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Abstract
Half of the world’s population has internet access. In principle, researchers are no longer limited to subjects they can recruit into
the laboratory. Any study that can be run on a computer or mobile device can be run with nearly any demographic anywhere in
the world, and in large numbers. This has allowed scientists to effectively run hundreds of experiments at once. Despite their
transformative power, such studies remain rare for practical reasons: the need for sophisticated software, the difficulty of
recruiting so many subjects, and a lack of research paradigms that make effective use of their large amounts of data, due to such
realities as that they require sophisticated software in order to run effectively. We present Pushkin: an open-source platform for
designing and conducting massive experiments over the internet. Pushkin allows for a wide range of behavioral paradigms,
through integration with the intuitive and flexible jsPsych experiment engine. It also addresses the basic technical challenges
associated with massive, worldwide studies, including auto-scaling, extensibility, machine-assisted experimental design,
multisession studies, and data security.
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Although some questions psychologists care about involve
comparing only two conditions to each other, most require
teasing apart the contributions of many intertwined variables.
In the past, this has required hundreds, if not thousands, of
studies across numerous laboratories, each targeting a specific
variable, population, or stimulus set.

In principle, we can now do this work many orders of
magnitude more quickly. Given that half the world’s pop-
ulation has internet access (ITU Telecommunication
Development Sector, 2017), any study that can be run
on a computer or mobile device can be run with nearly

any demographic anywhere in the world, and in large
numbers. This includes not just surveys, but studies in-
volving grammatical judgments, reaction times, decision-
making, economics games, eyetracking, priming, sentence
completion, skill acquisition, and others—which is to say,
most human behavioral experiments (Birnbaum, 2004;
Buchanan & Smith, 1999; Germine et al., 2012; Gosling
& Mason, 2015; Gosling, Sandy, John, & Potter, 2010;
Haworth et al., 2007; Honing & Ladinig, 2008; Krantz,
2001; Meyerson & Tryon, 2003; Papoutsaki et al., 2016;
Reips, 2002; Skitka & Sargis, 2006). Extensive research
has shown that data from online studies is, if anything, of
higher quality than what is typically achieved in the lab
(Appendix C).

The feasibility and utility of internet experiments is amply
demonstrated by the widespread adoption of Amazon
Mechanical Turk (Buhrmester, Kwang, & Gosling, 2011;
Mason & Suri, 2012; Paolacci, Chandler, & Ipeirotis, 2010;
Stewart, Chandler, & Paolacci, 2017). For example, around
one-quarter of recent cognitive psychology articles feature at
least one online experiment (Stewart et al., 2017). Fully cap-
italizing on the promise of the internet, however, requires
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finding a way to go beyond Amazon’s subject pool of fewer
than 20,000, mostly American and Indian, adults to the full
population of three billion internet users (Buhrmester et al.,
2011; ITU Telecommunication Development Sector, 2017;
Paolacci et al., 2010; Stewart et al., 2015).1

In fact, a number of researchers have successfully lever-
aged the internet to conduct what are effectively hundreds of
studies at once: massive online experiments that cover a wider
range of demographics, a wide range of stimuli, or both
(Blanchard & Lippa, 2007; Bleidorn et al., 2013; Bleidorn
et al., 2016; Brysbaert, Stevens, Mandera, & Keuleers, 2016;
Condon, Roney, & Revelle, 2017; Fortenbaugh et al., 2015;
Gebauer et al., 2014; Germine, Duchaine, &Nakayama, 2011;
Halberda, Ly, Wilmer, Naiman, & Germine, 2012; Hartshorne
& Germine, 2015; Hartshorne, O’Donnell, & Tenenbaum,
2015; Hartshorne & Snedeker, 2013; Hartshorne,
Tenenbaum, & Pinker, 2018a; Hauser, Young, & Cushman,
2008; Johnson, Logie, & Brockmole, 2010; Kajonius &
Johnson, 2018; Keuleers, Stevens, Mandera, & Brysbaert,
2015; Killingsworth & Gilbert, 2010; Kumar, Killingsworth,
& Gilovich, 2014; Lippa, 2008; Logie & Maylor, 2009;
Manning & Fink, 2008; Maylor & Logie, 2010; Nosek,
Banaji, & Greenwald, 2002; Peters, Reimers, & Manning,
2006; Reinecke & Gajos, 2014; Riley et al., 2016; Salganik,
Dodds, & Watts, 2006; Soto, John, Gosling, & Potter, 2011;
Susilo, Germine, & Duchaine, 2013).2 Many of these studies
have often prompted significant revision of theory, including
overturning long-standing theoretical accounts of cognitive
aging, crit ical periods, and aesthetic preferences
(Fortenbaugh et al., 2015; Germine et al., 2011; Halberda
et al., 2012; Hartshorne & Germine, 2015; Hartshorne,
Tenenbaum, & Pinker, 2018b; Reinecke & Gajos, 2014).

Researchers have also used a related paradigm to process
enormous amounts of data: citizen science (Dickinson,
Zuckerberg, & Bonter, 2010; Greene, Kim, Seung, & the
EyeWirers, 2016; Hartshorne, Bonial, & Palmer, 2013a,
2014; Kim et al., 2014; Poesio, Chamberlain, Kruschwitz,
Robaldo, & Ducceschi, 2013; Simpson, Page, & De Roure,
2014). Citizen science projects recruit large numbers of vol-
unteers to assist in scientific research (Box 1). While citizen
science has been much more widely used in other fields (e.g.,
for categorizing galaxies or tracking bird migrations; Sullivan
et al., 2014; Willett et al., 2017), some early successes have
shown its potential power for psychology and neuroscience.

For instance, mapping the synapses of even a single axon
is an extremely time-intensive task. By recruiting over
100,000 volunteers, Kim et al. were able to map 274
retinal axons, finding that different types of bipolar cells
vary in how close they synapse to starburst amacrine cell
somas. This physical asymmetry in synapse location,
coupled with several other properties of these neurons,
provides a plausible mechanism for explaining how the
mammalian brain detects motion.

Obstacles to broader adoption

Any researcher wishing to engage in massive online experi-
ments or citizen science immediately runs into a significant
obstacle: There is no ready-to-use software for implementing
them. Indeed, the major online research websites—
gameswithwords.org, testmybrain.org, labinthewild.org,
projectimplicit.org, and eyewire.org—all use their own
custom, in-house software.

The reason for this may not be immediately obvious, given
that there are a number of solutions for online studies, includ-
ing commercial platforms (Qualtrics, SurveyMonkey,
LabVanced) and open-source software (jsPsych, PsychoJS,
Ibex Farm) (Table 1). However, these systems were designed
for relatively small experiments, with a few thousand subjects
at most. Internet-scale studies present additional challenges
with regard to addressing recruitment, reliability, a range of
paradigms, and contingent design.

Recruitment is perhaps the most obvious problem. There
may be over three billion people online, but they need some
motivation to do your experiment. Many of the existing solu-
tions involve paying subjects through Amazon Mechanical
Turk or Qualtrics. However, the number of subjects that can
be recruited through these platforms is insufficient for the
kinds of studies under discussion here (Buhrmester et al.,
2011; Levay, Freese, & Druckman, 2016; Paolacci et al.,
2010; Stewart et al., 2015), and paying that many would in
any case be prohibitively expensive. Instead, internet-scale
research typically relies on gameification, personalized feed-
back, and other strategies to make participation intrinsically
rewarding—strategies that are not generally available through
existing platforms (Table 1).

