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Abstract
In the context of single-case experimental designs, replication is crucial. On the one hand, the replication of the basic effect within
a study is necessary for demonstrating experimental control. On the other hand, replication across studies is required for
establishing the generality of the intervention effect. Moreover, the “replicability crisis” presents a more general context further
emphasizing the need for assessing consistency in replications. In the current text, we focus on replication of effects within a
study, and we specifically discuss the consistency of effects. Our proposal for assessing the consistency of effects refers to one of
the promising data analytical techniques, multilevel models, also known as hierarchical linear models or mixed effects models.
One option is to check, for each case in a multiple-baseline design, whether the confidence interval for the individual treatment
effect excludes zero. This is relevant for assessing whether the effect is replicated as being non-null. However, we consider that it
is more relevant and informative to assess, for each case, whether the confidence interval for the random effects includes zero
(i.e., whether the fixed effect estimate is a plausible value for each individual effect). This is relevant for assessing whether the
effect is consistent in size, with the additional requirement that the fixed effect itself is different from zero. The proposal for
assessing consistency is illustrated with real data and is implemented in free user-friendly software.
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Introduction

Single-case experimental designs (SCEDs) are research
designs that involve the study of one or several individ-
uals longitudinally, with multiple measurements taken
under different conditions manipulated by the researcher.
SCEDs offer the possibility to carry out methodological-
ly rigorous studies for gathering evidence on the effect
of interventions (Barlow et al., 2009). SCEDs have been
recognized as useful in a variety of contexts including
special education (Ledford & Gast, 2018), neuropsycho-
logical rehabilitation (Tate & Perdices, 2019), sport psy-
chology (Barker et al., 2011), and biomedicine (Janosky
et al., 2009). The field has witnessed developments in

terms of assessing methodological quality (Ganz &
Ayres, 2018), data analysis (Kratochwill & Levin,
2014), and meta-analysis (Maggin et al., 2017), as well
as reporting (Tate et al., 2016). Nevertheless, several
challenges remain, such as choosing among many data
analytical options (Manolov & Moeyaert, 2017) and
d i s cu s s i ng t h e impo r t anc e o f r andomiz a t i on
(Kratochwill & Levin, 2010; Ledford, 2018) and repli-
cation (Lanovaz et al., 2019).

The aim of the current study is to propose a way of
assessing consistency in data features and consistency of ef-
fects when performing a multilevel analysis of single-case
data. Given that assessment consistency is based on the need
for replication in single-case research, we first discuss the
concepts of replication and consistency, highlighting their rel-
evance and recent salience. We then provide a rationale for
focusing on multilevel models as a data analytical technique.

Replication and consistency

A recent special issue of Perspectives on Behavior Science
(Hantula, 2019) focused on the “replicability crisis” in psy-
chology, and how behavior analysts can thoughtfully proceed

* Rumen Manolov
rrumenov13@ub.edu

1 Department of Social Psychology and Quantitative Psychology,
University of Barcelona, Barcelona, Spain

2 Department of Educational and Psychological Studies, University of
South Florida, Tampa, FL, USA

https://doi.org/10.3758/s13428-020-01417-0

Published online: 21 May 2020

Behavior Research Methods (2020) 52:2460–2479

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-020-01417-0&domain=pdf
http://orcid.org/0000-0002-9387-1926
mailto:rrumenov13@ub.edu


in their use of SCEDs. In the SCED context, within-study
replication is relevant for internal validity, although it is only
one of several aspects to consider (Ganz & Ayres, 2018;
Perdices et al., 2019; Wendt & Miller, 2012). Specifically,
the iterative manipulation of the independent variable and
the subsequent changes observed in the dependent variable
increase the confidence that these changes are not due to ex-
ternal factors (Horner et al., 2005) such as history and matu-
ration (Petursdottir & Carr, 2018). In order to document ex-
perimental control, the covariation between changes in the
behavioral pattern and the introduction (and withdrawal) of
the intervention is to be observed at least three times, with
more specific recommendations available according to the
specific SCED used (What Works Clearinghouse, 2020).

Two kinds of replication can be distinguished with a SCED
study. “Direct replication”, or “within-subject replication”,
takes place in a reversal/withdrawal, multiple-baseline design,
or an alternating treatments design (Horner et al., 2005;
Tincani & Travers, 2019). Additionally, “systematic replica-
tion”, or “inter-subject replication”, can be achieved within a
study (e.g., replication of a reversal/withdrawal or an alternat-
ing treatments design across participants, replication across
settings of a multiple-baseline design across participants) or
across studies (Horner et al., 2005; Kennedy, 2005).

When dealing with direct replication, one of the relevant
concepts is consistency (Lane et al., 2017; Ledford, 2018).
Although consistency has been highlighted especially in the
context of visual analysis (What Works Clearinghouse, 2020),
there have also been recent proposals for its quantification
(Tanious, De, Michiels, et al., 2019b; Tanious, Manolov,
et al., 2019c). Specifically, two types of consistency can be
distinguished, both visually and quantitatively: consistency of
measurements from similar phases, and consistency of effects
(e.g., when comparing data points from adjacent phases).

We consider that it is necessary to distinguish between a
successful replication of an effect and a successful and con-
sistent replication. Whether a “basic effect” (Horner & Odom,
2014) is present is an assessment that is usually performed
visually, dealing with several data features, such as level,
trend, variability, overlap, and immediacy (Ledford et al.,
2019; Maggin et al., 2018; What Works Clearinghouse,
2020). Subsequently, several attempts to replicate the basic
effect take place, and an evaluation is performed regarding
whether the replication was successful (i.e., whether a func-
tional relation or experimental control is documented).
However, suppose that we proceed quantitatively, and the fo-
cus of the quantification is put on the immediate effect be-
cause trends are not expected: the difference between the
mean of the last three baseline data points and the first three
intervention phase data points could be computed (Horner &
Kratochwill, 2012; Michiels & Onghena, 2019a). On the one
hand, if the immediate effects for each participant in a study
are all greater than zero (or than a minimally relevant effect),

this would be indicative of a successful replication, assuming
there are no other data features (e.g., trend, variability) that
suggest the contrary. On the other hand, if the values of the
immediate effect are similar (e.g., there are small deviations
from the average effect, which is greater than zero or than a
minimally relevant effect), this would be indicative of a suc-
cessful replication with a consistent immediate effect. In the
following text, we focus on multilevel models, and we first
discuss a definition for successful replication before present-
ing our main proposal for a definition of a successful and
consistent replication.

