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Charge transfer through single molecule contacts:
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Abstract
Background: The trend for the fabrication of electrical circuits with nanoscale dimensions has led to impressive progress in the

field of molecular electronics in the last decade. However, a theoretical description of molecular contacts as the building blocks of

future devices is challenging, as it has to combine the properties of Fermi liquids in the leads with charge and phonon degrees of

freedom on the molecule. Outside of ab initio schemes for specific set-ups, generic models reveal the characteristics of transport

processes. Particularly appealing are descriptions based on transfer rates successfully used in other contexts such as mesoscopic

physics and intramolecular electron transfer. However, a detailed analysis of this scheme in comparison with numerically exact

solutions is still elusive.

Results: We show that a formulation in terms of transfer rates provides a quantitatively accurate description even in domains of

parameter space where strictly it is expected to fail, e.g., at lower temperatures. Typically, intramolecular phonons are distributed

according to a voltage driven steady state that can only roughly be captured by a thermal distribution with an effective elevated

temperature (heating). An extension of a master equation for the charge–phonon complex, to effectively include the impact of off-

diagonal elements of the reduced density matrix, provides very accurate solutions even for stronger electron–phonon coupling.

Conclusion: Rate descriptions and master equations offer a versatile model to describe and understand charge transfer processes

through molecular junctions. Such methods are computationally orders of magnitude less expensive than elaborate numerical simu-

lations that, however, provide exact solutions as benchmarks. Adjustable parameters obtained, e.g., from ab initio calculations allow

for the treatment of various realizations. Even though not as rigorously formulated as, e.g., nonequilibrium Green’s function

methods, they are conceptually simpler, more flexible for extensions, and from a practical point of view provide accurate results as

long as strong quantum correlations do not modify the properties of the relevant subunits substantially.
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Introduction
Electrical devices on the nanoscale have received substantial

interest in the last decade [1]. Impressive progress has been

achieved in contacting single molecules or molecular aggre-

gates with conducting or even superconducting metallic leads

[2,3]. The objective is to exploit nonlinear transport properties

of molecular junctions as the elementary units for a future mole-

cular electronics. While the initial experiments were operated at

room temperature, low temperatures down to the millikelvin

range, the typical regime for devices in mesoscopic solid state

physics, are also accessible (see, e.g., [4-6]). This allows for

detailed studies of phenomena such as inelastic charge

transfer due to molecular vibrations [7-9], voltage driven

conformational changes of the molecular backbone [10],

Kondo physics [11], and Andreev reflections [6], to name but a

few.

These developments have been accompanied by efforts to

advance theoretical approaches in order to obtain an under-

standing of general physical processes on the one hand and to

arrive at a tool to quantitatively describe and predict experi-

mental data. For this purpose, basically two strategies have been

followed. One is based on ab initio schemes that have been

successfully employed for isolated molecular structures, such

as, e.g., density functional theory (DFT). Combining DFT with

nonequilibrium Green’s functions (NEGF) allows us to capture

essential properties of junctions with specific molecular struc-

tures and geometries [2,3,12,13]. This provides insight into the

electronic formations of contacted molecules and gives at least

qualitatively correct results for currents and differential conduc-

tances. However, a quantitative description at the level of accu-

racy known from conventional mesoscopic devices still seems

to be out of reach. Furthermore, these methods are not able to

capture phenomena resulting from strong correlations effects,

such as Kondo resonances.

Thus, an alternative route, mainly inspired by solid state

methodologies, starts with simplified models that are assumed

to cover the relevant physical features. The intention then is to

reveal fundamental processes characteristic for molecular elec-

tronics that give a qualitative description of observations from

realistic samples, but provide also the basis for a proper design

of molecular junctions to exploit these processes. Information

about specific molecular set-ups appears merely in the form of

parameters which offer a large degree of flexibility. In general,

to attack the respective many body problems, perturbative

schemes have been applied, the most powerful of which are

nonequilibrium Green’s functions [14,15]. However, conceptu-

ally simpler, easier to implement, and often better at revealing

the physics, are treatments in terms of master or rate equations.

