
Behavior Research Methods, Instruments, & Computers
1998,30 (4),583-591

Analyzing human random generation behavior:
A review of methods used and a computer

program for describing performance

JOHN N. TaWSE and DEREKNEIL
Royal Holloway University ofLondon, Egham, England

In this paper, we consider the different methods that have been developed to quantify random gen­
eration behavior and incorporate these measurement scales into a Windows95 computer program
called RgCalc. RgCalcanalyzes the quality of human attempts at random generation and can provide
computer-generated, pseudorandom sequences for comparison. The program is designed to be appro­
priate for the analysis of various types of random generation situations employed in the psychological
literature. The different algorithms for the evaluation of a dataset are detailed and an outline of the pro­
gram is described. Performance measures are available for assessing various aspects of the response
distribution, the sequencing of pairs, the ordinal relationships between sets of items, and the tendency
to repeat alternatives over different lengths. Afactor analysis is used to illustrate the multiple dimen­
sions underlying human randomization processes.

The task ofrandom generation is increasingly becom­
ing part of the psychologist's repertoire for assessing
cognitive performance. Random generation data have
been used, for example, in the development of theoreti­
cal models of cognition (see, e.g., Baddeley, 1986, 1996),
for the evaluation of issues in the processing of mental
arithmetic among healthy adults (Lemaire, Abdi, & Fayol,
1996; Logie, Gilhooly, & Wynn, 1994), and for explor­
ing the performance of neuropsychological groups, such
as patients with Alzheimer's disease (Brugger, Monsch,
Salmon, & Butters, 1996) and Parkinson's disease (Rob­
ertson, Hazlewood, & Rawson, 1996). Random genera­
tion has also been investigated in a developmental con­
text (Rabinowitz, Dunlap, Grant, & Campione, 1989).

The performance ofexperimental subjects in random­
ization tasks is commonly assessed by measures of
stereotypy (e.g., frequency of adjacent items in an ordi­
nal sequence or preferential selection ofparticular pairs)
and measures of response alternative usage (whether
each item in the response vocabulary is equally likely to
be selected), although it is also apparent that previous
psychological research has incorporated a variety ofran­
domization scores. The absence of a single index of ran­
domization quality is not just a lack of standardized
methodology, however. From a logical standpoint, no test
can conclusively demonstrate randomness, because ran-
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domness itself cannot be directly observed; only depar­
tures from randomness (the detection of order) can be
quantified. Thus, different measures are required to cap­
ture different types of order or pattern that may be found
in any sequence. That is, different descriptors are selec­
tively tuned to aspects of sequence regularity or pre­
dictability. The psychological evidence that shows ran­
dom generation performance to be a nonunitary trait
(see, e.g., Ginsburg & Karpiuk, 1994; see also below)
further emphasizes the need for different measures ofper­
formance that reflect the efficiency of the separable cog­
nitive components servicing random generation behavior.

However, so far as we can ascertain, there is no current
computer software that provides an accurate and flexible
analysis of randomization sequences for psychological
research. Accordingly, we have developed a VisualBasic
program, running under Windows95, that permits differ­
ent types of randomization responses to be analyzed with
several scales in psychological currency and to be printed
or graphed as required. Data can be entered directly or
imported from a text file and can be archived. In the next
section, we review the major tests of randomness reported
in the experimental literature, as implemented in the com­
puter program. The measures are presented in conceptual
order, according to whether analyses consider responses
separately, in relation to another individual response, or
for differing sequence lengths.

MEASURES OF RANDOMIZATION
PERFORMANCE

Redundancy
In terms of classic information theory analyses (Att­

neave, 1959; Shannon & Weaver, 1949), a sequence of
items can be said to contain maximum first-order infor-
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mation when each response alternative is selected with
equal frequency. As the selection frequency among alter­
natives deviates from equality, the sequence can be said
to have less randomness or more redundancy-hence the
name for this measure-since examination of part of the
sequence allows for better-than-chance estimations of
subsequent choices.