Focus on multilevel modeling

Multilevel models are one of the promising analytical alterna-
tives for SCED data analysis (Van den Noortgate & Onghena,
2007), and they have been recommended in domains such as
education (Dedrick et al., 2009), experimental psychology
(DeHart & Kaplan, 2019), and aphasiology (Wiley & Rapp,
2019). Multilevel models were chosen as the focus of the
current text, as they are applicable to different SCEDs and
enable one to take multiple data features into account
(Pustejovsky et al., 2014; Shadish et al., 2013). For instance,
unlike nonoverlap measures, multilevel models take autocor-
relation into account (Baek & Ferron, 2013). And in contrast
to between-case standardized mean difference (Shadish et al.,
2014) and the log response ratio (Pustejovsky, 2018), they do
not assume absence of trend or require detrending. Moreover,
multilevel models do not preclude the use of visual analysis
(Davis et al., 2013).

The focus of the current text is on the evidence obtained in
a single study, using a SCED. This initial clarification is im-
portant for two reasons. One the one hand, replication in the
SCED context can refer both to repeated demonstrations of a
basic effect (e.g., a difference between two adjacent phases) in
the same study (Ninci, 2019) and to the replication of effects
across studies in relation to the way in which a practice can be
established as being “evidence-based” (Jenson et al., 2007;
Schlosser, 2009). On the other hand, multilevel models, which
are the focus of the current text, have a noteworthy application
for meta-analysis (Moeyaert, 2019; Van den Noortgate &
Onghena, 2003a, 2003b). In the current text, we focus here
on within-study replication and the use of multilevel models
as in studies using multiple-baseline designs (Ferron et al.,
2009). At the within-study level, the multilevel model usually
includes two levels, whereas at the across-studies levels, it
usually includes at least three levels (Moeyaert et al.,
2014a), although several variations are possible.

In the next section we discuss several possible ways in
which consistency or results could be assessed when using
multilevel models. We then offer a proposal and illustrate it
with real data.
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Defining successful replication in the context
of a multilevel model

A ratio of effects to no effects

The “replicability crisis” has been linked to the misuse
and abuse of null hypothesis testing (Branch, 2019) and
to the fact that p-values do not inform about the likeli-
hood to replicate the effect observed in a given sample
(Killeen, 2019). As stated previously, in the SCED con-
text, the presence or absence of a basic effect is usually
determined by visual analysis rather than by means of
statistical tests (Maggin et al., 2018), and this effect has
to be replicated several times within the same study (What
Works Clearinghouse, 2020). For the most commonly
used designs – multiple-baseline and reversal/withdrawal
(Shadish & Sullivan, 2011) – the requirement is for three
replications. However, the recommendation of three dem-
onstrations of a basic effect (for direct replications), just
like the requirement for the amount of evidence required
for calling a practice “evidence-based” (see the 5-3-20
rule in Horner & Kratochwill, 2012), more closely related
to systematic replications, do not take into account the
number of attempts for replication that did not yield the
expected positive result. Following Kratochwill et al.
(2018), it is possible to distinguish between a “negative
result” (absence of demonstration of an effect or lack of
evidence for effectiveness) and a “negative effect” (an
iatrogenic effect of the intervention). The implications of
these two different kinds of unexpected and undesired
results are not identical. While a negative effect may more
clearly provide evidence against an intervention, a lack of
a positive result may lead to introducing methodological
modifications (Tincani & Travers, 2018) or to identified
relevant moderator variables related to the characteristics
of participant and/or the target behavior (Ledford et al.,
2016). Such considerations are only possible if selective
reporting of positive results does not take place (Shadish
et al., 2016; Simmons et al., 2011).

In summary, a given practice can be labeled as evidence-
based, potentially evidence-based, neutral/mixed effects, in-
sufficient evidence, or negative effects according to the num-
ber of methodologically rigorous studies and their results
(Cook et al., 2015). Specifically, for direct replication in the
SCED context, it has been suggested that a ratio of at least 3:1
effects to no effects (with no evidence for negative effects) is
necessary for demonstrating experimental control (Cook et al.,
2015; Maggin et al., 2013). Incidentally, the 3:1 ratio sug-
gested resembles the historically used critical ratio of three
(Garrett, 1937), which usually related a mean difference to
its standard error (e.g., Nolte, 1937). Before following the
3:1 ratio, it is necessary to define what an “effect” is; the
following paragraphs in this section deal with this aspect.

Defining an “effect”

It may not be straightforward to define what an effect is when
performing a visual analysis (see Wolfe et al., 2019), but we
will not discuss this here, given that the focus is on multilevel
models. In terms of quantifying, it may be more straightfor-
ward to objectively define an “effect”, but it is still not a
flawless process. At the outset, we discard grounding the def-
inition of an “effect” on the estimate of the fixed effect (e.g.,
whether it is greater than zero), because it only refers to the
average and not to each of the replications. Moreover, we also
discard using statistical significance as the sole basis for de-
fining an effect. Apart from the usually mentioned interpreta-
tive drawbacks of a p value (Gigerenzer, 2004; Nickerson,
2000), it is not clear that any extrapolation to a population is
reasonable in absence of random sampling of individuals
(Edgington & Onghena, 2007).

An initial option is to put the focus on the sign of the
empirical Bayes estimates obtained for the individual treat-
ment effects (Ferron et al., 2010). An individual treatment
effect of the correct sign (indicating an improvement) would
be interpreted as an “effect”. Subsequently, if the ratio of in-
dividual effects with the predicted sign, to the effects with the
opposite sign, is at least 3:1, this could be interpreted as suf-
ficient evidence for direct replication. Additionally, borrowing
the logic of the difference between prep (replication of the
correct sign) and psupport (replication of an effect size of a
certain size or more; see Sanabria & Killeen, 2007), a mini-
mally relevant difference can be determined prior to gathering
the data for labeling the effect as significant. However, we
consider that the focus on the point estimate of the individual
treatment effect may not be justified, given that these esti-
mates are biased (Ferron et al., 2010).