Being approximations to the NEGF frame in certain ranges of

parameters space, they sometimes lack the strictness of pertur-

bation series, but have been extensively employed for meso-

scopic devices [16] and quantitatively often provide solutions of

at least similar accuracy. Roughly speaking, these schemes

apply as long as quantum correlations between relevant subunits

of the full compound are sufficiently weak [15]. Physically, it

places charge transfer through molecular contacts in the context

of inelastic charge transfer through ultrasmall metallic contacts

(dynamical Coulomb blockade [17]) and in the context of

solvent or vibronic mediated intramolecular charge transfer

(Marcus theory) [18-20].

While rate descriptions have been developed in a variety of

formulations before [21-28], the performance of such a frame-

work in comparison with numerically exact solutions has not

yet been addressed. The reason for this is simple: A numerical

method that provides numerically exact data in most ranges of

parameters space (temperature, coupling strength, etc.) has only

very recently been successfully implemented in the form of a

diagrammatic Monte Carlo approach [29]. Path integral Monte

Carlo methods have been used previously for intramolecular

charge transfer in complex aggregates [18,19] in a variety of

situations, including correlated [30] and externally driven

transfer [31] and, of particular relevance to the present work,

transfer in the presence of prominent phonon modes [32].

The goal of the present work is to study a simple yet highly

nontrivial set-up, namely, a molecular contact with a single

molecular level coupled to a prominent vibronic mode (phonon)

which itself may or may not be embedded in a bosonic heat

bath. We develop rate descriptions of various complexity, place

them into the context of NEGF, and compare them with exact

solutions. The essence of this study is, astonishingly enough,

that rate theory provides quantitatively accurate results for mean

currents over a very broad range of parameter space, even in

domains where they are not expected to be reliable.

Results and Discussion
In subsection 1 we define the model and the basic ingredients

for a perturbative treatment. A formulation which closely

follows the P(E) theory for dynamical Coulomb blockade is

discussed in subsection 2. Nonequilibrium effects in the

stationary phonon distribution are analyzed in subsection 3

based on a dynamical formulation of charge and phonon

degrees of freedom. The presence of a secondary bath is incor-

porated in subsection 4 together with an improved treatment of

the molecule–lead coupling, which is exact for vanishing

electron–phonon interact ion.  The comparison with

numerically exact data and a detailed discussion is given in

subsection 5.
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1 Model
We start with the minimal model of a molecular contact

consisting of a single electronic level (dot) coupled to fermi-

onic reservoirs, where a prominent internal molecular phonon

mode interacting with the excess charge is described by a

harmonic degree of freedom (Figure 1) [15,33,34].

Figure 1: Single charge transfer through a molecular contact
consisting of a single electronic level coupled to a harmonic phonon
mode and contacted to metallic leads. Forward (no prime) and back-
ward (with prime) rates are the basic ingredients for the approximate
treatment, see text for details.

Neglecting spin degrees of freedom the total compound Hamil-

tonian is thus described by

(1)

Here, the Tk,α denote tunnel couplings between dot level and

reservoir α and  contains the coupling M0

between excess charge and phonon mode. An external voltage V

across the contact is applied symmetrically around the Fermi

level such that εk,α = ε0(k) + μα, with the bare electronic disper-

sion relation ε0(k) and chemical potentials μL = +eV/2, μR =

−eV/2. Below, this model will be extended further to include the

embedding of the prominent mode into a large reservoir of

residual molecular and/or solvent degrees of freedom acting as

a heat bath. Qualitatively, since the dot occupation d†d can only

take the values q = 0 or 1, the sub-unit HD + HD,Ph + HPh

describes a two state system coupled to a harmonic mode

(spin–boson model [20]). Depending on the charge state of the

dot the phonon mode is subject to potentials Vq(x0) = (m /

2)(x0 + l0q)2. Now, the presence of the leads acts (for finite

voltages) as an external driving force alternately charging (q =

1) and discharging (q = 0) the dot, thus switching alternately

between V0 and V1 for the phonon mode. The classical energy

needed to reorganize the phonon is the so-called reorganization

energy . Quantum mechanically,

the phonon mode may also tunnel through the energy barrier

located around x0 = −l0/2 separating the minima of V0,1.

