace also has a computed value of the Cramer Rao Lower Bound 
(CRLB) for the difference between the estimated and the actual value. The final trace is of ˆ| |β β−  (which is labeled the Actual 
Bias) with the CRLB shown again. 

 
Figure 2. Application of MLE method to Fiber without bend.  
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main [m, m + N - 1] overlaps with a point at which the fuse 
block has bent the fiber. As m is increases by N, the segment 
no longer includes the discontinuity and there is be a sudden 
decline in the value of ˆ| |α α−  and ˆ| |β β− . 

If the SNR of x(n) is high, or the fuse block bends the fi-
ber sharply, the var(θ) caused by noise will not have a signifi-
cant effect on the ability of the algorithm to locate the leakage 
point. 

In the contrast, when SNR of x(n) is low, or the fuse 
block is not able to bend the fiber sharply, the changes in 

ˆ| |α α−  and ˆ| |β β−  are small, and this can mean that a 
leakage point is drowned out the signal in the estimation error. 
In this case, the identification and location of leaking point 
become difficult. 

For extremely small changes in the fiber, the MLE 
method presented may still not be powerful enough to bring 

out the signal discontinuity. In this situation an additional step 
can be taken of using the Chebyshev's Inequality. 

The Chebyshev's Inequality states that if the random vari-
able t has a finite mean µ and finite variance δ2, then for any d 
≥ 1, ( ) 2* 1/p t d dµ δ− ≥ ≤ . 

For every m, δ can be calculated using I(θ). The θ will be 
known after several initial estimations (e.g. m: 0 ~ 5). The 
probability of bias, {( ˆ| |α α−  or ˆ| |β β− ) > δα*d or δβ*d}, is 
less than 1/d2. The standard deviation of α and β is define as 
(δα, δβ). We see that (δα, δβ) for every m can be calculated with 
I(θ). 

For example, if we let d = 2, a criteria can be developed 
as follows: 

If ˆ| |α α−  > 2*δα and ˆ| |β β−  > 2*δβ on a segment [g, 
g + N0] on m axis, in which N0 > N / 2, there must be a leak-
ing point, whose position is g + (N + N0) / 2 on the n axis. N0, 

Reflection Waveform 

Standard Deviation 
of CRLB 

Standard Deviation 
of CRLB Actual Bias 

Actual Bias 

Bias  Caused by 
Leaking Point 

Bias  Caused by 
Leaking Point

 
Note: this figure shows three traces. The first trace shows the returned signal at the OTDR. The second trace shows the result of 

computing ˆ| |α α− (which is labeled the Actual Bias). This trace also has a computed value of the Cramer Rao Lower Bound 

(CRLB) for the difference between the estimate and the actual value. The final trace is of ˆ| |β β− (which is labeled the Actual 
Bias) with the CRLB shown again. 

 
Figure 3. Application of MLE method to Fiber with bend.  
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N

 

 

Leaking Point 

Standard Deviation 
of CRLB 

2 times Standard 
Deviation of CRLB

Actual Bias 

ote: An example of ˆ| |α α− > 2* δα from a realization of x(n). This example shows that, using the approach suggested above,  
even small discontinuities in the backscattered signal can be drawn out. 

Figure 4. Application of Chebyshev's Inequality step to MLE method for a very slight bend in the Fiber.  
Reflection Waveform 

Standard Deviation 
of CRLB

Actual Bias 

Standard Deviation 
of CRLBActual Bias 

 

ote: in this example ˆ| |α α− and ˆ| |β β−  from a realization of x(n) with weak discontinuity shows a number of potential leakage 
points. The low SNR gives an unpredictable result. 

Figure 5. Example of MLE method with out Chebyshev's Inequality step for signal with high SNR. 
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rather than N, is chosen in order to improve the sensitivity. 
The method can be summarized in the following bullets: 
(1) If ˆ| |α α− < 2*δα and ˆ| |β β−  < 2*δβ for any m, there 

is no leaking point. 
(2) If ˆ| |α α−  > 2*δα or ˆ| |β β−  > 2*δβ for some m, the 

estimate doesn’t meet condition 1, however there could still 
be a leakage point near m. In this case, averages of ˆ| |α α−  
and ˆ| |β β−  from 10 realizations of x(n) are calculated. If the 

ˆ| |α α−  and ˆ| |β β−  after averaging does meet condition 1 
the position of leaking point is g + (N + N0) / 2. 

The method with the Chebyshev’s Inequality step added 
to the MLE method is shown in Figures 5 and 6 also. Figure 5 
shows an example of a situation where the SNR is low and the 
MLE cannot uniquely identify the location of leakage. 
Following the steps of averaging the traces and using the 
Chebyshev's Inequality with ten traces it can be observed that 
the location of the leakage is easily identified. 

If σ2 (the noise power) is small and the effect of the 
leakage point is easily seen and ˆ| |α α−  and ˆ| |β β−  will 
meet condition 1. On the other hand, if the SNR is low and the 
fuse block is producing a weakly backscattered signal, 
condition 2 must be applied. 

4. Discussion 

4.1. Sensitivity and Location Accuracy 
The method, which we have presented above, is sensitive 

to discontinuities in an exponential function, even if the 
discontinuity in the recorded exponential signal is very small. 
Because of the variance of ( α̂ , β̂ ) is affected by noise, the 
accuracy of identifying the leakage point position can also be 
affected. There are several ways to solve this problem: using 
larger N, using average of more realizations of x(n). However, 
there is tradeoff between accuracy and calculation time. 
 
4.2. Variance Increases with m 

When m increases, the variance of ( α̂ , β̂ ) also increase 
theoretically, which will influence the accuracy of leakage 
point position. Fortunately, the variance increases slowly 
when compared with an increase in m (Figures 1 and 2). An 
attempt to adjust N so as to get the same variance for every m 
is difficult. 
 
4.3. Distinguish Leaking Point from Other Singular Point 

The methods we have presented here clearly identify the 
location of backscatter on the fiber. However, a fuse block 
responding to oil leakage may not be the only source of back-
scatter. There may be connectors and splices in a long optical 
fiber, which will also create back reflections. This will mean 
that there will be discontinuity in the trace x(n). The connector 
or splice points will have to be distinguished from oil leakage 
points according to their characteristics. A simple solution to 
this problem may be to look for changes in the backscatter 
over time, however a full investigation into this issue is left as 
a future work. 

Standard Deviation 
of CRLB 

Average of 
Actual Bias

Standard Deviation 
of CRLB 

Average of 
Actual Bias

Note: The effect of averaging of ˆ| |α α−  and ˆ| |β β−  from 10 realizations of x(n) with weak discontinuity using the data for Fig. 5. 
Clearly the bend in the fiber becomes very evident and the other noise peaks are suppressed. 

 
Figure 6. Example of MLE method followed by Chebyshev's Inequality step for signal with high SNR. 
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5. Conclusions 

A method that uses statistical parameter estimation has been 
presented and shown to be effective in locating leakage points 
on an oil pipeline instrumented with a fiber optic sensor. The 
parameter estimating technique senses irregularities in the 
backscattered-reflection waveform, and this allows the identi- 
fication of the leakage points. This method is mainly appli- 
cable in noisy situations where the reflected waveform con- 
tains a signal from a weak reflector due to a small leak or the 
initial response of a fuse block to the presence of oil. In order 
for this method to be useful, it must be able to sense a very 
slight bend created by a fuse block. The fuse block’s force is 
to some extent pro- portional to the level of exposure to oil 
and thus our method may identify small leakage prior to a 
major rupture of the pipeline. 
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