The amount of first-order information that is provided
by a sequence is calculated as

Hsingle = log, n _l(I.». log, n;), (I)
n

where n (here and subsequently) is the number of ran­
dom responses in the set, and n; is the number of occur­
rences of the ith response alternative (computations are
omitted where n; = 0). For a response set with a differ­
ent alternatives, the maximum amount of information
that it is possible to generate is

Random Number Generation
The redundancy measure described above considers

only the distribution of response frequencies; it does not
consider the randomness ofthe sequence (the dependency
or association between one choice and the next). The ran­
dom number generation (RNG) score is one popular index
ofrandomization performance that describes the distribu­
tion of response pairs, or digrams. The measure was in­
troduced by Evans (1978) and is based on contiguous re­
sponses-how often any response alternative follows any
other response alternative. Computationally, response
pairs are tabulated in an a X a matrix. Following Evans,
in order to produce a full complement of pairs, the final
response is paired with the first (thus giving a wrap­
around function). RNG is then calculated as

'\' n .Iog» ..
RNG = s: IJ IJ (4)

I.n;) log a, ,

Accordingly, the redundancy (R) in the sequence is
found by determining the extent of deviation from ideal
information generation, expressing this value as a per­
centage score,

Thus, an R score of 0% indicates no redundancy (per­
fect equality ofresponse alternative frequencies), and an
R score of 100% indicates complete redundancy (the
same response choice is used throughout).

Response Frequencies
The production frequency for each response alterna­

tive is presented in a tabulated (and, if selected, graphi­
cal) form. This provides the opportunity to explore the R
score in more detail. It is also possible to request a fre­
quency distribution for digrams (pairs of responses) and
trigrams (triplets). In both cases, all combinations that
appear at least once are presented, in order ofpopularity.

(5)NSQ=100x~
a 2 -1 .

where nij is the frequency count from each cell in the ma­
trix, and n; (as described for R above) represents the fre­
quency of occurrence of alternative i. The computation
only includes cell values greater than 1, and the final
RNG score has a range between 0 (perfect equality ofdi­
gram distribution) and 1 (complete predictability of pair
sequences) .

Guttmann's Null-Score Quotient
Brugger et al. (1996) utilized a measure of random­

ness called the null-score, or NS (Guttmann, 1967, cited
in Brugger et aI., 1996). NS is the total number of di­
gram permutations that do not appear within the subject
response set (again using a wrap-around function to pro­
duce the full complement ofpairs). This leads to a value
between 0 and a2 -1. To make the NS value more mean­
ingful across different response alternative ranges, the
value is expressed here as a percentage of the maximum
value attainable-that is,

Adjacency
The RNG and NSQ measures consider all possible re­

sponse pairings, which is often a useful and important

From the above description, it should be apparent that
the null-score quotient (NSQ) is structurally related to
the RNG index, since the former score reflects digrams
not used and the latter digrams used repeatedly. Thus, in
a reanalysis of data available from 93 subjects who pro­
duced written random number sequences (Experiment 1
ofTowse & Valentine, 1997), when randomizing among
10 numbers the correlation between RNG and NSQ
scores was r = .97,p < .01. When randomizing among
15 numbers, the correlation between RNG and NSQ was
r = .98,p < .01.

(2)

(3)R = 100 x [I - Hsingle J.
u.:

Coupon
Ginsburg and Karpiuk (1994) developed a measure of

response usage that they termed the coupon score. This
measure indicates (across the entire set) the mean num­
ber of responses produced before all the response alter­
natives are given. Accordingly, generation strategies
based on cycling (working through the set ofpossible re­
sponses) will produce low coupon scores; in randomiz­
ing five numbers, the sequence "1,3,2, 5, 4" produces
the minimum possible coupon score. In the case of a re­
sponse set where an alternative is omitted entirely, be­
cause an exact coupon score cannot be calculated, the
program will return a value of n +, where n is the se­
quence length.
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Thus, values greater than 100% indicate that too many
turning points were produced (relative to a theoretical
distribution of random responses), whereas values less
than 100% indicate fewer turning points than expected.
Azouvi et al. (1996) found that patients with closed head
injury produced a lower TPI than did controls, indicative

Turning Point Index
Azouvi, Jokic, Van Der Linden, Marlier, and Bussel

(1996), after Kendall (1976), reported a measure of se­
quence regularity called the Turning Point Index (TPI).
This involves calculating the number of responses that,
as numerical values, mark a change between ascending
and descending sequences (i.e., points that represent
local peaks and troughs in a time-series plot). The num­
ber of turning points is compared against a theoretical
value

calculation. However, human oral random generation (to
take one example) is known to comprise a substantial
proportion of a particular digram type: adjacent items
from the ordinal sequence of alternatives. Thus, letter se­
quences such as "a, b" (see, e.g., Baddeley, 1966), and
number sequences "1, 2" (see, e.g., Wiegersma, 1984a)
are common. The A, or adjacency, measure (sometimes
referred to as a stereotyped score) is a more specific or
focused measure of digram frequency and is calculated
as