It is convenient to work with dressed electronic states on the dot

and thus to apply a polaron transformation generating the shift

l0 in the oscillator coordinate associated with a charge transfer

process, i.e.,

(2)

with momentum operator  where 

and b0 are creation and annihilation operators of the phonon

mode, respectively. We mention in passing that complementary

to the situation here, the theory of dynamical Coulomb blockade

in ultrasmall metallic contacts is based on a transformation

which generates a shift in momentum (charge) rather than pos-

ition [17]. Now, the electron–phonon interaction is completely

absorbed in the tunnel part of the Hamiltonian, thus capturing

the cooperative effect of charge tunneling onto the

dot  and  photon  exc i ta t ion  in  the  molecu le ,  i . e . ,

 wi th

(3)

Single charge tunneling through the device can be formally and

exactly captured under weak conditions (e.g., instantaneous

equilibration in the leads during charge transfer) within the

Meir–Wingreen formulation based on nonequilibrium Green’s

functions [14,15]. For the current–voltage characteristics one

finds

(4)
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w i t h  e n e r g y  d e p e n d e n t  l e a d  s e l f - e n e r g i e s

∑α(ε) = 2π∑k|Tk,α|2δ(ε – εk) and with the Fourier transforms of

the time dependent Green’s functions  and

. Upon applying the polaron transformation

(Equation 2), one has

(5)

where all expectation values are calculated with the full Hamil-

tonian (Equation 3). Of course, for Tk,α → 0, the Green’s func-

tions factorize as, e.g.,  with the

phonon correlation

(6)

into expectation values with respect to the dot (D) and the

phonon (Ph), respectively. Any finite tunnel coupling induces

correlations that in analytical treatments can only be incorpo-

rated perturbatively. There, the proper approximative scheme

depends on the range of parameter space one considers. Gener-

ally speaking, there are four relevant energy scales ∑L/R, M0,

kBT, and ω0 of the problem corresponding to three inde-

pendent dimensionless parameters, e.g.,

(7)

In the following we are interested in the low temperature

domain θ > 1 where thermal broadening of phonon levels is

small such that discrete steps appear in the I–V characteristics.

Qualitatively, seen from the dynamics of the phonon mode, two

regimes can be distinguished according to the adiabaticity para-

meter ∑/ ω0 = σ: For σ < 1 the phonon wave packet fulfills, on

a given surface V0 or V1, multiple oscillations before a charge

transfer process occurs. The electron carries excess energy due

to the finite voltage, and this energy may be absorbed by the

phonon to promote reorganization to the new conformation (in

the classical case the reorganization energy Λ). In the language

of intramolecular charge transfer this scenario corresponds to

the diabatic regime with well-defined surfaces Vq. In the oppo-

site regime σ > 1 charge transfer is fast such that the phonon

may undergo multiple switchings between the surfaces V0,1.

This is the adiabatic regime. In this latter range the impact of

the adiabaticity on the diabatic ground state wave functions is

weak for m0 < 1 when the distance of the diabatic surfaces is

small compared to the widths of the ground states. For m0 > 1 in

both regimes electron transfer is accompanied by phonon

tunneling through energy barriers separating the minima of

adiabatic or diabatic surfaces. The dynamics of the total com-

pound are then determined by voltage driven, collective

tunneling processes. Master equation approaches to be investi-

gated below, rely on the assumption that both sub-units, charge

degree of freedom and phonon mode preserve their bare phys-

ical properties even in the case of finite coupling m0. Hence,

since the model (Equation 1) can be solved exactly in the limits

m0 = 0 and σ = 0 and following the above discussion, we expect

them to capture the essential physics quantitatively in the

domain m0 < 1 and for all ratios σ. We note that recently the

strong coupling limit including the current statistics has been

addressed as well [35,36].