In order to take into account the precision of the estimates,
a more stringent and probably more defensible option would
be to count as an “effect” the individual treatment effects
whose confidence intervals are entirely on the predicted side
of 0. That is, only intervals not containing zero would be
considered positive effects. Analogously, the confidence inter-
val could be required to exceed a prespecified minimally im-
portant difference entirely. Therefore, the definition of a suc-
cessful replication would be to require a 3:1 ratio of confi-
dence intervals of the individual treatment effects not includ-
ing zero or a minimally important difference.

Obtaining individual treatment effects in multilevel
models

When using multilevel models, it is necessary to construct a
design matrix that represents the kind of effect that the re-
searcher is interested in modeling (Moeyaert et al., 2014b).
In order to obtain the individual treatment effect estimates
and their confidence intervals, the dummy variable
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representing the phase has to be included as a random effect
but not as a fixed effect (Ferron et al., 2010; Van den
Noortgate and Onghena, 2003a ). The confidence intervals
are constructed assuming normal distributions and equal
within-phase variances and covariances, on the basis of a non-
central t-distribution (Van den Noortgate & Onghena, 2003a).
Ferron et al. (2010) recommend constructing the confidence
intervals on the basis of the Kenward-Roger method for esti-
mating the degrees of freedom.

It is worth noting that, even if all individual treatment ef-
fects are greater than zero (or than the minimally relevant
difference), this does not mean that they are similar in value.
Thus, following this option, we would have evidence on
whether the replication is successful, but not whether it is
consistent. We deal with consistency of effects in the follow-
ing section.

Defining successful and consistent replication
in the context of a multilevel model

More loosely related antecedents: A review of
quantifications of heterogeneity

The current text deals mainly with one of the two types of
consistency: consistency of effects. In order to obtain some
overall indication of the difference between conditions and to
gain statistical power, “internal meta-analysis” of the results
obtained in a single study has been suggested (Goh et al.,
2016; Hales et al., 2019). In relation to meta-analysis, it could
be considered that it provides a way to measure consistency or
heterogeneity of effects (Swan et al., 2020). Specifically, a
possible quantification of the degree of (lack of) consistency
could stem from the heterogeneity test and quantifications.
However, the Q-test can be expected to have low statistical
power when few effect sizes (here, direct replications) are
quantitatively integrated (Lipsey & Wilson, 2001).
Additionally, a drawback related to the descriptive quantifica-
tion known as I2 (the proportion of true variance in effect sizes
with respect to the total observed variance) is that it is only a
relative measure and may not be sufficiently informative
(Borenstein et al., 2017). Therefore, it seems that these two
options cannot be meaningfully borrowed from the general
context of meta-analysis and adopted for quantification of
consistency of effects at the within-study level.

Two of the analytical procedures proposed for SCED data
are worth noting, because they (a) are directly applicable to
studies including several participants, and (b) incorporate
quantifications that can be useful for assessing consistency
of effects as an indicator of the degree to which direct repli-
cation has been achieved. The between-case standardized
mean difference (BC-SMD; Hedges et al., 2012, 2013) yields,
among other quantifications, an “intraclass correlation” (ICC),

interpreted as the amount of variability across participants as a
proportion of the whole variability (within and across partic-
ipants). Therefore, this value could be understood to quantify
the degree to which the data patterns are not consistent, with
0.3 as a possible cutoff value indicating consistency (Hedges
et al., 2012). The ICC in the BC-SMD context can be under-
stood as representing both the consistency of data in similar
phases and the consistency of effects, because even if the
average difference were the same for all participants, the
ICC would not be equal to zero unless the phase means were
also the same across participants. Thus, it is not a pure quan-
tification of consistency of effects.

In the context of multilevel models, an ICC can also be
computed, with a similar interpretation as for the BC-SMD
(see Dixon & Cunningham, 2006, for several interpretations).
Actually, the ICC is usually computed for a null (also called
unconditional or intercept-only) model without predictors, in
order to verify whether a multilevel model is needed, i.e.,
whether there are relevant dependencies to be modeled
(Gage & Lewis, 2014). Thus, its use, after the definitive model
with predictors is built, is not that common.

More closely related antecedents: Quantifications of
consistency

Tanious, De, Michiels, et al. (2019b) propose a quantification
of consistency of effects, called CONEFF, referring to five
data aspects, as present in the What Works Clearinghouse
(2020) Standards: change in level (standardized mean differ-
ence), change in trend (using ordinary least squares estima-
tion), change in variability (variance ratio), immediacy of the
effect (the last three baseline phase measurements compared
with the first three intervention phase measurements), and
overlap between data from adjacent phases (using the
Nonoverlap of All Pairs; Parker & Vannest, 2009). Actually,
CONEFF could be applied to other ways of quantifying these
five data features. Here we focus on the assessment of consis-
tency of the change in level and change in slope, in the context
of a multilevel model. As a strength of the current proposal,
the use of multilevel models eliminates the ambiguity regard-
ing exactly how to operatively define data features such as
overlap and trend, both with multiple definitions suggested
in the SCED context (see Parker et al., 2011, and Manolov,
2018, respectively).

A quantification of consistency of data in similar phases,
called CONDAP, has been suggested for several SCEDs
(Tanious, De, Michiels, et al., 2019b; Tanious, Manolov,
et al., 2019c). CONDAP can be accompanied by a randomi-
zation test in case randomization is present in the design
(Tanious, De, &Onghena, 2019a). CONDAP is based directly
on the data, without referring to any analytical procedure or
representation such as a mean line or a trend line. In contrast,
we propose an assessment of the consistency of data in similar
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phases related to the estimates of the intercept and baseline
trend, according to a multilevel model. The aim is to fully
benefit from the output of a multilevel analysis (e.g.,
interpreting individual treatment effects and random effects).
Nevertheless, if desired, an additional quantification such as
CONDAP can be used for an assessment of consistency of
data patterns in similar phases that is not based on modeling.