Thus, in the sequence "1, 3, 5, 7, 8, 6," there is a sin­
gle turning point at response "8," as the series begins to
descend at this point. In the sequence "5,3,4,6,2,8,9,
7," there are four turning points (on the responses "3,"
"6," "2," and "9"). Turning points may also straddle re­
sponse values in the case of repetitions (e.g., the excerpt
"2, 4, 4, 3" contains a single turning point between the
repeated response "4").

The TPI value is reported as a percentage score, indi­
cating the correspondence between observed and ex­
pected values:

of a runs strategy where individuals produce an arith­
metic chain of responses.

TPI values are closely associated with the Wallis­
Moore phase frequency test (see Sachs, 1978), which
provides a statistic for the persistence ofan ordinal trend
(i.e., an absence ofturning points). Given the strong rec­
iprocal relationship, the phase frequency test is not im­
plemented here.

Phase Length
As Kendall (1976) pointed out, it may be informative

to consider not only the number of turning points but the
distribution of intervals between them. The interval be­
tween two turning points is termed aphase, so ifthe third
response in a sequence produced a trough and the fourth
produced a peak, there would be a phase of I between
them. A further illustration is given by the sequence "2,
3,5,4,5,6,7,8,6, 1,3." There are turning points at the
values 5, 4, 8, and I, and the phase lengths (PLs) be­
tween these points are 1, 4, and 2, respectively. The dis­
tribution ofPLs is calculated for the entire sequence, and
the expected frequency of phases with a length or dis­
tance dis

The PL (expressed as a count value) is the number of
observed phases of length d, and these scores are pre­
sented alongside the expected frequencies from a theo­
retical random distribution. Accordingly, observed val­
ues in excess of expected values indicate that more
phases of length d were produced than would be pre­
dicted in random sequences, whereas values less than ex­
pected scores indicate that fewer phases were produced
than would be predicted.

It is important to note that the sum ofthe observed and
theoretical values may not be equal (a consideration that
essentially prohibits the expression of the PL scores as
percentage ofobserved over expected values). The num­
ber of phases that are found in a sequence will depend,
in part, on the position of the first and last turning point,
since the PLs of the sequence before the first and after
the last turning point are unknown. The total number of
phases will also depend on the lengths of those phases.
A sequence may contain either many short phases or
fewer long phases, for any particular number of responses.

2(n - d - 2)(d 2 +3d + 1)
frequencylz/] = . (9)

expected (d + 3)!

Runs
Ginsburg and Karpiuk (1994) describe a measure of

randomness called runs, which describes the variability
in the phase lengths (a similar score, ALTS, is described
in Neuringer, 1986). From the response set, the number
of items in successive ascending sequences is determined
(i.e., ascending phase length values). The variance of
these sequence lengths is then derived. Ginsburg and

(7)

(8)

TPexpected = ~ (n - 2).

TPI = 100 X TPobserved .
TPexpected

A =100x number of adjacent pairs. (6)
number of response pairs

The A score is therefore measured as a percentage, and
is expressed in the RgCalc program for ascending and
descending pairs separately, as well as in the form of a
combined value (as for RNG and NSQ scores, a wrap­
around function is used to produce the full complement
of pairs). A scores will range between 0%, in the case
where there are no neighboring pairs, and 100%, if the
set is entirely composed of such pairs.
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Karpiuk treat repetitions as breaks in the ascending se­
quence, and this scoring method is adopted here.

First-Order Difference
Tabulated values (and a graphical form of these data)

are available for first-order difference (FaD) distribu­
tions. This measure (see, e.g., Brugger et al., 1996; Treis­
man & Faulkner, 1987; Wiegersma, 1984a) reflects the
arithmetic difference between each response and its pre­
ceding value (as in analyses described above, a wrap­
around function is used in calculating the set of values).
Thus, the response pair "2, 7" yield an FaD of + 5, and
the response pair "7, 4" yield an FaD of -3. FaDs are
calculated for all pairs, and the frequency of each possi­
ble FaD permutation is determined. The resulting dis­
tribution may point to the arithmetic, or at least ordinal­
based, strategy underlying response choices.