2 Rate approach I
The simplest perturbative approach considers the cooperative

effect of electron tunneling and phonon excitation in terms of

Fermi’s golden rule for the tunneling part . For this purpose

one derives transition rates for sequential transfer according to

Figure 1. A straightforward calculation for energy independent

self-energies ∑L/R (wide band limit) gives the forward rate onto

the dot from the left lead

(8)

where fβ(ε) is the Fermi distribution. Inelastic tunneling asso-

ciated with energy emission/absorption of phonons is captured

by the Fourier transform of the phonon–phonon correlation

exp[J(t)] leading to

(9)

with  denoting the mean values

for single phonon absorption (a) and emission (e). The exponen-

tials in the prefactor contain the dimensionless reorganization

energy  = Λ/ ω0. Apparently, inelastic charge transfer

includes the exchange of multiple phonon quanta according to a

Poissonian distribution. Further, one has the detailed balance

relation P0(−ε) = e−βεP0(ε). For vanishing phonon–electron

coupling m0 → 0 only the elastic peak survives, thus P0(ε) →

δ(ε). We note again the close analogy to the P(E) theory for

dynamical Coulomb blockade [17]. Moreover, golden rule rates
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for intramolecular electron transfer between donor and acceptor

sites coupled to a single phonon mode are of the same form

with the notable difference, of course, that in this case one has a

discrete density of states for both sites [20,22]. The funda-

mental assumption underlying the golden rule treatment is that

equilibration of the phonon mode occurs much faster than

charge transfer. In the last two cases this is typically guaranteed

by the presence of a macroscopic heat bath (secondary bath)

strongly coupled to the prominent phonon mode. Here, the

fermionic reservoirs in the leads impose phonon relaxation due

to charge transfer only. Thus, for finite voltage the steady state

is always a nonequilibrium state that can only roughly be

described by a thermal distribution of the bare phonon system

(see below). One way to remedy this problem is to introduce a

phonon–secondary bath interaction as well (see below in

subsection 4). The remaining transition rates easily follow due

to symmetry

(10)

Now, summing up forward and backward events, the dot popu-

lation follows from

(11)

with the total rate Γtot,0 = ΓL + ΓR + Γ'L + Γ'R and the rate for

transfer towards the dot ΓD = ΓL + Γ'R obtained according to

Equation 8. Note that for vanishing electron–phonon coupling

M0 = 0 one has Γtot,0(M0 = 0) = ∑L + ∑R. The steady state

distribution  → pdot = ΓD/Γtot,0 is approached with relax-

ation rate Γtot,0. For a symmetric situation ∑L = ∑R with εD = 0

one shows that pdot = 1/2 independent of the voltage, while

asymmetric cases lead to voltage dependent stationary popula-

tions. The steady state current is given by I(V) = (e/2)[(ΓL –

Γ'R)(1 – pdot) – (Γ'L – ΓR)pdot] such that

(12)

A transparent expression is obtained for εD = 0, namely,

(13)

Despite its deficiencies mentioned above, the golden rule treat-

ment provides already a qualitative insight into the transport

characteristics. Typical results are shown in Figure 2.

Figure 2: I–V-characteristics for symmetric coupling ∑L = ∑R and for
varying electron–phonon coupling m0 at inverse temperature θ = 25
(solid) and θ = 10 (dashed).

T h e  I – V  c u r v e s  d i s p l a y  t h e  e x p e c t e d  s t e p s  a t

. Each time the voltage eV/2 exceeds multi-

ples of ω0 new transport channels open associated with the

excitation of one additional phonon. For higher temperatures

the steps are smeared out by thermal fluctuations. The range of

validity of this description follows from the fact that a factor-

izing assumption for the electron–phonon correlation and an

instantaneous equilibration of the phonon mode after a charge

transfer has been used, which means that σ < 1 and m0 < 1. The

latter constraint guarantees that conformational changes of the

phonon distribution remain small.

There are now three ways to go beyond this golden rule approx-

imation. With respect to the phonon mode, one way is to explic-

itly account for the nonequilibrium dynamics, another is to

introduce a direct interaction with a secondary heat bath in

order to induce sufficiently fast equilibration. With respect to

the dot degree of freedom one can exploit the fact that for

vanishing charge–phonon coupling the model can be solved

exactly.

3 Master equation for nonequilibrated
phonons
To derive an equation of motion for the combined dynamics of

charge and phonon degrees of freedom, one starts from a Liou-

ville–von Neumann equation for the full polaron transformed

compound (Equation 3). Then, applying a Born–Markov type of

approximation with respect to the tunnel coupling to the fermi-

onic reservoirs, one arrives at a Redfield-type equation for the

reduced density matrix of the dot–phonon system [15]. An add-

itional rotating wave approximation (RWA) separates the
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dynamics of diagonal (populations) and off-diagonal (coher-

ences) elements of the reduced density. Denoting with  the

probability to find q charges on the dot (here, for single charge

transfer q = 0,1) and the phonon in its n-th eigenstate, one has

(14)

with ν0 = 1, ν1 = −1 and energies .