The difficulties associated with reliability may not be im-
mediately apparent to individuals who have limited experi-
ence running popular websites. In essence, internet-scale re-
search has one inherent vulnerability:Websites are most likely
to crash precisely when you need them most. That is, subjects
tend to come in large waves (Fig. 1), and this heavy traffic can
overwhelm a website and cause it to crash. Because it is dur-
ing those waves of traffic that we collect almost all of our data,
that is the worst possible time for the website to crash. This is
one of the most difficult problems in web development. In

1 For a creative solution for testing children via AmazonMechanical Turk, see
Scott and Schulz (2017).
2 Here we focus on datasets originating from experiments, rather than on
secondary uses of preexisting systems, such as observational studies of online
gamers and social networkers or experiments conducted by websites on their
users (Bainbridge, 2007; Hardy & Scanlon, 2009; Settles & Meeder, 2016;
Streeter, 2015; Wilson, Gosling, & Graham, 2012). Though potentially pow-
erful methods of research, the use of such systems can sometimes raise ethical
issues, and in any case is not a realistic option for researchers who do not have
their own popular online game or social network.
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fact, a common method of cyberattack is to overwhelm a
website with heavy traffic. Common strategies involve auto-
scaling (described below) and comprehensive backups.
Although large commercial websites such as Google Forms
or SurveyMonkey will generally handle these issues, they are
fairly limited as platforms for research.

Indeed, our formal and informal surveys of colleagues
indicate that access to a range of experimental paradigms
is a major limiting factor in the adoption of internet-scale
research. Most platforms were designed to support a par-
ticular paradigm, such as surveys (SurveyMonkey,
Qualtrics, Google Forms), psycholinguistics experiments
(Ibex Farm), or iterated cultural evolution experiments
(Dallinger). Researchers who want to run multiple para-
digms may need to learn multiple platforms (Table 1).
This provides yet another barrier.

Finally, one of the most powerful uses of massive online
experiments and citizen science projects is to gather data on
very large numbers of specially chosen experimental stimuli,
often with each participant only seeing a small fraction of test
items. This raises a number of difficult design questions:
Which stimuli should be tested, how many times should each
be presented, and to which participants? Traditionally, re-
searchers have answered these questions informally using a
combination of intuition, prior experience with experimental
paradigms, power analyses, and estimates of the number of
participants and time involved in studies. This is possible in
the laboratory, where the experimenter has time between sub-
jects to adjust protocols, design new experiments, and so
forth. It is not possible for internet-scale studies, for which
data collection is continuous and happens at the discretion of
the subjects, not the experimenter. A further complication is
that with internet-scale studies, we rarely know how many
subjects we will have, even to the order of magnitude. Thus,
to get full use out of internet-scale research, it is often neces-
sary to have the software response contingently as the data
comes in.

This can be addressed with optimal experimental design,
active learning, or other machine-assisted experimental design
techniques (see the Contingent Experiments section). The ba-
sic idea behind machine-assisted experimental design is to
choose, on the basis of all participants’ previous behavior,
the stimuli that will provide the most relevant information.
This may, for instance, take the form of adapting to one

participant’s individual characteristics, selecting the next item
of interest given responses so far, or choosing an entire study
design from a large space provided by the user. Unfortunately,
fully supporting machine-assisted experimental design re-
quires a different software architecture from that of existing
software (see the How PushkinWorks section). Thus, existing
software either does not support machine-assisted experimen-
tal design or, in the case of Dallinger, supports only a subset of
methods (Table 1).

Pushkin: A platform for internet-scale
research

Philosophy and approach

The lab-based experimental paradigm developed over a cen-
tury ago. A robust approach to internet-scale studies will not
appear immediately, nor without a great deal of work. Thus,
we have approached the problem in an incremental, scalable
way. Although our long-term goal is a robust new paradigm
that vastly increases the rate of progress in our science, we do
not attempt to do all of this (or even most of this) ourselves.
Instead, our approach is to lay a foundation upon which our
community can build.

Part of the inspiration comes from Alexander Pushkin
(1799–1837), who developed the literary language of
Russian. No work of literature exists in a vacuum.
Authors lean on established genres (romance, coming
of age, fantasy), standard archetypes (vampires, ninjas,
jaded private eyes), idioms (Bheart on my sleeve,^ Bthe
center cannot hold,^ Bthe sound and the fury^), and
direct references (he is a Scrooge/Eeyore/Romeo) in or-
der to quickly evoke characters, scenes, and emotions,
rather than building everything from scratch. Prior to
Pushkin, little was written in Russian, and this shared
cultural vocabulary did not exist. Pushkin promoted
what did exist, invented vocabulary, established genres,
and coined idioms, building the framework that
Doestoevsky, Tolstoy, Chekhov, and others depended
on for their masterworks.

Thus, our goal is to establish a shared cultural vocabu-
lary on which an internet-scale research paradigm can be
built. This includes producing not just reusable software

Fig. 1 Daily traffic at GamesWithWords.org, a successful website for massive online experiments and citizen science. Large spikes in traffic are common
after the launch of a new experiment, coverage in popular media, or both.
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but also experimental paradigms, analysis methods, and
best practices. Just as the Russian literary language contin-
ued to develop after Pushkin, our goal is to establish a core
set of tools and paradigms upon which others will build.

As such, we stress interoperability (our tools should be
modular and interface with existing projects), extensibility
(our tools should be easy to extend), and broad
applicability (our tools should be useful not just for eco-
nomics games or psycholinguistics tasks, but for the wid-
est possible range of internet studies). The result, we hope,
will be a developer ecosystem that supports rapid building
and deployment of not just new experiments, but new
tools. This common vocabulary can then be used by de-
velopers to build custom applications for specific labora-
tories or to develop easy-to-use plug-and-play software for
specific types of studies (cf. E-Prime). Such ecosystems
play vital roles in the technology industry. We believe that
they can play a similar role in social science.

At the heart of this is the Pushkin experiment frame-
work itself: A platform for internet-scale research. In
particular, Pushkin version 1.0 provides a range of func-
tionality that is needed for massive online experiment
and citizen science but that is not addressed by existing
software. Importantly, in keeping with our philosophy,
Pushkin is not a stand-along piece of software, but rath-
er a highly modular framework that binds together dif-
ferent reusable tools. Although some of these tools are
original to Pushkin, many are third-party tools, such as
jsPsych, WebGazer.js, RabbitMQ, auth0, Bookshelf.js,
WebPPL, and many of the components of Amazon
Web Services (see the How Pushkin Works section
and Fig. 6). If no existing product meets our needs,
we attempt to extend one rather than build something
from scratch. For instance, we modified jsPsych to
make it easier to integrate with Pushkin. However, the
services and libraries used are merely default choices;
other researchers could swap them out for others as
needed. Similarly, our own original tools can be reused
for unrelated projects.

Features

In the Obstacles to Broader Adoption section above, we
laid out a number of desiderata for software that are
addressed by Pushkin version 1.0. In this section, we
describe how these are addressed with the current func-
tionality. In the next section, we provide technical
details.

Recruitment and engagement

Pushkin version 1.0 provides a number of mechanisms for
recruiting, engaging, and retaining both research subjects
and citizen scientists. Note that all these mechanisms are
optional, and researchers can use different ones for differ-
ent studies. Indeed, different kinds of studies will benefit
more from different recruitment and engagement
mechanisms.

Mailing lists Participants can sign up to receive alerts about
new experiments. Using a similar system, gameswithwords.
org has built a mailing list several thousand individuals long.
Pushkin also allows individuals to sign up to receive
information about the results of specific studies and any
related publications, which facilitates compliance with
common IRB requirements while also providing a
mechanism for engagement. Importantly, the mailing list is
siloed from data, so there is no way to connect an email
address to the subject data.