It should be apparent that the FaD scores provide a
count ofadjacent responses (A score) as + 1 and - I val­
ues. The advantage in these FaD scores is that they il­
lustrate the extent to which adjacent values predominate
sets, by describing other permutations also (e.g., count­
ing in twos). Typically, they will also illustrate the avoid­
ance of immediate response repetitions (an FaD value
of 0), relative to other digram sequences. In addition,
FaD scores are clearly suitable for the graphical presen­
tation of results.

When interpreting FaD distributions against theoret­
ical norms, the expected frequencies derived from ran­
dom samples will not be linear. There are more permu­
tations of numbers yielding an FaD value of 0 than for
any other score. Similarly, + 1 and -1 values are more
likely than +2 and -2 values in random sets (see Brug­
ger et al., 1996, for the set of permutations on a six­
alternative task).

Scores from points along the FaD distribution may be
usefully compared across experimental conditions per­
taining to randomization (where the number of alterna­
tives is the same). Data might also be analyzed through
a one-sample t test comparing scores against theoreti­
cally expected values (if appropriate, using Hotelling's
T2 to make multiple comparisons while protecting against
inflated Type I error rate).

Repetition Distance
As mentioned above, human subjects usually do not

repeat response values with a frequency that matches ran­
domly generated sets. However,unless the sequence length
is equal to or smaller than the number of possible alter­
natives, individuals must eventually produce further oc­
currences of some response choices. Repetition distance
data are presented in tabulated (and, if selected, in graph­
ical) form, to show the distribution of distances or lags
between item repeats (as used by Zwaan, 1964, and Mit­
tenecker, 1953, both cited in Wagenaar, 1972). Consider
the sequence "2,3,7,8,8, 7, 2, 3, 2." The response "2"
is repeated after a lag of six items (i.e., it is the sixth item

after the preceding occurrence) and again after a lag of
two items. The response "3" repeats after six items also,
the response "7" after three items, and the response "8"
repeats with a lag ofone item. All distances from the en­
tire response sequence are then collated into a repetition
distance table.

Towse(1998) presents repetition distances from human
performance and also from computer-generated random
sets. The latter shows an approximation to a geometric
distribution of the form

frequencyis] = (1- p)S-1 x p x (n -1), (10)
expected

where s is the number of repetition steps (the lag), andp
is the likelihood of an item's selection.

Both theoretically and in human data, the occurrence
of repetition distances beyond a lag ofapproximately 20
items becomes sparse (in the case of 10 response alter­
natives). Consequently, Towse (1998) presented data in
the form of a bin for those repetition distances longer
than 20 items. However, the point at which a bin of this
type becomes useful will depend on the response vocab­
ulary size and the randomization sequence length. Sta­
tistical analysis ofrepetition distance profiles might fol­
low in the same manner as that for FaD scores, indicated
above or see next sections.

Repetition Gap
Quantitative measures of repetition performance can

be obtained as repetition gap scores (adapting and ex­
tending Ginsburg & Karpiuk, 1994). From the table of
repetition distances, the mean gap, the median gap, and
the modal gap values are determined and displayed.

Phi Index
Wagenaar (1970) and Wiegersma (1984b) provide ex­

amples of randomization analysis using a potentially
complex measure called a phi coefficient. Since we im­
plement a gain function that potentially produces phi
values outside the range -1 to + 1, we term this measure
a phi index. The phi (¢) index is a measure of repetition
tendency over different lengths (different orders of
analysis) for binary sequences. Nonbinary sets are ana­
lyzed by transformation into separate two-alternative se­
quences for analysis, as described below.

The computation of the ¢ index takes place over sev­
eral stages. First, we describe the process in broad terms.
In essence, the ¢ index shows whether the subject tends
to repeat values at a given d-gram length, relative to se­
quence frequencies at shorter lengths. For the analysis of
response segments with a distance d (i.e., d-gram sec­
tions), one counts the number of occasions where the
first and the last response in all d-Iength sequences are
the same (i.e., repeat). Similarly, the number of occa­
sions is counted where the first and last response in all
d-gram sequences are different (i.e., alternate). These
values are then compared with predicted (expected) fre-
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= 24

60 X 40
100

j(O) Xj(1)
j(O,I) = j(O) + j(1)