Alternatives for quantifying consistency in the
context of a multilevel model

Discussing initial options

In the context of multilevel models, when the immediate
change in level and the change in slope are modeled as ran-
dom effects, it is possible to compute the variance in these
effects. These variance estimates could then be used as an
indicator of lack of consistency. One approach for doing so
would be to argue that if a variance is not statistically signif-
icant, then a random effect is not necessary in the model,
because there is not sufficient variability across participants
in the treatment effect. However, there are three reasons why
we do not recommend using the statistical significance of the
variance as a criterion. First, there are different ways to assess
the importance of a random effect statistically: via a Z test
under the assumption that the sampling distribution of the
variances is normal (Moeyaert, 2019), or comparing the devi-
ance values (−2 times the log likelihood) of the models with
and without the random effect via a chi-square test (Hox,
2010). These two tests need not necessarily coincide, and both
are suspect with small sample sizes, because the variance es-
timates are biased in such contexts (Ferron et al., 2009).
Second, not rejecting the null hypothesis does not justify
drawing a conclusion about similarity (Gigerenzer, 2004),
and it is not the same as performing a test of statistical equiv-
alence (Tryon, 2001). Third, a summary measure such as the
variance and the evaluation of statistical significance seem too
general for assessing consistency across individuals, as they
collapse all the information about the variation in a single
value (the estimate or the p value). In contrast, in the SCED
context, it is recommended that the information be summa-
rized in such a way as to maintain the information about each
individual (Hagopian, 2020), which is also well aligned with
some statistical approaches for contrasting hypothesis for all
participants, rather than on average (Klaassen, 2020).
Accordingly, the proposal that we make in the following sec-
tion allows us to represent how much each individual effect
differs from the average, rather than howmuch all individuals,
on average, differ from the average.

To aid in interpreting the variance, and so as not to
focus exclusively on its associated p value, a coefficient
of variation could be computed for each of the effects:
immediate change in level and change in slope. The

numerator would be the square root of the estimated var-
iance of the effect, and the denominator would be the
absolute value of the corresponding fixed effect (i.e., es-
timated average). The coefficient of variation can be
expressed as a percentage, but unlike the ICC or I2, it is
relative to the average effect estimated, which may lead to
more meaningful interpretations regarding whether this
variability is considerable. In order to reference the coef-
ficient of variation as a quantification of how consistent
(or actually, not consistent) the effect is, the fixed effect
estimate should be indicative of an effect being present.

As a limitation of the use of the coefficient of variation, it
must be mentioned that a specific and universal cutoff point
for a “small” coefficient of variation (and sufficient consisten-
cy to be interpreted as a successful and consistent replication)
does not exist. A second, andmore important, limitation is that
there is evidence that the variance estimates can be biased1 for
fewer than five participants in the study (Ferron et al., 2009;
Moeyaert et al., 2017). A third limitation is that, if the fixed
effect estimate is very small (e.g., close to zero), a large coef-
ficient of variation can be expected, and this would reduce its
informative value. Therefore, the coefficient of variation
needs to be interpreted with caution. As an alternative, we
now present our main proposal.

A proposal for assessing consistency of individual effects

An alternative to using the variance estimate as the basis
for assessing consistency would be to use the random
effect estimates. This proposal is similar to the previously
mentioned possibility for assessing replication in that it is
based on confidence intervals. For assessing replication,
we focused on the confidence intervals for the individual
intervention effects. In contrast, here we focus on the
confidence intervals for the random effects (i.e., the dif-
ference between the fixed effect estimate and the individ-
ual treatment effect estimate). Specifically, it is possible to
check how many of the confidence intervals for the ran-
dom effects include 0. In this case, a value of zero for the
random effect would represent an individual treatment ef-
fect equal to the fixed effect estimate (i.e., the average for
all participants). In that sense, if the confidence interval

1 Ferron et al. (2009) used a restricted maximum likelihood estimation applied
to data including an immediate and sustained change in level, and report that
the between-participants variance in the treatment effect was overestimated. In
contrast, Moeyaert et al. (2017) generated data including both an immediate
change in level and a change in trend, and report that the between-participants
variance in the immediate treatment effect was underestimated, for both full
and restricted maximum likelihood estimation. For the evaluation of consis-
tency, underestimating the variance of the effect would induce a false “evi-
dence” for consistency (i.e., a false positive), whereas overestimating the var-
iancewould induce false “evidence” against consistency (i.e., a false negative).
The former is likely to be considered more detrimental, considering the alpha
and beta error rates that are usually considered acceptable (Cohen, 1992).

2464 Behav Res  (2020) 52:2460–2479



for a random effect includes 0, then it would be plausible
for the individual treatment effect to be equal to the

average. This method of assessing consistency is strength-
ened by having longer observation series with less error
variance, because studies that are designed in this manner
will tend to have more precise estimates of the random
effects (i.e., narrower confidence intervals that all include
0 make a stronger argument for consistency). With this
option, it would still be necessary to check that the fixed
effect estimate exceeds zero or a minimally relevant val-
ue. Note that for obtaining the estimates of the random
effects for the treatment effect, it is necessary to include
the dummy variable representing the phase both in the
fixed and in the random part of the equation.

Once the number of positive and consistent effects is
tallied, two quantifications are possible. On the one hand,
it can be checked whether the ratio of effects to no effects
meets or exceeds 3:1. On the other hand, the percentage
of positive and consistent effects can be computed.
Obviously, the 3:1 ratio corresponds to 75% of the confi-
dence intervals for the random effects including 0.

Table 1. Results from applying multilevel models representing change
in level, using the lme4 package

Aspect Average estimate Standard error Standard deviation

Model. L1 for the Lambert et al. (2006) data

Baseline level 7.00 0.34 0.76

Change in level −5.79 0.43 0.62

Model.L2 for the Lambert et al. (2006) data

Baseline level 6.56 0.63 1.74

Change in level −4.85 0.54 1.53

Model.S1 for the Sherer and Schreibman (2005) data

Baseline level 15.64 9.76 23.53

Change in level 21.91 9.71 23.06

Note. The average estimate represents the fixed effect, whereas the stan-
dard deviation represents the random effect

Fig. 1 Graphical representation of the multilevel model representing change in level, applied to the A1-B1 comparisons from the Lambert et al. (2006)
data
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Illustrating the assessment of consistency of effects: Lambert
et al. (2006) data