The matrix elements of  the phonon shif t  operator

 read

(15)

where 1F1 denotes a hypergeometric function. The underlying

assumptions of this formulation require weak dot–lead coupling

σ < 1 and sufficiently elevated temperatures σθ < 1 for a

Markov approximation to be valid. Although we will see below

when comparing low temperature results with numerically exact

solutions that this seems to be only a weak constraint.

The  ca lcu la t ion  o f  the  s t eady  s t a t e  d i s t r ibu t ion

 reduces to a standard matrix inversion. One

can show that for a symmetric system with εD = 0, ∑L = ∑R one

has  = . A typical example for the mean phonon number

 is depicted in Figure 3. The curve is well

approximated by a/m0 with a ≈ 0.7. Apparently, <n> diverges

for m0 → 0 since then  and  approach constants inde-

pendent of the phonon number. Upon closer inspection one

finds that excitation is more likely than absorption, i.e., f (n,n +

1) > f (n,n − 1), for all 0 ≤ n ≤ N0(m0) where N0(m0) increases

with decreasing m0. The opposite is true for n > N0(m0) such

that in a steady state, depending on the voltage, the tendency is

to have higher excited phonon states occupied by smaller

couplings m0. In particular, for strong coupling transitions n →

n + k,k ≥ 0 are blocked at small n.

A convenient strategy to include nonequilibrium effects in the

phonon distribution, sometimes used in the interpretation of

experimental data, is the introduction of an effective tempera-

ture Teff. This way one could return to the simpler modeling of

the previous section. However, the procedure to identify

 i s  n o t

Figure 3: Mean phonon number in nonequilibrium for eV = 3 ω0 and
versus the electron–phonon coupling m0.

reliable, as Figure 4 reveals. While it clearly shows the general

tendency of a substantial heating of the phonon degree of

freedom induced by the electron transfer, the profile of a

thermal distribution strongly differs from the actual steady state

distribution.

Figure 4: Phonon number distribution in nonequilibrium for eV =
5 ω0, m0 = 0.5 and kBT/ ω0 = 0.1 (histogram). The solid line depicts
a fit to a Boltzmann distribution. See text for details.

Nonequilibrated phonons leave their signatures also in the I–V

curves as compared to equilibrated ones. The net current

through the contact follows from the summing up of the transfer

rates from/onto the dot according to Equation 14, hence,

(16)
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Figure 5 shows that deviations are negligible for low voltages in

the regime around the first resonant step (|eV/2| < ω0), where

at sufficiently low temperatures only the ground state partici-

pates such that the steady state distribution coincides with the

thermal one. For larger voltages deviations occur with the ten-

dency that for smaller couplings m0 the nonequilibrated current

is always smaller than the equilibrated one (Inon < Ieq), while

the opposite scenario (Inon > Ieq) is observed for larger m0. At

sufficiently large voltages, one always has Inon < Ieq. This

behavior results from the combination of two ingredients,

namely, the phonon distributions  and the Franck–Condon

overlaps |fn,k|2. To see this in detail, let us consider a fixed

voltage. Then, on the one hand, for smaller m0 the steady state

distribution is broad (cf. Figure 3), such that, due to normaliza-

tion, less weight is carried by lower lying states compared to a

thermal distribution at low temperatures; on the other hand, for

m0 < 1 the overlaps |fn,k|2 favor contributions from low lying

states in the current (16), which is thus smaller than Ieq. For

increasing electron–phonon coupling m0 > 1, the overlaps |fn,k|2

tend to include broader ranges of phonon states also covered by

, compared to those of low temperature thermal states. A

voltage dependence arises since with increasing voltage higher

lying phonon states participate in the dynamics supporting the

scenario for smaller couplings. Interestingly, as already noted in

[23] the overlaps |fn,k|2 may vanish for certain combinations of

n,m depending on m0 due to interferences of phonon eigenfunc-

tions localized on different diabatic surfaces Vq, where q = 0,1.