Sharing To facilitate word-of-mouth recruitment, Pushkin
makes it easy for participants to share experiments and other
Pushkin webpages via email and social media. (Note that this
does not give researchers access to subjects’ social media pro-
files.) Sharing on social media can be quite effective: Since

Box 1: Definitions There is no well-established terminology for
internet-scale studies. Below, we define some of the terms used in this
article.

Broadly multidemographic: a study comparing subjects from a large
number of demographic groups. For instance, Hartshorne and Germine
(2015) quantified cognitive abilities for every age from 10 to 70 (>
75% of the typical lifespan), and Reinecke and Gajos (2014) quantified
visual preferences for subjects from 175 countries (90% of the coun-
tries in the world).

Extensively sampled stimuli: a large number of stimuli covering a wide
range of the space of potential stimuli. For instance, Brysbaert et al.
(2016) collected judgments about 61,800 words; Ferrand et al. (2010)
collected lexical decision times for 38,400 words and 38,400
nonwords, and Brady, Konkle, Alvarez, and Oliva (2008) tested
memory for 2,500 pictures of objects.

Massive online experiment (MOE): an experiment conducted online
that is broadly multidemographic, involves extensively sampled
stimuli, or both. Typically involves tens or hundreds of thousands
of subjects.

Citizen science: a study in which large numbers of volunteer research
assistants help collect data, perform analyses, or otherwise carry
out research activities (Bonney et al., 2014; Dickinson et al.,
2010; Silvertown, 2009; Simpson et al., 2014). Citizen science
projects differ from MOEs in that the volunteers are not research
subjects.

Crowdsourcing: a large task is broken down into many small
components, each of which is carried out by a different person
(Doan, Ramakrishnan, & Halevy, 2011; Howe, 2006). Common
examples include spam-filtering, labeling images for search, or
checking websites for broken links. Most citizen science projects
are examples of crowdsourcing. “Crowdsourcing” is sometimes
confusingly used to refer to internet experiments. We avoid that
usage here.

1786 Behav Res (2019) 51:1782–1803

http://gameswithwords.org
http://gameswithwords.org


2014, 30% of gameswithwords.org’s traffic has come through
social media referrals.

Personalized feedback Many research participants appreciate
immediate information about the outcome of a study (Huber,
Reinecke, & Gajos, 2017; Jun, Hsieh, & Reinecke, 2017;
Reinecke & Gajos, 2015). This can consist of a percentile
score (you scored in the 75th percentile on vocabulary/face
recognition/working memory) or a guess about some subject
characteristic (based on our quiz, you are a native speaker of
Spanish/elementary school teacher/43 years old). This can be
quite effective. In a study of 5,000 visitors to testmybrain.org,

a quarter cited Blearning about myself^ as the primary
motivat ion for par t ic ipat ion (Germine, personal
communication, May 18, 2018). Pushkin provides a growing
number of templates for such feedback in the form of jsPsych
plugins, and developers can easily create their own.

The impact of this feedback can be magnified by
allowing subjects to share their results on social media
(see the previous section). Although it is somewhat
counterintuitive to researchers who have been trained
by IRBs to be mindful of subject confidentiality, many
subjects are extremely enthusiastic about sharing their
results with their friends (cf. the popularity of

Fig. 2 Example of a citizen science project built with Pushkin, employing such gameification elements as a project progress bar, leaderboard, and
shareable badges (see the right-hand side of the screen).
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Facebook quizzes). Thus, the ability to share makes re-
search participation more interesting and therefore more
valuable to many subjects (Huber et al., 2017; Jun
et al., 2017). Again, this is implemented in such a
way that researchers do not have access to subjects’
social media profiles, and subject data cannot be con-
nected to social media profiles.

Leaderboards and badges

Citizen scientists are motivated by a desire to contribute
to science (Reed, Raddick, Lardner, & Carney, 2013).
Pushkin provides the option to use leaderboards, badges,
and project status bars as a means of visualizing an
individual’s contribution (Fig. 2). Although primarily
intended for citizen science projects, these elements
could in principle be used for massive online experi-
ments. For instance, testmybrain.org informs potential
sub jec t s o f how many sub jec t s have a l ready
participated, providing a visualization of how much
has been accomplished so far.

Forums Pushkin provides support for an interactive forum
in which participants can discuss the research. The fo-
rum has optional functionality that is particularly valu-
able for citizen science projects: the ability to post an
item from the study to the forum for discussion and
feedback (Fig. 3). Having discussed the item on the fo-
rum, anyone can then help code it. These features can be
counterintuitive to many researchers, who are used to
maintaining research subject naiveté. However, citizen
scientists are performing the function of a researcher,
and—except for projects that require the researcher to
be blind to condition—it is often counterproductive for
the researcher to be ignorant of the purpose of the pro-
ject. Moreover, citizen scientists occasionally make im-
portant discoveries in their own right, so allowing them
to pass along their observations can be very valuable
(Becker, 2018).

Participant dashboards For Pushkin projects that allow par-
ticipants to create persistent identities (see the Range of
Experimental Paradigms section), Pushkin provides

Fig. 3 The four panels of this figure depict the relationship between
citizen science projects and their associated forums in Pushkin. (Top
left) A citizen science project in which a volunteer is analyzing a music
clip. At the bottom left of the window, there is a button labeled BAsk a
question.^ (Top right) Clicking BAsk a question^ brings up a pop-up
window, allowing the volunteer to post the item they were working on

to the forum, along with a question. (Bottom left) This question is sent to
the forum, tagged with the name of the project. (Bottom right) In the
forum, users can listen to the clip and discuss the question. Anyone also
has the option to respond to the original query (i.e., to code the item in
question).
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dashboards: homepages for registered users that allow
them to see information about their participation, such
as forum posts they are tagged in, badges they have
earned, or their personalized results from massive online
experiments they have participated in (Fig. 4). From here,
they can also manage their account. In Pushkin version
1.0 the out-of-the-box dashboard functionality is limited,
but this is an active area of development, and users can
customize the dashboard as needed.

Reliability and stability

Pushkin uses a variety of methods to decrease the probability
that the website will crash, and to aid recovery if it does.

The most common reason for a website to crash is for
it to be overwhelmed by massive influxes of traffic. This
can be addressed by purchasing a very powerful web
server. Unfortunately, this is prohibitively expensive. It
is also overkill, since most of the time that computing
power will go unused (cf. Fig. 1). By default, Pushkin
makes use of several powerful methods provided by

Amazon Web Services for auto-scaling: that is, for flex-
ibly adjusting the amount of computing power available
in response to demand (see the Auto-scaling section).
This is augmented by specific design features of
Pushkin’s internal architecture that allow it to Bfail
gracefully^ during periods of heavy traffic (again, see
the Auto-scaling section).

Nonetheless, no computer system is immune to crashes.
Serious crashes can lead to data corruption or loss. For that
reason, Pushkin by default makes use of several redundant
mechanisms for backing up data, including real-time backups
(see the Backups section).

Range of experimental paradigms

By default, Pushkin uses jsPsych to display stimuli and record
responses. In principle, researchers could use any compatible
experiment engine, but jsPsych is a particularly robust and
flexible option (see Appendix A). It currently allows for the
presentation of text, images, video, audio, and any other
HTML-formatted content, including animations or interactive

Fig. 4 For Pushkin projects that involve persistent identities, participants
who are logged in have access to a dashboard. In the dashboard, they can
manage their account and also see information about their participation,

such as forum posts they are tagged in. In Pushkin version 1.0, access to
the dashboard’s full functionality requires customization.
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displays. Measurements can be made using keyboard re-
sponses, mouse clicks, touch input, text input, multiple choice
questions and Likert scales, drag-and-drop sorting, visual an-
alog scales, Likert scales, and more. A unique strength of
jsPsych is its plugin-based architecture, which allows devel-
opers to add new stimulus types and response measures. For
example, we created a plugin that allows eyetracking using the
Webgazer.js package (Papoutsaki et al., 2016).