The data on disruptive behaviors, gathered by Lambert et al.
(2006) following an ABAB design replicated over nine partici-
pants, has been used in several articles that present and compare
different analytical options (e.g., Michiels & Onghena, 2019b ;
Moeyaert et al., 2014a; Peng&Chen, 2015; Shadish et al., 2014).
In terms of a quantification of consistency, we will discuss the
results of two of these articles. Shadish et al. (2014) applied the
BC-SMD and obtained a bias-adjusted standardized mean differ-
ence equal to −2.51 and, more importantly for the current aim, an
ICC equal to .03, suggesting the almost all the variability in scores

is within participants, indicating consistent results across partici-
pants. Moeyaert et al. (2014a) applied several multilevel models,
and here we focus on the model that quantifies the average dif-
ference in level, without considering trend or autocorrelation, pre-
senting quantifications separately for the A1-B1 comparison and
for the A2-B2 comparison (Model 1B in Moeyaert et al., 2014a).
For the change in level in the A1-B1 comparison, the variance
reported is equal to 0, suggesting a strong consistency in the
effect. For the change in level in the A2-B2 comparison, the var-
iance reported is equal to 1.02, with an associated p value of .148,
indicative of lower consistency as compared with the effect in the
A1-B1 comparison. The software used byMoeyaert et al. (2014a)
for obtaining the estimates is SAS 9.3. In order to be able to use a
caterpillar plot to represent the random effects, we used the R
package lme4 (https://cran.r-project.org/web/packages/lme4/
index.html). The data file used for the illustration provided here
can be downloaded from https://osf.io/p3bna/, where there is also
a time series line plot representing the measurements obtained by
Lambert et al. (2006).

For this initial illustration (“Model.L1”), we apply a multilevel
model which includes only a dummy variable representing phase
and treats this dummy variable as a random effect. In that sense,
the estimates obtained are the average baseline level and the av-
erage change in level when the intervention is introduced (as fixed
effects) and the between-case variance of these effects. The nu-
merical results can be found in Table 1. Additionally, the individ-
ual empirical Bayes estimates for level and change in level were
obtained, ranging from 5.86 to 7.47 for the baseline level and
from −6.20 to −4.86 for the change in level. The graphical repre-
sentation of the model is shown in in Fig. 1.

For the A1-B1 comparison, we obtained the caterpillar plot of
the random effects represented in Fig. 2, upper panel. It can be
seen that eight out of nine confidence intervals (88.89% or a ratio
of 8:1) include the fixed effect estimate (equal to −5.79 using the
lme4 package vs. −5.66 reported byMoeyaert et al., 2014a, using
SAS). Additionally, the lower panel of Fig. 2, including the em-
pirical Bayes estimates of the individual treatment effects
(LevelChange), indicates that all nine point estimates suggest a
reduction. Actually, eight of the individual effects exceed a reduc-
tion of five disruptive behaviors. However, a cutoff value for a
minimally relevant difference would ideally be established prior
to gathering the data. The coefficient of variation, dividing the
square root of the variance by the estimate of the fixed effect
would be 100 × (0.62423/|−5.7955|)=10.77%.

For the A2-B2 comparison (“Model.L2”), the graphical repre-
sentation is shown in Fig. 3, whereas the numerical results regard-
ing the fixed and random effects can be found in Table 1.
Additionally, the individual empirical Bayes estimates for level
and change in level were obtained, ranging from 4.18 to 8.52 for
the baseline level and from −6.45 to −3.37 for the change in level.

Regarding the assessment of consistency, the caterpillar
plot of the random effects is represented in Fig. 4, upper panel.
It can be seen that five out of nine confidence intervals

Fig. 2 The upper panel includes the caterpillar plot for the random effects
and their confidence intervals as obtained via a multilevel model and
including only change in level, for the A1-B1 comparison from Lambert
et al. (2006). The lower panel includes the empirical Bayes estimates of
the individual treatment effects
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(55.56% or a ratio of 1.25:1) include the fixed effect estimate
(equal to −5.06 using the lme4 package vs. −5.08 reported by
Moeyaert et al., 2014a, using SAS). Additionally, the lower
panel of Fig. 4, including the empirical Bayes estimates of the
individual treatment effects, indicates that all nine point esti-
mates suggest a reduction. However, greater variability in the
A2-B2 effects is visible as compared with the A1-B1 effects in
the lower panel of Fig. 2. Accordingly, the coefficient of var-
iation, dividing the square root of the random effect by the
estimate of the fixed effect, is larger than for the A1-B1 com-
parison: 100 × (1.2349/|−5.061032|) = 24.40%.

Illustrating the assessment of consistency of effects: Sherer
and Schreibman (2005) data

In order to illustrate the results for a data set with lower con-
sistency, we use the data on appropriate speech gathered by
Sherer and Schreibman (2005) using a multiple-baseline de-
sign across participants, and included in the illustration of
multilevel modeling for meta-analysis by Moeyaert et al.

(2014a). Just as for the previous illustration, we apply a mul-
tilevel model (“Model.S1”) which includes only a dummy
variable representing phase and treats this dummy variable
as a random effect. The fixed and random effects can be found
in Table 1. Additionally, the individual empirical Bayes esti-
mates for level and change in level were obtained, ranging
from −0.47 to 49.83 for the baseline level and from 1.10 to
56.82 for the change in level. The graphical representation of
the model is shown in in Fig. 5.

Figure 6, upper panel, includes the caterpillar plot, ac-
cording to which only one of the six confidence intervals
(16.67%) includes the fixed effect estimate. The lower panel
illustrates the variability in the individual treatment effects,
with two of them very close to zero. Similarly, according to
the coefficient of variation, dividing the square root of the
random effect by the estimate of the fixed effect, there is
considerable variation: 100 × (23.059/|21.91|) = 105.24%.
This variability is related to the presence of two different
profiles of participants in the Sherer and Schreibman (2005)
study: responders and nonresponders. Here we used the data

Fig. 3 Graphical representation of the multilevel model representing change in level, applied to the A2-B2 comparisons from the Lambert et al. (2006)
data
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in order to illustrate a study with lack of consistency, with-
out suggesting that it is necessarily meaningful to integrate
the results of all participants quantitatively. The data file
used for the illustration provided here can be downloaded
from https://osf.io/p3bna/, where there is also a time series
line plot representing the measurements obtained by Sherer
and Schreibman (2005).