Figure 5: I–V-characteristics for equilibrated (solid) and nonequili-
brated (dotted) phonon distributions according to Equation 13 and
Equation 16, respectively.

4 Rate approach II
The assumption of a thermally distributed phonon degree of

freedom during the transport can be physically justified only if

this mode interacts directly and sufficiently strongly with an

additional heat bath (secondary bath) realized, e.g., by residual

molecular modes. Here we will generalize the formulation of

subsection 2 to a situation where the secondary bath is charac-

terized by Gaussian fluctuations. Its corresponding modes can

thus effectively be represented by a quasi-continuum of

harmonic oscillators for which the phonon correlation function

(Equation 6) can be calculated easily

(17)

Here the spectral density I(ω) now describes the combined

distribution of the prominent mode and its secondary bath. It is

thus proportional to the imaginary part of the dynamic suscepti-

bility of a damped harmonic oscillator [20]. For a purely ohmic

distribution of bath modes, one has

(18)

where γ denotes the coupling between phonon mode and bath.

The Fourier transform of exp(J) reads at finite temperatures

(19)

with the frequency Ω  given by Ω  = ω0ξ  + iγ/2 and

 where the parameter ξ

is . Further, ργ,e(Ω) = −ργ,e(Ω*) (* means

complex conjugation) and ργ = [ργ,a + ργ,e]/2. In the above

expression, contributions from the Matsubara frequencies in

Equation 17 have been neglected, since they are only relevant in

the regime γ β >> 2π, which is not studied here. Apparently,

the coupling to the bosonic bath effectively induces a broad-

ening of the dot levels γ(k + l)/2 compared to the purely elastic

case (Equation 9). In the low temperature regime, where for

equilibrated phonons absorption (related to k) is negligible, the

widths grow proportionally to l. The presence of the secondary

bath drives the prominent phonon mode towards thermal equi-

librium with a rate proportional to this broadening. Hence, if the

time scale for thermal relaxation is sufficiently smaller than the

time scale for charge transfer, i.e., 1/τl ≡ (∑L + ∑R)/γ << 1, the

assumption of an equilibrated phonon mode is justified and the

golden rule formulation (Equation 13) can be used with

P0(ε) → Pγ(ε). However, this argument no longer applies in the

overdamped situation γ/ω0 >> 1, where the phonon mode

exhibits a sluggish thermalization on the time scale ,

which may easily exceed τl.
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As already mentioned above, for vanishing charge–phonon

coupling m0 = 0, the model (Equation 3) can be solved exactly

for all orders in the lead–dot coupling [15]. In the frame of a

rate description, one observes that in this limit the dot popula-

tion (Equation 11) decays proportionally to (∑L + ∑R). The

golden rule version of the theory neglects this broadening in

Equation 13 since it is associated with higher order contribu-

tions to the current (Equation 13). Now, recalling that P0(ε)

reduces to a delta function for m0 → 0, this finite lifetime of the

electronic dot level is included for all orders by performing the

time integral in the Fourier transform with ε → ε − i(∑L + ∑R)/

2 ≡ ε − iΓtot(M0 = 0)/2 [see Equation 11]. In fact, this way one

reproduces the exact solution (one electronic level coupled to

leads with energy independent couplings), i.e., its exact spec-

tral function. To be specific, let us restrict ourselves for the

remainder of this discussion to the symmetric situation

∑L = ∑R ≡ ∑/2, and εD = 0. Then, in the presence of the phonon

mode (m0≠ 0) the corresponding function  follows from

Equation 9 by replacing the delta function by i/[ε + ω(k − l) +

i∑/2]. Again following the idea of a rate treatment, an impro-

ved version of this result accounting for higher order

electron–phonon correlations is obtained through the decay rate

Γtot,0(M0 ≠ 0), instead of the bare dot level width ∑/  ≡

Γtot,0(M0 = 0). Equivalently, one replaces i/[ε + ω(k − l) + i∑/

2] → i/[ε + ω(k − l) + iΓtot,0/2] to arrive at an improved

. We note that within a Green’s function approach, and

upon approximating the corresponding equations of motion, a

similar result has been found in [15,33], with the difference

though that instead of Γtot,0 an imaginary part of a phonon state-

dependent self-energy  appears. One can show that the Γtot,0

appearing here within a rate scheme is related to a thermally

averaged .