Moreover, jsPsych plugins allow for the development of
standardized protocols that can be adapted through the adjust-
ment of a set of parameters. For instance, although the implicit
association test (IAT; Greenwald, McGhee, & Schwartz,
1998; Nosek et al., 2002) could be implemented as a series
of generic stimulus-with-keyboard-response trials, jsPsych
provides an IAT plugin that produces the standard layout
and feedback of the IAT. Thus, the plugin architecture allows
researchers to rapidly develop and disseminate interoperable
code for new (and old) experimental paradigms. The growing
library of jsPsych plugins means that not only are a wide range
of experimental paradigms possible, a growing number of
them are quick and easy to implement.

Pushkin augments jsPsych’s range of experiments in two
important ways. First, it provides a secure subject login sys-
tem, which enable multi-session and longitudinal designs. It
also supports emailing the subjects (with their permission) to
remind them about follow-up sessions. (For information on
data security, see the Authentication and Logins and Security
sections.)

Second, Pushkin provides the infrastructure for a broad
range of contingent experiments. We describe this in the next
subsection.

Contingent experiments

Pushkin is designed from the ground up to allow dynamic
stimulus selection (Fig. 5), and thus is uniquely suited to
implementing machine-assisted experimental design algo-
rithms. Most approaches to machine-assisted experimental de-
sign rely on mathematically rigorous specifications of (i) the
space of the scientific hypotheses of interest, (ii) the space of
possible test stimuli, (iii) the space of possible participant re-
sponses to the test stimuli, (iv) a measure of the informativity
of each response relative to the hypotheses, and (v) algorithms
for efficiently searching for good experiments, given these
specifications. For instance, in active learning (Settles,
2012), individual experimental stimuli are chosen so as to
adaptively minimize uncertainty about the hypotheses in a
given hypothesis space using easy-to-calculate local statistical
heuristics. In optimal experiment design (Fedorov, 2010;
Ouyang, Tessler, Ly, & Goodman, 2018), whole experiments
are constructed in order to globally optimize an information
gain criterion. We are developing a growing library of tem-
plates for specific types of machine-assisted experimental de-
sign algorithms in Pushkin.

Because machine-assisted experimental design is not yet
common, we conclude this section with a detailed example.

Fig. 5 (Left) Information flow in a standard computerized experiment
(e.g., written in jsPsych or PsychoPy). Once the experiment begins, the
software loops through each trial, recording the data before going on to
the next trial. (Some software packages wait until the end to write the
data.) (Right) Information flow in a Pushkin experiment. Pushkin sepa-
rates input/output procedures (presenting stimuli and collecting the data)
from determining what stimulus to display. After each trial, information is
sent to a worker, which in addition to recording the results in the database,

also decides what to do next. This allows Pushkin applications to dynam-
ically update, choosing which stimuli to display on the basis of both that
subject’s response and what other subjects have been doing. Two other
important features of Pushkin applications are the data log, which records
a complete history of all writes to the database, enabling version control,
and the Chron worker, which carries out particular operations at specific
times of day. See the main text for a discussion of how these are used.

1790 Behav Res (2019) 51:1782–1803



Readers who are not interested in the details should skip to the
next section.

We illustrate using optimal experiment design as formu-
lated by Ouyang et al. (2018). Let’s imagine that we are
interested in theories explaining reaction times in lexical
decision experiments. Lexical decision experiments are a
workhorse method in psycholinguistics for studying the
processing of words. Subjects must discriminate real
words (e.g., Bcake,^ Binterrupt,^ Bbeige^) from nonsense
words (e.g., Bsleng,^ Bexterrupt,^ Bbeigity^). The typical
response measures are accuracy and reaction time. It is
well known that word frequency affects lexical decision
reaction times, with faster responses to more frequent
words, though many of the details remain under debate
(Adelman, Brown, & Quesada, 2006; Berent, Vaknin, &
Marcus, 2007; Ellis, 2002; Morton, 1969; Ratcliff, Gomez,
& McKoon, 2004).

Imagine that we wish to compare a set of hypotheses
linking words to reaction times. For instance, imagine we
wished to compare the hypothesis that reaction time is linearly
related to word frequency to the hypothesis that it is logarith-
mically related. We would formulate each hypothesis as a
linear model with frequency or log-frequency as fixed effect
and perhaps a variety of random effects. Formally, a hypoth-
esis m ∈ M, is defined by a conditional distribution Pm(yx | x)
linking a set of items, x, to measured lexical decision times yx.
Ahead of the experiment we have some prior beliefs about
how likely the hypotheses are, P(M), informed by prior re-
sults. Our task is to determine what data to collect next—
x—with the aim of collecting the data that would be most
informative.We can formalize this as maximizing the distance
between prior and posterior beliefs:

x* ¼ argmax
x

DKL P M jx; yxð Þ ‖ P Mð Þ
h i

where the Kullback–Leibler divergence DKL(∙‖∙) is used
as a measure of distance between distributions. A priori,
we do not know what the result of any particular experi-
ment will be, so we must marginalize over the possible
results y:

x* ¼ argmax
x

Ep̂̂ yx;xð ÞDKL P M jx; yxð Þ ‖ P Mð Þ
h i

Given the specific formulations for pm, this defines an ob-
jective function that can be used to optimally choose what data
to collect next. For instance, we could search over possible
stimuli in order to choose those stimuli that would best help us
distinguish between the hypotheses.

To be clear, machine-assisted experimental design is not
different in kind from what researchers normally do: try to
design maximally informative experiments. In the same way
that inferential statistics help us analyze data, machine-

assisted experimental design helps us design experiments.
Just as inferential statistics are most useful when the dataset
is large and our questions about it are complex, machine-
assisted experimental design shines when the hypotheses are
many and complex, and when the experimenter has many
design choices to make. Machine-assisted experimental de-
sign is also particularly helpful when the pace of data collec-
tion is too fast for the experimenter to make real-time deci-
sions about what data to collect next—exactly the situation we
face in internet-scale studies.

Although mathematical formulations of optimal experi-
ment design, such as the one above, have been available for
some time (e.g., Lindley, 1956), the method has not been
widely used for two reasons. One is that the design of most
experiment software platforms does not permit its use, in par-
ticular in the active stimulus selection setting in which
machine-assisted experimental design and data collection
must be tightly integrated. (The one counterexample being
Dallinger, which supports some types of optimal
experimental design; Suchow, 2018.) Pushkin’s unique archi-
tecture allows for a straightforward implementation of a wide
range of machine-assisted experimental design protocols.
Pushkin users can equip the experiment worker (Fig. 6) with
computationally specified competing hypotheses and possible
experiments. With these specifications in place, the optimal
experiment can often be computed with no further input from
the user. Pushkin will continue to make optimal choices about
what data to collect next for as long as the experiment runs,
thus making efficient use of however many subjects the ex-
perimenter manages to recruit.

The second reason is that specifying hypotheses formally
can be complex and optimizing experiment design objectives
is computationally difficult. Recently, approaches based on
probabilistic programming languages (PPLs) have emerged as
a viable alternative (Ouyang et al., 2018). PPLs are high-level
languages designed for expressing models from artificial intel-
ligence, machine learning, statistics, and computational cogni-
tive science. In PPLs, diverse models are expressed as programs
in a common language, and inference algorithms are developed
for the language as a whole, rather than for specific models
(Goodman, Mansinghka, Roy, Bonawitz, & Tenenbaum,
2008). Probabilistic programming is thus ideal for rapidly spec-
ifying and deploying models of each of the components of a
machine-assisted experimental design system described above.
Although Pushkin users can implement machine-assisted ex-
perimental design using any programming language, we are
using the probabilistic programming language WebPPL (see
Appendix B) to implement a library of reusable tools for
machine-assisted experimental design within Pushkin.