Additional illustration with more complex models:
Consistency of effects and consistency in similar phases

The illustrations presented in the text so far refer to the simplest
model, in which only a mean difference is modeled in the

absence of trend. In the current section, we present the results
for a model that also includes general trend and change in trend
after introducing the intervention. For such a model, it is most
common to code and interpret the change in level as an imme-
diate change taking place during the first intervention phasemea-
surement occasion (Moeyaert et al.,2014b). Moreover, there are
two effects whose consistency can be assessed: the immediate
change in level and the change in trend. Additionally, it is also
possible to perform a more complete evaluation of the consisten-
cy of data in similar phases by comparing the intercept (initial
baseline level) and the baseline trend across participants. In con-
trast, in the simpler models presented previously, for performing
an assessment of the consistency of similar phases we could have
focused only on the intercept, which then would have represent-
ed the average baseline level.

The more complex model can be applied to the Lambert et al.
(2006) data, as Moeyaert et al. (2014a) and Shadish et al. (2014)
also discuss possible baseline trends. We refer to this model as
“Model.L3”: Table 2 includes the numerical results for the fixed
effect (baseline level, immediate change in level, baseline trend,
and change in trend) and the standard deviations representing the
random effects. Additionally, the individual empirical Bayes es-
timates were as follows: (a) for baseline level, ranging from 5.65
to 6.54; (b) for immediate change in level, ranging from −8.65 to
−3.89; (c) for baseline trend, ranging from −0.05 to 0.25; and (d)
for change in trend, ranging from −0.98 to 1.07. The graphical
representation of the model is shown in Fig. 7.

For assessing consistency, the caterpillar plot for the
A1-B1 comparison is presented in Fig. 8. In terms of con-
sistency of effect, all nine confidence intervals include the
fixed effect estimate for the immediate change in level,
whereas for the change in trend, eight of the nine confi-
dence intervals include the fixed effect estimate.
According to the coefficient of variation, for the immedi-
ate change in level, there is very small variability and
high consistency: 100 × (0.423604/|−6.1857317|) = 6.85%
. Given that the estimate for the change in trend is very
close to zero (i.e., there is practically no change in trend),
the coefficient of variation suggests less consistency
(100 × (0.575299/|−0.2671592|) = 215.34%), but it should
not be the main quantification for such a small effect. In
terms of consistency of data in similar phases, focusing on
the baseline, eight of the nine confidence intervals include
the fixed effect estimate for the intercept and for the base-
line trend. The coefficient of variation for the intercept is
100 × (0.424273/|6.2486904|) = 6.79%, whereas that for
the baseline trend is 100 × (0.081208/|0.1432806|) =
56.68%. Once again, there is apparently lower consisten-
cy in the baseline trend, but this is related to the data
presenting almost no baseline trend on average.

Visual inspection of the Sherer and Schreibman (2005) data
suggests that there are different trends in the baseline and
intervention phase, which makes the more complex model

Fig. 4 The upper panel includes the caterpillar plot for the random effects
and their confidence intervals, as obtained via a multilevel model
including only change in level, for the A2-B2 comparison from Lambert
et al. (2006). The lower panel includes the empirical Bayes estimates of
the individual treatment effects
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reasonable. We refer to this model as “Model.S2”: Table 2
includes the numerical results for fixed effect (baseline level,
immediate change in level, baseline trend, and change in
trend) and the standard deviations representing the random
effects. Additionally, the individual empirical Bayes estimates
were as follows: (a) for baseline level, ranging from −1.71 to
37.46; (b) for immediate change in level, ranging from −5.63
to 11.55; (c) for baseline trend, ranging from −0.08 to 0.57;
and (d) for change in trend, ranging from −0.68 to 1.27. The
graphical representation of the model is shown in Fig. 9.

The caterpillar plot is presented in Fig. 10. Regarding the
consistency of effects, none of the six confidence intervals in-
cludes the fixed effect estimate for the immediate change in level,
whereas for the change in trend, two of the six confidence

intervals include the fixed effect estimate. Accordingly, the coef-
ficient of variation is very high in both cases: 100 × (4.55251/
|2.584279|) = 176.16% for the immediate change in level and
100 × (0.71328/|0.552067|) = 129.20% for the change in trend.
For the consistency of the baseline phases, none of the confi-
dence intervals includes the fixed effect estimate of the intercept,
and only one includes the fixed effect estimate for the baseline
trend. Accordingly, the coefficient of variation is very high in
both cases: 100 × (16.85489/|10.99686|) = 153.27% for the inter-
cept and 100 × (0.28957/|0.12886|) = 224.71% for the baseline
trend.

In summary, the graphical representation of the confidence
intervals for the random effects can be used to distinguish
between a data set with more consistent and successful

Fig. 5 Graphical representation of the multilevel model representing change in level, applied to the Sherer and Schreibman (2005) data

2469Behav Res  (2020) 52:2460–2479



replications (Lambert et al.) and a data set with lower consis-
tency in similar phases and lower consistency in effects
(Sherer and Schreibman).

Beyond multiple-baseline designs

Multilevel modeling in general, and the current proposals for
assessing consistency of effects at the within-study level, is
most straightforward for multiple-baseline designs. Actually,
several reviews of published SCED research suggest that
multiple-baseline designs are the most commonly used de-
signs (Hammond & Gast, 2010; Shadish & Sullivan, 2011;

Smith, 2012), present in more than half of the articles
reviewed.

For other SCEDs, some decisions need to be made before
applying a multilevel model. For instance, for an across-
participant replicated ABAB, several design matrices are pos-
sible, allowing for different comparisons (Moeyaert et al.,
2014b). For an across-participant replicated alternating treat-
ments design, if there is an initial baseline phase before the
comparison phase with rapid alternation of conditions, it is
possible to compare the baseline to each of the alternating
conditions (Moeyaert et al., 2014b). Otherwise, the average
difference between the alternating conditions can be comput-
ed (Shadish et al., 2013). For a changing criterion design, one
option is to compare the baseline phase to the last intervention
subphase, i.e., for the final criterion level (Faith et al., 1996).
Another option is to quantify the slope of the trend line across
all intervention subphases (Shadish et al., 2013). It should be
noted that for applying a multilevel model and for assessing
the consistency of effects within a study, it is necessary to
replicate the reversal/withdrawal, alternating treatments, or
changing criterion design across participants. Once the appro-
priate design matrix is constructed and the multilevel analysis
is carried out, the assessment of the consistency of effects can
be performed as described in the previously presented
examples.