Now, an additional secondary bath can be introduced as above

by combining Equation 19 with , leading eventually to

(20)

The width of the electronic dot level is thus voltage dependent

and approaches the bare width from below for large voltages,

that is limV→∞Γtot,0(V) = ∑/ . The range of validity of this

scheme is the following: It applies to all couplings σ in the

domain where the electron–phonon coupling is weak m0 < 1. In

particular, second order processes in σ capture cotunneling

processes. For m0 > 1 charge transfer is strongly suppressed and

the phonon dynamics still occurs on diabatic surfaces for σ << 1

so that we expect the approach to cover this range as well.

5 Comparison with numerically exact results
A numerically exact treatment of the nonequilibrium dynamics

of the model considered here is a formidable task. The number

of formulations which allow simulations in nonperturbative

ranges of parameter space is very limited. Among them is a

recently developed diagrammatic Monte Carlo approach

(diagMC) based on a numerical evaluation of the full Dyson

series, which, in contrast to numerical renormalization group

(NRG) methods [37], covers the full temperature range. For

calculations of single charge transfer, results have been

obtained with and without the presence of a secondary bath

interacting with the dot phonon mode.

We note that computationally these simulations are very

demanding as for each parameter set and a given voltage the

stationary current for the I–V curve needs to be extracted from

the saturated value of the time dependent current I(t) for longer

times. Typical simulation times are on the order of several days

to weeks, depending on the parameter range. In contrast, rate

treatments require minimal computational effort and can be

done within minutes. Here, we compare numerically exact find-

ings with those gained from the various types of rate/master

equations discussed above.

We start with the scenario where the coupling to a secondary

bath is dropped (γ = 0) to reveal the impact of nonequilibrium

effects in the phonon mode. The formulation for an equili-

brated phonon is based on Equation 13 with P0 replaced by 

in Equation 20, while the steady state phonon distribution is

obtained from the stationary solutions to Equation 14. In the

latter approach the intrinsic broadening of the dot electronic

level due to coupling to the lead is introduced in the following

way: One first determines via Equation 14 a steady state distrib-

ution . This result is used for an effective self-energy contri-

bution (total decay rate) for nonequilibrated phonons, i.e.,

(21)

where .  We note in passing that

limV→∞Γtot,neq(V) = ∑/  ≡ Γtot(M0 = 0). Subsequently, an im-
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Figure 6: I–V characteristics according to approximate models based
on equilibrated phonons (solid) and nonequilibrated phonons (dashed)
together with exact DQMC data (dots) for kBT/∑ = 0.2 and without
coupling to a secondary bath (γ = 0). All quantities are scaled with
respect to the dot–lead coupling ∑.

Figure 7: As Figure 6 but for fixed ω0/∑ = 5 and varying
electron–phonon coupling.

proved result for the steady state phonon distribution at a given

voltage is evaluated working again with Equation 14, but using

the replacement:

(22)

Of course, for ∑ → 0 the standard Fermi distribution is

regained. The corresponding steady state phonon distribution

eventually provides the current according to Equation 16 with

the same replacement (Equation 22) in this expression. The

procedure relies on weak electron–phonon coupling m0 < 1 and

in principle also requires sufficiently elevated temperatures.

Figure 8: I–V characteristics in presence of a secondary heat bath
interacting with the phonon with various coupling constants γ. Shown
are approximate results (solid) using Equation 20 and diagMC data
(dots); energies are scaled with ∑. Other parameters are kBT/∑ = 0.2,
m0 = 4/5, σ = 0.2.

Results are shown in Figure 6 together with corresponding

diagMC data for various coupling strengths m0. Interestingly,

the equilibrated model describes the exact data very accurately

from weak up to moderate electron–phonon coupling m0 ≈ 1,

while deviations appear for stronger couplings  and volt-

ages beyond the first plateau eV > 2 ω0. For m0 > 1 nonequilib-

rium effects are stronger and the corresponding master equa-

tion (Equation 14) gives a better description of higher order

resonant steps. Moreover, as already addressed above, even in

this low temperature domain the approximate description

provides quantitatively reliable results.