Thus, we believe that one of the major contributions of
Pushkin will be making machine-assisted experimental design
more accessible and easy to implement—and therefore more
commonly used.
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Other features

Webserver setup and management By default, Pushkin em-
ploys a number of popular technologies for auto-scaling, ver-
sion control, and data backups. Detailed instructions on how
to set up the webserver and related technology is provided.

Support for reproducibility Because the entire experiment is
run via code, reproducing the study merely requires rerunning
the code. Similarly, note that Pushkin’s data log contains a
reasonably comprehensive chronological record of everything
that happened during test (see the Backups section).

Stub website Designing a website requires at least basic
knowledge of web development. Designing a website that is
easy to update, is compatible with different browsers, is opti-
mized for both desktops and mobile devices, and so forth, is
troublesome and time-consuming. Pushkin provides a basic

website layout that is a sufficient starting point for customiza-
tion. Researchers who are not familiar with web development
can create a website with basic functionality by making minor
changes (adding custom images, changing the color scheme
and fonts, etc.). More advanced programmers can make major
changes to the website layout or create a new website
altogether.

How Pushkin works

In this section, we describe many of the technical details as to
how Pushhkin version 1.0 supports the functionality described
in the previous section. This will primarily be of interest to
skilled web developers and/or individuals interested in con-
tributing to the project. Others may wish to skip to the next
section.

Figure 6 outlines the structure of a Pushkin website.
Pushkin websites consist of three primary parts. At one end

Fig. 6 Schematic of a Pushkin website, which consists of some number
of quizzes and some ancillary webpages, such as a forum and a user
dashboard. Note that the API, queue, experiment worker, and

experiment database (DB) worker are all subsumed under Bworker^ in
Fig. 5. See the main text for a detailed description. Although this is not
depicted, each study has its own experiment worker and database worker.
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are the webpages and associated content, including all jsPsych
code and stimulus files. At the other end are the database,
which stores lists of stimuli and subject responses, and the
data log, which contains a real-time log of every database
query, thus providing real-time backup and version control
of the database. In the middle is a collection of workers that
process participant responses and determine what to do next.
The load balancer, which sits between the webpages and the
workers, helps facilitate auto-scaling.

Below, we provide additional detail on how this architec-
ture supports the functionality described in the Features sec-
tion above. In keeping with our philosophy and approach (see
the Philosophy and Approach section), we have made exten-
sive use of existing technology and services wherever feasi-
ble, including Node.js, React, Redux, PostgreSQL, Rancher,
Docker, Auth0, RabbitMQ, and Amazon Web Services.
However—again in keeping with the philosophy and
approach—the highly modular architecture permits other de-
velopers to mix and match. Moreover, given the quickly
changing world of web development, it is highly likely that
the Pushkin development team will periodically replace some
of these technologies as better alternatives emerge.

Auto-scaling Pushkin makes use of several services for auto-
scaling. Webpages, images, and videos are hosted in Amazon
Web Service’s S3 and CloudFront services, which provide
rapid, scalable delivery of static content worldwide (Amazon
Web Services, 2018).

Processes that require dynamic, server-side computation—
such as processing database queries or running machine-
assisted experimental design models—are hosted by the
Amazon Web Services (AWS) Elastic Cloud Computing
(EC2) platform (Amazon Web Services, 2018). An EC2 com-
puter is called an Binstance.^ The same software can be repli-
cated across multiple EC2 Binstances,^ with a load-balancer
distributing web traffic to different instances. Thus, if there are
three instances, different instances will handle the computa-
tions for different subjects. Auto-scaling is accomplished by
monitoring usage and dynamically creating or destroying in-
stances as needed. We use Datadog for monitoring usage
(Datadog, 2016). For capacity to rapidly respond to demand,
creating a new EC2 instance must happen quickly. Although
installing Pushkin and its dependencies on a new EC2 in-
stance is automated, it is slow. Thus, ready-to-use copies of
the Pushkin software are kept in Docker images that can be
rapidly deployed to new EC2 instances by Rancher, a service
for managing Docker images.

For database services, we use AWS’s AuroraDB, which
allows for both horizontal and vertical scaling.

Another feature that helps make Pushkin websites robust to
large traffic spikes is the use of a message queue for passing
messages between services (Fig. 6). At its heart, a queue is a
text file. Services that have a message to pass write the

message in the next line of the queue. Other services Blisten^
for messages addressed to them, immediately deleting them
and acting on the instructions. This allows Pushkin applica-
tions to fail gracefully: If messages are written faster than they
can be read, the queue grows longer and the site slows down
proportionally, until auto-scaling provides more capacity and
the listeners catch up. Our message queue manager of choice,
RabbitMQ, provides a number of other useful features, includ-
ing the ability to directly influence auto-scaling (Videla &
Williams, 2012).

We chose these services for their robustness and cost-effec-
tiveness: gameswithwords.org currently costs $300–$400 per
month to support nearly 40,000 visitors per month. However,
the modularity of Pushkin allows developers to—with greater
or lesser degrees of effort—employ other services instead.
Similarly, this modularity will make it easier to upgrade
Pushkin in the future as new (versions of) services because
available.

Authentication and logins Experiments requiring multiple
sessions (longitudinal studies, sleep studies, certain memory
paradigms, etc.) necessitate tracking the same individual
across multiple visits to the website. For experiments requir-
ing this tracking, researchers can allow subjects to log in.
Pushkin uses Auth0, a highly secure and widely trusted ser-
vice for website logins (Auth0, 2017). Subjects can either
create a username and password or—if researchers wish and
their institutional review board (IRB) allows—log in using an
email account or social media profile. The latter option has the
advantage of not requiring the subject to remember a
username. Note that this does not give the researcher access
to the subject’s private social media and other data (see also
the Security section).

BackupsAmazonWeb Services’ RDSMulti-AZ deployments
provide a real-time backup of the PostgreSQL database used
by Pushkin. The primary Multi-AZ database instance is
backed up by an identical copy hosted in a different geograph-
ical location. If the primary instance or its backup loses data—
or if, for instance, there is a power outage—the data is recov-
ered and duplicated from the unaffected copy.

In addition, the data log (another PostgreSQL database
identical to the main Pushkin database) maintains a record of
all queries performed on the primary Pushkin database. The
data log serves as the history of a Pushkin project and can be
used to restore the primary database in case of failure. The data
log has its own real-time backup maintained by AWS.
Therefore, instead of having just one main database, Pushkin
maintains four databases (a primary database with a copy in a
different availability zone, and a data log with a copy in a
different availability zone).

In addition to backing up databases by creating identical
copies, AWS provides database backup features designed to
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recover a particular state of a database—database snapshots
and automated backups. Automated backups can be turned on
for any AWS database, and Amazon RDS automatically takes
a snapshot of the data in every database once a day. In addi-
tion, the database owner can choose to create additional data-
base snapshots at any point in time (after, e.g., a major spike in
website traffic). All of these backup strategies ensure that it is
virtually impossible to lose data with a Pushkin project.

Security Data security is a concern for any networked device,
whether a webserver or a laptop. Pushkin employs a number
of security mechanisms, described below. The overarching
approach can be summed up as:

& Default to anonymity rather than confidentiality whenever
possible. If even the researchers do not know who the
subjects are, security breaches are less problematic.