Discussion

The research on multilevel models in their application to a
single study has primarily focused on studying the estimation
of fixed and random effects, as well as the coverage of confi-
dence intervals (e.g., Baek & Ferron, 2013; Ferron et al.,
2009; Ferron et al., 2010; Ferron et al., 2014; Moeyaert
et al., 2017), type I error and power (Heyvaert et al., 2017),
or dealing with count data (Declercq et al., 2019). Thus, the
focus of the current text (namely, consistency of effects) is
novel and it complements previous research. Moreover, the
focus on consistency is well aligned with recent research on
the topic (Tanious, De, Michiels, et al., 2019b; Tanious,
Manolov et al., 2019c). As a strength of the proposal made
here, this assessment of consistency can be performed using a
free user-friendly website, and it can be easily represented
visually. This makes it more likely to be accepted by applied
researchers.

The assessment of consistency in the context of
model building

One of the questionable research practices mentioned in rela-
tion to the “replicability crisis” is the ambiguous choices re-
garding data analysis (Hantula, 2019), which could be coun-
tered by preregistering analysis plans (Hales et al., 2019). A

Fig. 6 The upper panel includes the caterpillar plot for the random effects
and their confidence intervals, as obtained via a multilevel model
including only change in level, for the Sherer and Schreibman (2005)
data. The lower panel includes the empirical Bayes estimates of the indi-
vidual treatment effects
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multilevel model, just like the BC-SMD (Shadish et al., 2014),
imposes the same kind of quantification for all participants for
whom the different conditions are being compared. Such an
analytical practice avoids the possibility of adapting the

analysis or the quantitative emphasis to the most salient fea-
tures of the data. However, the flexibility of multilevel models
comes with the price of many decisions that need to be made
regarding the exact model to apply (Baek et al., 2016).

Fig. 7. Graphical representation of the multilevel model representing immediate change in level and change in slope, applied to the A1-B1 comparisons
from the Lambert et al. (2006) data

Table 2. Results from applying multilevel models representing immediate change in level and change in trend, using the lme4 package

Aspect Average estimate Standard error Standard deviation

Model.L3 for the Lambert et al. (2006) data

Baseline level 6.23 0.52 0.34

Immediate change in level −7.05 0.09 1.66

Baseline trend 0.15 0.94 0.11

Change in trend −0.28 0.31 0.71

Model.S2 for the Sherer and Schreibman (2005) data

Baseline level 10.92 8.93 20.07

Immediate change in level 4.93 8.29 6.89

Baseline trend 0.14 0.29 0.31

Change in trend 0.55 0.48 0.83

Note. The average estimate represents the fixed effect, whereas the standard deviation represents the random effect
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In relation to model building, the decisions (e.g., include
trend or not, which effects to include as random) could be
made in relation to what is visible on the plots of raw data,
but such a practice potentially leads to overfitting (Baek et al.,
2016; Hox, 2010). The subjective visual inspection can be
complemented by fit indices (e.g., the Akaike or the
Bayesian information criterion) for deciding whether a more
complex model offers sufficient improvement in fit (Dedrick
et al., 2009; Ferron et al., 2008). In that sense, more complex
models are not necessarily desirable, given that they may en-
tail estimation problems and require larger samples (Wiley &
Rapp, 2019). A different kind of comparison across models
can be made via sensitivity analysis: checking the degree to
which the conclusions change for different modeling options
(Baek & Ferron, 2013; Moeyaert et al., 2014a).

In order to avoid excessively data-driven decisions and to
reduce the possibility of overfitting, the model can be selected
prior to data collection on the basis of theoretical consider-
ations and previous evidence (Ferron et al., 2008; Onghena
et al., 2018; Wiley & Rapp, 2019). For instance, the decision
of whether to model baseline trend can be based on the expec-
tations regarding spontaneous improvement (e.g., in
neurorehabilitation, Krasny-Pacini & Evans, 2018) or on
knowledge about baseline stability (Baek et al., 2014),

whereas the choice of whether to model change in trend can
be related to whether a gradual effect is expected (e.g., in
academic interventions, Maggin et al., 2018). Additionally,
if modeling trend is considered necessary, Shadish et al.
(2013) suggest that both random intercepts and random slopes
are needed for the proper modeling of autocorrelation. In fact,
several illustrations of the use of multilevel models incorpo-
rating terms for trend include both random intercepts and ran-
dom slopes (e.g., Baek et al., 2014; Gage & Lewis, 2014;
Moeyaert et al., 2014a). In the context of the current proposal,
the inclusion of random intercepts and random slopes allows
for the assessment of consistency in similar phases (i.e., con-
sistency of baseline level and baseline trend across cases) and
consistency of effects (i.e., consistency of change in level and
change in slope.

In summary, considering that all models are wrong (Box &
Draper, 1987), trying out multiple models without an a priori
basis may lead not only to capitalizing on chance, but also to
ethical concerns (Levin et al., 2017). Thus, we recommend
that the fundament for the model chosen should be at least
partially related to the expectations stemming from the avail-
able literature, whereas visual analysis can still be used post
hoc in order to comment on the meaningfulness of these quan-
tifications (Parker et al., 2006). Specifically in relation to the

Fig. 8 Caterpillar plot for the random effects of a multilevel model including trend, change in trend, and immediate change in level, for the A1-B1

comparison from Lambert et al. (2006)
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current proposal, including a predefined criterion for what is
considered a successful and consistent replication, as sug-
gested here, is expected to lead to results that are less affected
by the “researcher degrees of freedom” (Hantula, 2019).

Software considerations

For the proposals made in the current text, we opted for a
software implementation in R because it offers the possibility
to create a freely available menu-driven website, via the Shiny
package. In contrast, software such as SAS (which has been
previously presented for using multilevel models; Baek &
Ferron, 2013; Ferron et al., 2014; Moeyaert et al., 2014a;
Moeyaert et al., 2013) is commercial and would require that
the user works with programming code (syntax).

Using the website https://manolov.shinyapps.io/
ExpectedPattern/ it is possible to obtain both numerical
results and graphical representations. The website provides
an example of the expected data structure, whereas the
example data sets used in the current text can be obtained
from https://osf.io/p3bna/. Once a data file is located and
loaded, it is possible to specify expectations, such as the
presence of baseline trend or the immediacy of effect, that
help in choosing a multilevel model. After the expectations
are specified, the quantitative results of multilevel models are
obtained, along with line graphs representing the
measurements for all participants, with superimposed mean
or trend lines. Additionally, caterpillar plots such as those
included in the present text are also obtained.