In Figure 7 the frequency of the phonon mode is fixed and only

the electron–phonon coupling is tuned over a wider range. For

strong coupling (here m0 = 2) the equilibrated (nonequilibrated)

model predicts a smaller (larger) current than the exact one in

contrast to the situation for smaller m0. This phenomenon

directly results from what has been said above in subsection 3:

For stronger coupling the Franck–Condon overlaps favor higher

lying phonon states that are suppressed by a thermal distribu-

tion.

After all, the approximate models give not only a qualitatively

correct picture of the exact I–V curves, but even provide a rea-

sonable quantitative description in this low temperature domain.

In a next step the coupling to a secondary bath is turned on

(γ ≠ 0) enforcing equilibration of the phonon mode, see Equa-

tion 20. The expectation is that in this case departures from the

equilibrated model are reduced. In Figure 8 data are shown for a

ratio m0 = 4/5, where deviations occur at larger voltages, as

observed in the previous figures. Obviously, due to the damping

of the phonon mode the resonant steps are smeared out with

increasing γ. However, the approximate model predicts this



Beilstein J. Nanotechnol. 2011, 2, 416–426.

425

Figure 9: As Figure 6, but for nonequilibrated phonons based on an
extended master equation (solid) in comparison to exact diagMC data
(dots).

Figure 10: As Figure 7, but for nonequilibrated phonons based on an
extended master equation (solid) in comparison to exact diagMC data
(dots).

effect to be more pronounced as compared to the exact data,

particularly for stronger coupling γ/∑ > 1, while still γ/ω0 < 1.

In fact, in the limit of very large coupling only the k = l = 0

contribution to Equation 20 survives, such that at zero tempera-

ture one arrives at

(23)

with the current at large voltages I∞ = e∑/4  and Γtot,0(V) ≤

∑/ , where equality is approached for V → ∞. It seems that a

broadened equilibrium distribution of the phonon, induced by

the secondary bath according to Equation 20, overestimates the

broadening of individual levels. Since the approach is exact in

the limit m0 → 0, the deviations appearing in Figure 8 are due

to intimate electron–phonon/secondary bath correlations not

captured by the rate approach. In the overdamped regime, i.e.,

γ/ω0 > 1, the dynamics of the phonon mode slow down and may

become almost static on the time scale of the charge transfer. In

this adiabatic regime an extended version of the master equa-

tion (Equation 14) is not trivial since the conventional eigen-

state representation becomes meaningless. It would be better

then to switch to phase-space coordinates and develop a formu-

lation based on a Fokker–Planck or Smoluchowski equation for

the phonon. This will be the subject of future research.

The essence of this comparison is that, as anticipated from

physical arguments already in subsection 1, a rate description

does indeed provide quantitatively accurate results in the regime

of weak to moderate electron–phonon coupling m0 < 1 and for

all σ. Deviations that occur for larger values of m0 can partially

be explained by nonequilibrium distributions in the phonon

distribution, where, however, the master equation approach

seems to overestimate this effect. In order to obtain some

insight into the nature of this deficiency, a minimal approach

consists of extending Equation 14 with Equation 22, a mecha-

nism that enforces relaxation to thermal equilibrium with a

single rate constant Γ0 that serves as a fitting parameter.

Accordingly, the respective time evolution equation for 

receives an additional term −Γ0[  − ] with the Boltz-

mann distribution for the bare phonon degree of freedom .

Corresponding results for the same parameter range as in

Figure 6 and Figure 7 are shown in Figure 9 and Figure 10

including comparison with the exact diagMC data. There, the

same equilibration rate Γ0/∑ = 0.25 is used for all parameter

sets. Astonishingly, this procedure provides excellent agree-

ment over the full voltage range. It improves results particu-

larly in the range of moderate to stronger electron phonon

coupling, but has only minor impact for m0 < 1. The indication

is thus that electron–phonon correlations neglected in the orig-

inal form of the master equation have effectively the tendency

to support faster thermalization of the phonon. Indeed, prelimi-

nary results with a generalized master equation, where the

coupling between diagonal (populations) and off-diagonal

(coherences) elements of the reduced charge–phonon density

matrix is retained (no RWA approximation), indicate that this

coupling leads to an enhanced phonon–lead interaction and thus

to enhanced phonon equilibration.
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