& Where possible, silo identifiers from data. For example,
the recruitment email list—which contains email
addresses—is not connected to data.

& Anonymize anything that is not anonymous automatically
and as early in the data pipeline as possible.

If login/authentication is not enabled, data collection is
anonymous. Identifiers such as IP addresses are not collected.

If login/authentication is enabled, data cannot be made
fully anonymous. However, there are a number of layers of
protection. First, we use the highly secure Auth0 authenti-
cation service to handle user IDs. Logins are handled by
the Auth0 webservers, not by Pushkin itself. Participant
identifiers (e.g., email and username) are stored in the se-
cure Auth0 database. If the participant authenticates using
a social media service (Facebook, Twitter, etc.), their social
media username is likewise stored in the secure Auth0
database. Note that all that is accessed is the user’s publicly
available social media username; private social media data
are not accessed or stored.3

Crucially, Pushkin applications do not access the partici-
pant’s external identifiers (e.g., email address), but rather an
alphanumeric Btoken^ representing the participant. Thus, the
identifiers are stored in Auth0’s secure database, and partici-
pant data are stored in Pushkin’s secure database. For addi-
tional protection, Pushkin encrypts the Auth0 tokens as well,
providing an additional password-protected firewall.
Moreover, the (encrypted) token is stored separately from
the data itself; instead, a different alphanumeric identifier is
used to identify subjects for purposes of analysis. Finally, data
are encrypted when traveling between the subject and the
website, between the website and Auth0, and between the
website and the researcher.

Thus, although it is possible to deanonymize data, this re-
quires considerable effort and several passwords. Note that
these robust security procedures do not mean that Pushkin is
unhackable. No security system is unbreakable. Even if the
software itself cannot be hacked, humans present a point of
weakness (e.g., researchers or participants using easily
guessed passwords). Moreover, it is sometimes possible to
identify a subject from their data alone, if the questions asked
are sufficiently specific (e.g., there may be only one female
rabbi in a specific small town; Narayanan & Shmatikov,
2008). However, these considerations apply equally to data
collected in the lab, and we encourage researchers to use com-
mon sense and robust security procedures for all data. For
extremely sensitive data, researchers may be advised to take
even more robust security measures than what Pushkin pro-
vides out of the box.

Chron The Chron worker is Pushkin’s bonus feature.
Although it is not an essential component of a Pushkin study,
it makes it possible to periodically analyze data and send re-
ports. Since the Chron worker is language-agnostic, it can run
scripts written in the researcher’s language of choice (Python,
JavaScript, WebPPL, R, etc.). The Chron worker can also be
used to periodically remove data from subjects who did not
complete a study or did not pass screening questions set up by
the experimenters. Those are only some of the potential uses
for the Chron worker. In large-scale citizen science projects, it
can be incorporated to perform tasks such as alerting the re-
searchers when sufficient data have been collected for a set of
stimuli, or when other milestones in data collection have been
reached. The Chron worker eliminates the need to monitor
data collection freeing up the researcher’s time and resources.

Using Pushkin

The Pushkin source code is available through GitHub (github.
com/pushkin-consortium/pushkin). The source code provides
a stub of what is needed for a website similar to
gameswithwords.org that hosts multiple massive online
experiments and citizen science projects. Users familiar with
ReactJS can edit the structure of the website (which pages are
available, etc.) as desired.

Currently, to use Pushkin, users download the source code
for Pushkin and the source code for jsPsych and (if desired)
WebPPL. Users will also need to configure a web server from
Amazon Web Services (or, if desired, an appropriate alterna-
tive). Users are urged to consult the documentation for the
most up-to-date instructions (pushkin-only.readthedocs.io).

Modern website design involves a fairly unintuitive file
structure. For instance, the code for a single experiment must
be distributed across a variety of folders, with parts of different
experiments ending up in the same folder. Likewise, many of

3 Auth0 does allow websites to request user permission to access private social
media data. Pushkin version 1.0 does not use this option.
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the best practices that result in efficient, fast websites also result
in code that is very hard to read. Thus, for purposes of devel-
opment, we use a more intuitive file structure. When the user is
ready to test or deploy the website, the code is reorganized into
a web-appropriate format using webpack (Hlushko et al., 2018)
(again, consult the documentation). Importantly, users can work
exclusively with the Buser-friendly^ files and never have to
inspect or modify the web-ready version.

Individual experiments can be written in jsPsych (advanced
users may choose to use an alternative, but this may require
significant extra work). For the most part, development is the
same as it would be for any other jsPsych experiment (see doc-
umentation at www.jspsych.org). For most projects, the primary
difference is in how the results are saved, since Pushkin handles
interaction with the database (were data are stored). Setting this
up is largely automated (see documentation), and only requires
significant customization if the user needs to do a lot of
preprocessing of the data before it is stored (for instance, for
the purposes of machine-assisted experimental design).

Similarly, there is little extra that the user must do for a
standard experiment in which every subject sees all items.
The jsPsych library handles experiment flow for simple ex-
periments (i.e., where every subject sees every item). Users
who wish to create highly contingent experiments will need to
edit the worker for that experiment (see Fig. 6).

As this summary should make clear, although Pushkin pro-
vides a powerful template for creating internet-scale projects,
using Pushkin using Pushkin currently requires a fair amount
of technical expertise, particularly for more complex projects.
Our current development priority is making Pushkin more
accessible to a wider audience (see the next section).

Future development

Tools to improve ease of use

We are in the process of rolling out command line tools that
will greatly simplify the process. (This is one of the reasons to
consult the documentation for the latest instructions.) In par-
ticular, we are using the popular package manager npm to
download, install, update, and manage Pushkin, jsPsych,
WebPPL, and their dependencies. Package managers greatly
simplify the use of Unix programs and are the gold standard
for open-source projects. Using the package manager for
Pushkin is currently done through command line but in the
future will be available through the graphical user interface
(GUI). When complete, the Unix command Bnpm install
pushkin^ downloads the latest version of Pushkin along with
dependencies. Similar Unix commands download various
add-ons, such as additional jsPsych plugins or experiment
templates. Importantly, anyone can create add-ons and distrib-
ute them through the package manager. Similarly, we are

working on command line tools that will simplify webserver
configuration. Finally, these tools will also support updating to
newer versions of Pushkin. As of this writing, we expect to
complete these upgrades by the end of 2018.

More ambitiously, we intend to integrate Pushkin development
into the jsPsychGUI), currently in beta. The jsPsychGUI is aweb
application that allows users to build experiments by creating and
organizing a series of trials with a point-and-click interface. The
researcher can customize the parameters of each trial through
simple menus that require no programming experience. Images,
audio, and video can be uploaded for inclusion in the experiment.
As users build an experiment, they are shown an immediate live
preview, providing critical feedback for novice developers. When
the experiment is finished, the GUI automatically assembles
jsPsych code, which can then be exported and used.

We are currently extending the GUI to help with deployment
of entire Pushkin websites, including facilitating customized
subject feedback, social media integration, and machine-
assisted experimental design. Note that while the GUI would
make Pushkin accessible to researchers who lack programming
experience, we intend it to offer advantages even to proficient
programmers. To minimize the loss of flexibility that comes
from using the GUI, we will extend the GUI to allow editing
of the underlying code for each component at all steps of the
process and link these changes to the visual state of the GUI.
For example, if a researcher has code to parametrically generate
stimuli, they will be able to insert this code via a script editor in
the GUI and use it when declaring parameters for trials using
the visual interface. The GUI will be able to run the code im-
mediately and incorporate it into the live preview.

Complementary to the GUI, we are building a library of
experiment templates for common paradigms. These greatly
simplify experiment development. For instance, running a
self-paced reading experiment may require no more than pro-
viding a list of sentences to be included and setting a few
parameters in a config file (e.g., how many trials per subject).