However, given that the topic is consistency, we have to
mention that there may be inconsistencies between the

Fig. 9 Graphical representation of the multilevel model representing immediate change in level and change in slope, applied to the Sherer and
Schreibman (2005) data
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different software programs used for carrying out multilevel
models, and even between different packages within R.
Specifically, the nlme package (https://cran.r-project.org/
web/packages/nlme/index.html) allows modelling for
autocorrelation, which can be considered an advantage given
the evidence available on the presence of autocorrelation in
SCED data (Shadish & Sullivan, 2011). In contrast, the lme4
package (https://cran.r-project.org/web/packages/lme4/index.
html) does not offer this option, but has two advantages as
compared with the nlme package: (a) the possibility to use the
Kenward-Roger correction for degrees of freedom when
obtaining p values (Wiley & Rapp, 2019), and (b) the auto-
matic construction of caterpillar plots. In relation to the topic
of the current text, to the best of our knowledge, caterpillar
plots cannot be easily constructed for the objects resulting
from a applying a multilevel model via the nlme package.
Therefore, an optimal solution (modelling autocorrelation,
using Kenward-Roger degrees of freedom, and obtaining cat-
erpillar plots) is apparently currently not possible in R. Thus,
the caterpillar plots obtained via the website https://manolov.
shinyapps.io/ExpectedPattern/ are based on models without
autocorrelation. For the sake of completeness and
comparability, the numerical results from both the nlme and
the lme4 packages are included in the website.

Alternatively, software like SAS could be used to esti-
mate the multilevel models, which would facilitate con-
struction of confidence intervals that reflect Kenward-
Roger adjusted degrees of freedom, but would require
additional work to construct the caterpillar plots. Finally,
it should be noted that the results obtained with other
pieces of software for multilevel models, such as SAS
PROC MIXED, MLwiN, SPSS Mixed, or HLM, cannot
be expected to be completely identical. Therefore, despite
the current developments and the software availability,
more work is necessary for making all analytical options
available across several instances of software in order to
avoid suboptimal analyses.

Limitations and future research

The focus of the current text is on the quantification and
graphical representation of the consistency of effects (i.e.,
direct replication) within a SCED study. Therefore, the
illustrations are presented with verbal descriptions of the
model building process. The reader interested in multilev-
el model building and formal presentation of the multilev-
el models within a single study, can refer to Baek et al.

Fig. 10 Caterpillar plot for the random effects of a multilevel model including trend, change in trend, and immediate change in level, for the Sherer and
Schreibman (2005) data
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(2014), Dedrick et al. (2009), and Moeyaert, et al.
(2014a).

Provided that the focus is on within-study replication,
we did not deal extensively with replication across stud-
ies. Although certain uses of SCEDs are not aimed at
demonstrating the generality of the intervention effects
(Riley-Tillman & Burns, 2009), if the aim is to establish
the generalizability of the intervention effects, systematic
replications across studies are relevant (Maggin, 2015;
Onghena et al., 2018; Tate & Perdices, 2019). Even when
generalization is desirable, the external validity in the
SCED context is not an issue of statistical inference and
extrapolation, but rather follows a more inductive ap-
proach (Kennedy, 2005). In this approach, the descrip-
tions of participants, interventions, target behaviors, and
settings are crucial (Maggin, 2015; Tate et al., 2013), and
the amount of generality can be understood as a continu-
um according to the number of variables (related to par-
ticipants, target behaviors, and settings) that change in
systematic replications across studies (Gast & Ledford,
2018; Riley-Tillman & Burns, 2009). In that sense, failing
to replicate an effect allows one to discover the limitations
of an intervention, which is also useful for prompting
further modifications and further research for better un-
derstanding the reasons an intervention does or does not
work (Gast & Ledford, 2018). Finally, building the evi-
dence about generality on the basis of a series of individ-
ual studies makes the meta-analyses of the SCED studies
and multilevel models relevant (Jenson et al., 2007;
Onghena et al., 2018).

Regarding the proposal of quantifying the percentage
of random effect confidence intervals that include 0, it
should be noted that this percentage is not expected to
approximate any theoretically desirable quantity. In that
sense, we are not quantifying how many of the confidence
intervals in different samples or replications include a
population parameter, which would be equivalent to
studying the coverage of a confidence interval (e.g.,
Baek et al., 2019; Ferron et al., 2009; Moeyaert et al.,
2017), expected to be .95 for a 95% confidence.
Additionally, what we are proposing is not the same as
estimating the capture percentage of an initial confidence
interval in reference to the means of subsequent replica-
tions, expected to be equal to .83 for a 95% confidence
(called “prediction interval for a replication mean” by
Cumming, 2012). Therefore, for the percentage of random
effects confidence intervals that include 0, there is not an
exact cutoff point that suggests sufficient consistency, just
like experimental control should be understood as a con-
tinuum and not as something that is either present or ab-
sent (Horner & Odom, 2014). The 3:1 ratio (Maggin
et al., 2013) and the corresponding percentage of 75% is
only an indication, and not a fixed criterion. Nevertheless,

it has been highlighted that statistical thinking is more
important than mechanically applying a given ritual
(Gigerenzer, 2004).

In terms of the statistical properties of the quantifica-
tions proposed, some comments are necessary. There is
evidence that the confidence intervals for the variance of
the treatment effect (i.e., change in level) present
undercovering (Ferron et al., 2009). However, it is unclear
whether this evidence can be extrapolated to each of the
confidence intervals for the random effects (i.e., for the
confidence intervals for the difference between the indi-
vidual treatment effects and the fixed effect estimate).
Similarly, it is not clear whether the evidence about the
confidence intervals for the individual treatment effects
(wider intervals, but better coverage when using the
Kenward-Roger estimation of the degrees of freedom;
Ferron et al., 2010) can be extrapolated to the confidence
intervals for the difference between the individual treat-
ment effects and the fixed effect estimate. Therefore, more
research is needed on the latter.

Open Practices Statements

The current text is not based on gathering data (e.g., in the
context of an experiment). Therefore, there are no primary
data or materials to bemade available and there is no empirical
study requiring preregistration. Nonetheless, the data used for
the illustrations and the R code for constructing the caterpillar
plots are available at https://osf.io/p3bna/.
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