We intend to make the experiment template library avail-
able through the GUI. A researcher will be able to browse
through these examples and select one that closely resembles
their desired experiment. This will create a copy of the ex-
periment for the researcher to edit as they see fit. The avail-
ability of these prototypes would aid both novices and expe-
rienced developers. Researchers who create experiments will
have the option to publish them to the package manager, thus
not only supporting other researchers but also improving the
reproducibility of their own work.

Finally, we are working on providing greater support for
using Pushkin. Lack of institutional knowledge appears to be
a major impediment to the wider use of internet-scale studies:
researchers are simply not familiar with the design constraints
and opportunities. One of the missions of the broader Pushkin
project is to address that gap through workshops and publica-
tions (cf. Hartshorne & Jennings, 2017; Hartshorne, Leeuw,
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Germine, Reinecke, & Jennings, 2018a). The present article is
an example of these activities. We intend to conduct a number
of workshops over the next few years and publish a free elec-
tronic textbook (for similar examples, see Goodman &
Stuhlmüller, 2014; Goodman & Tenenbaum, 2014).

Conclusion

Pushkin provides a suite of tools for conducting massive
online experiments and citizen science projects for psy-
chology and the cognitive sciences. It addresses both the
design challenges of internet-scale research (recruiting
subjects, running longitudinal studies, machine-assisted
experimental design, etc.) and the technical challenges
(webserver setup and configuration, data security, real-
time backups and version control, auto-scaling, etc.). To
achieve these ends, Pushkin draws on a wide range of
software and hardware technologies. Thus, in addition to
being a software framework, Pushkin can be thought of
as a collection of best practices.

Other frameworks can provide aspects of this function-
ality. Most obviously, many of the same experiment de-
signs can be implemented in jsPsych (though it does not
by itself support machine-assisted experimental design or
longitudinal studies), and some of our recruitment mech-
anisms are implemented as jsPsych plugins. However,
jsPsych is purely experiment software that is meant to
be embedded in a larger website. It does not handle data
storage and security, backups and version control, auto-
scaling, or any of the other parts of running a highly
trafficked website. Other platforms, such as Google
Forms or SurveyMonkey, provide the website but are very
limited in their experiment functionality. LabVanced sup-
ports a wide range of experiments, but is not open-source
or customizable and does not provide much support for
subject recruitment and does not permit machine-assisted
experimental design. Zooniverse (Simpson et al., 2014)
provides a powerful platform for citizen science projects
that involve classification and annotation of images, but
does not support linguistic annotation or the collection of
psychological data. Thus, although existing platforms pro-
vide excellent support for certain paradigms—and indeed,
we use many of them—only Pushkin supports a wide
range of internet-scale studies.

However, we must acknowledge that Pushkin supports on-
ly a subset of the internet-scale studies that are currently pos-
sible or will be in the near future. For instance, it does not
currently support the sophisticated use of mobile devices
(Miller, 2012; Stieger, Lewetz, & Reips, 2017) or wearable
sensors or virtual reality. Pushkin focuses on web
applications—which are popular among older children and
adults—and not mobile apps, which are more appropriate

for testing young children. Importantly, the fact that Pushkin
is free and open-source, as well as modular and extensible,
means that Pushkin should provide an important foundation as
the community explores these exciting possibilities.
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Appendix A: jsPsych

The jsPsych package is open-source software for developing
online experiments using HTML, CSS, and JavaScript. These
languages are core to all Web browsers, which means that
jsPsych experiments will run on any device that has a web
browser, including mobile devices, without the need to install
any additional software.

The jsPsych package’s core feature is a modular, plugin-
based architecture. Different experimental tasks—such as fill-
ing out a questionnaire, viewing a stimulus and pressing a key
in response, or reading instructions—are implemented as
plugins. jsPsych’s experiment controller (cf. Fig. 6) controls
the flow of the experiment from plugin to plugin.

By design, plugins can implement tasks that vary in their
generalizability. For example, one generic plugin is used to
display a stimulus and measure the response time for a key-
board press. The researcher can set parameters for the plugin
to control what stimulus to display, what keys are valid re-
sponses, and how long to wait for a response. Simple modifi-
cations of these parameters can generate a very diverse set of
experiments. Other plugins are highly tailored for specific
types of experiments, such as the scene segmentation task
developed by Fiser and Aslin (2001). In this task, objects are
displayed on a grid and participants view many grids over the
course of the experiment. Experiments typically test whether
participants learn the spatial co-occurrence properties of the
various objects on the grid. The jsPsych plugin for this para-
digm automatically creates these grid scenes based on a few
parameters like the list of objects, the number of rows and
columns in the grid, and the overall display size of the scene.
By creating a plugin tailored to this task, implementing vari-
ations of the task by varying plugin parameters becomes an
efficient process that can be accomplished by a novice pro-
grammer. The jsPsych library already has plugins to support a
wide range of studies. The latest version (6.0.2; released April
2018) includes 35 different plugins, andmanymore have been
developed by the community of jsPsych users.
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The jsPsych experiment engine provides a framework for
assembling collections of plugins into a unified experiment.
The engine allows the developer to set up experiments that
range in complexity from a linear set of trials to dynamically
responsive procedures such as staircasing in psychophysics.
jsPsych also provides tools to facilitate reusable code. For
example, if an experiment involves a repetitive procedure—
for instance, view fixation cross, judge a stimulus, receive
feedback, repeat—the procedure can be declared once with
an accompanying list of variables that define the set of trials
to run using that procedure.

For a complete description of jsPsych features, documentation,
and tutorials, see the jsPsych website (http://www.jspsych.org).

Appendix B: WebPPL

WebPPL (pronounced Bweb people^) is a feature-rich probabi-
listic programming language embedded in JavaScript. It is a
universal probabilistic modeling language that makes it pleas-

ant to precisely describe complex models from computational
cognitive science, artificial intelligence, natural language pro-
cessing, machine learning, and related fields.WebPPL provides
many different methods for posterior inference, including dy-
namic programming, Markov chain Monte Carlo, sequential
Monte Carlo, and variational inference. This combination of
powerful representation language and no-fuss inference tech-
niques makes it ideal for describing models of the kind used in
the social sciences and for analyzing social science data.

There are exciting synergies between the development of
Pushkin and WebPPL with regard to machine-assisted exper-
imental design (see the Contingent Experiments section).
After expressing the spaces of models, experiments, and re-
sponses as WebPPL programs, it is (surprisingly) straightfor-
ward to express active learning or optimal experimental de-
sign (OED) as a probabilistic program (see Listing 1).
Equation 1 from the main text translates to around 20 lines
of WebPPL code, expressing that OED is an inference prob-
lem. This gives us a unified basis for both the representation of
OED tasks and innovations in the OED system itself.
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Appendix C: Frequent concerns about online
studies

Are the data trustworthy?

Studies have found that internet volunteers comply with in-
structions and answer truthfully at rates matching or exceeding
lab-based subjects, resulting in data with similar psychometric
validity (Aust, Diedenhofen, Ullrich, & Musch, 2013;
Birnbaum, 2004; Germine, Dunn, McLaughlin, & Smoller,
2015; Germine et al., 2012; Johnson, 2005; Meyerson &
Tryon, 2003). Studies with online volunteers generally produce
similar results to lab-based studies; any differences that are
observed typically are clearly attributable to differences in sub-
ject demographics (Birnbaum, 2004; Buchanan& Smith, 1999;
Casler, Bickel, & Hackett, 2013; Germine et al., 2012; Gosling,
Vazire, Srivastava, & John, 2004; Hartshorne, 2008;
Hartshorne & Germine, 2015). The high data quality is not
surprising: volunteer participants are highly motivated to par-
ticipate; if they weren’t, they wouldn’t.

These findings are further bolstered by the fact that data
quality is similarly high for online labor markets such as
Amazon Mechanical Turk, despite the potential misalignment
of subject incentives (money) and researcher priorities (high-
quality data), particularly if proper manipulation checks and
attention checks are employed (Behrend, Sharek, Meade, &
Wiebe, 2011; Buhrmester et al., 2011; Casler et al., 2013;
Goodman, Cryder, & Cheema, 2013; Hauser & Schwarz,
2016; Johnson, 2005; Rand, 2012; Shapiro, Chandler, &
Mueller, 2013; Smith, Roster, Golden, & Albaum, 2016).

What if I need precise timing?

Much to the annoyance of psychologists, modern computers
were not designed to carefully time stimulus presentation or
record reaction times. Experiment software such as E-Prime or
Psychophysics Toolbox uses clever software work-arounds to
achieve precise timing (Kleiner, Brainard, & Pelli, 2007;
Schneider, Eschman, & Zuccolotto, 2002). Experiments that
run through browsers face additional hurdles, though most of
these, too, can be overcomewith clever software workarounds
(Adenot & Wilson, 2016; Barnhoorn, Haasnoot, Bocanegra,
& van Steenbergen, 2015; Chetverikov & Upravitelev, 2016;
de Leeuw & Motz, 2016; Hilbig, 2016; Reimers & Stewart,
2015; Simcox & Fiez, 2014; Slote & Strand, 2016). Indeed,
subtle reaction-time studies have been successfully run online
for more than a decade (e.g., Crump, McDonnell, & Gureckis,
2013; Keller, Troesch, &Grob, 2015; Nosek et al., 2002; Slote
& Strand, 2016).

There is one small but important exception: Online studies
are susceptible to a slight lag in reaction time measurement,
which varies slightly by computer model, operating system,

web browser, and recording method (Barnhoorn et al., 2015;
Chetverikov & Upravitelev, 2016; Pinet et al., 2017; Reimers
& Stewart, 2015; Semmelmann & Weigelt, 2017; Slote &
Strand, 2016). Because this lag is constant, it does not affect
differences between within-subjects conditions. Likewise, it
causes only a little additional noise in between-subjects stud-
ies that use random assignment to condition. However, it does
present confounds for studies of demographic effects on ab-
solute reaction time, since different demographics may pref-
erentially use different equipment and thus have different lags.
We are currently working on a software fix for this. In the
meantime, researchers—whether using Pushkin or not—
should be cautious about interpreting demographic effects
on absolute reaction time that are smaller than about 20 ms.

Note that extremely precise timing generally requires so-
phisticated calibration even in the laboratory (cf. Krantz,
2001). Such calibration is challenging to do even in the labo-
ratory, and online subjects may not have the tools or the pa-
tience to do that calibration. Thus, studies that need such cal-
ibration may not be good candidates for internet-scale
research—at least, given current technology. However, for
the vast majority of studies, these problems are solved. One
of the purposes of Pushkin is to make best-practices for pre-
cise online studies more widely available.

What if my research paradigm cannot be conducted
online?

It is true that experiments that were designed to be run in the
laboratory do not always translate exactly to massive online
experiments. Common laboratory paradigms were designed
around the constraints and opportunities of the lab, not the
internet. Nonetheless, it is frequently possible to redesign a
laboratory experiment in a way that addresses the constraints
and opportunities of massive online experiments. Even where
that is not possible, it is often the case that the research
question is still addressable through a massive online
experiment.

To be clear: some questions cannot (yet) be addressed
through massive online experiments for methodological rea-
sons, such as those that currently require magnetic resonance
imaging. Likewise, some populations, such as babies, remain
difficult to recruit and test online (though see Scott & Schulz,
2017). However, the wide-spread use of online studies gives
an indication of just how many research questions can be
addressed online (see Stewart et al., 2017). For example, one
compendium of online studies for volunteers (i.e., not studies
run through Amazon Mechanical Turk, etc.) finds it necessary
to subdivide the hundreds of active experiments into 22 cate-
gories: cognition, consumer psychology, cyber psychology,
developmental psychology, educational psychology, emo-
tions, environmental, forensic psychology, gender, general
psychology, health psychology, industrial/organizational
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psychology, judgment and decision making, mental health,
personality, positive psychology, psychology and religion, re-
lationships, sensation and perception, sexuality, social cogni-
tion, and social psychology (https://psych.hanover.edu/
research/exponnet.html).

One purpose of this article—and of Pushkin itself—is to
help more researchers see the ways in which massive online
experiments could benefit their own research. To these ends,
we note that in the long-term the range of methods available
online may be even broader. The rapid growth of consumer
electronics is broadening access to increasingly sophisticated
research tools at home, such as physiological sensors (FitBit,
Sproutling, Empatica), sensors for detecting body posture and
even hand gestures (Kinect, Lumo), rudimentary electroen-
cephalography headsets, and virtual reality kits (Cadmus-
Bertram, Marcus, Patterson, Parker, & Morey, 2015; Gao,
Harari, Tenenbaum, & Ullman, 2014; Harari et al., 2016;
Miller, 2012; Montgomery-Downs, Insana, & Bond, 2012;
Picard, Fedor, & Ayzenberg, 2015; Poh, Swenson, & Picard,
2010; Ren, Meng, Yuan, & Zhang, 2011; Trull & Ebner-
Priemer, 2013). Just as the widespread ownership of personal
computers means that subjects no longer needed to come to
the lab to do computerized studies, the spread of these tech-
nologies is increasing the number of studies subjects can vol-
unteer for without committing to traveling to a specific place
at a specific time.

What about the fact that the internet is not a random
sample of the population?

Subjects in massive online experiments are not representative
of the population, but they are typically much more represen-
tative than the subjects in lab-based studies or online labor-
market studies (Germine et al., 2012; Gosling et al., 2010;
Gosling et al., 2004; Henrich, Heine, & Norenzayan, 2010;
Ipeirotis, 2010; Paolacci et al., 2010; Rife, Cate, Kosinski, &
Stillwell, 2016). Note, however, that a representative sample
ensures that findings will generalize to the population as a
whole, but it does not necessarily help determine whether
subpopulations vary. For obvious reasons, it is impossible to
tell whether an effect varies by ethnicity if only a few mem-
bers of each ethnic group are included in the sample.
Importantly, massive online experiment samples are large
and diverse, which allows the researcher to do something bet-
ter than merely average away demographic variability:
measure demographic variability. This opens up a vast range
of scientific questions (cf. Henrich et al., 2010).

What about ethical concerns and data security?

A number of recent scandals have involved individuals
collecting and distributing private social media data on a mas-
sive scale without permission, such as the Cambridge Analytica

scandal or the OKCupid hack (Grassegger & Krogerus, 2017;
Zimmer, 2016). This has led to concerns that about online re-
search with regard to privacy and data security (e.g., Xu, 2018).

Luckily, the same solutions that work in the laboratory can
be applied online: good data security procedures and IRB
oversight. The fact that Pushkin experiments are fully auto-
mated makes both of these easier. Data security is baked into
the Pushkin workflow; researchers using Pushkin follow best
data security practices by default and without any additional
effort (see the Security section). IRB oversight is likewise
simplified: because data collection is automated, the IRB
can fully vet the subject experience. We believe that, where
possible, similar procedures should be incorporated into lab-
based experiments

Listing 1 OED implementation. For clarity, we have omit-
ted some book-keeping details.

Publisher’s note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.
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