In a case in which a alternatives are randomized and
a > 2, the sequence must be first translated into a binary
sets, where anvalues are recoded as "0" and all other al­
ternatives recoded as "I." This procedure is repeated for
all possible alternatives. Values are summed across
transformations for observed and expected frequencies
to form a summary 2 X 2 table, although, as a caution­
ary interpretive point, these successive transformations
may not be independent of each other. As the number of
alternatives increases, the ¢ score will become smaller,
due to increasing prevalence of "1 "values in recoded se­
quences, effectively diluting any repetition bias. This
feature, together with variation in the lfJ index according
to sequence length, essentially makes comparison of lfJ
scores across different experimental parameters mean­
ingful only after some appropriate normalization proce­
dure. Wiegersma (l984b) gives one example of such a
normalization treatment. An alternative approach sug­
gested by Wagenaar (1970) is to evaluate all ¢ scores
with reference to Monte Carlo simulation scores and ob­
tain relevant percentile rank values.

Continuing this example for the analysis of one per­
mutation of a three-gram sequence,

j(
O01) = j(O,O) Xj(O,I)

, , j(O)

36 X 24
60

= 14.4.

RNG2 (Analysis oflnterleaved Digrams)
Neuringer (1986) reported that, when provided with

extensive feedback concerning the statistical adequacy
oftwo-choice, keypress-based, randomization sequences,
experimental subjects eventually learned to produce sets
that corresponded to computer-generated random num­
bers, at least as measured by the indices providing feed­
back. One of the novel randomization descriptors used
by Neuringer was a score describing the distribution of
interleaved pairs, termed RNG2. This score involves the
pairing of every alternate response together to make up
a frequency matrix. Thus, in the sequence "2, 3, 7, 8,
8, 7, 2," the digrams are "2, 7," "3,8," "7, 8," "8, 7," and
"8, 2." This produces n - 2 digram pairs. The digram
pairs, once obtained, are processed just as for the RNG
measure.

(12)

(11)

where rx is the response for the xth item in the sequence.
For two-gram sequences, the denominator is the number
of responses that are generated.

The full complement of expected (and observed) fre­
quencies is determined, and then the d-gram lengths are
categorized according to whether they represent repeat­
ing end points (r J = rd) or alternating end points (r J oF
rd)' and this yields a 2 X 2 table for the analysis of a
given sequence length. X2 values are then computed and
¢ derived as

quencies for these repeating and alternating strings,
based on the known frequency distribution of (d -1)­
gram sequences. Ifresponses are random over a particu­
lar length, therefore, observed and expected frequencies
will match, a hypothesis evaluated statistically.

Computationally, the procedure for calculating ex­
pected frequencies is

where T is the total sequence length (after transforrna­
tions-i-see below). The ¢ index, produced separately for
sequence lengths or order of analysis of length d, has a
potential range between -100 and 100, since a sign is
added-s-a minus value to indicate that more d-grams
were alternating than was predicted (negative recency),
a plus value to indicate that more d-grams were repeti­
tions than predicted (positive recency). In RgCalc, I/J is
computed for six orders of analysis (for all sequences up
to seven items in length).

By way of an example for calculating expected fre­
quencies, consider a binary set of 100 responses with 60
"0" responses and 40 "I" responses. The expected fre­
quencies for the alternating sequence "0, I" and the re­
peating sequence "0,0" are

and
j(O) Xj(O)

j(O,O) = j(O) + j(l)

60 X 60
100

= 36.

A DESCRIPTION OF RGCALC

After starting RgCalc, one can bring down the "File"
menu to select the "Open/Define Response Alterna­
tives" option. This allows the user to specify the items
that form the response vocabulary. This might be a se­
quence of numbers or letters, but any set can be used,
such as the string" 1, 2, 5, 6, 9," or nonnumeric cate-
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gories, such as letters or days of the week. For conve­
nience, it is also possible to specify a continuous number
series as the available response set by entering the re­
quired range of values in the "Numerical Series" field
and then clicking on the "Generate" button. Response al­
ternatives can be saved or opened as required from the
"File" menu option when this window is active.

Once the response set has been specified, the user can
close this window in the standard manner (by clicking
on the "x" button in the top-right corner) to open a form,
or grid, to allow the responses themselves to be entered.
This can be done manually, or, if the response set has
been prestored as a comma, tab, or return delimited file,
the sequence can be imported through the "Open Re­
sponse File ..." option from the "File" menu (in fact, any
nonprintable character can be used as a delimiter, and
data may also be entered to and from the clipboard using
the "Cut," "Copy," and "Paste" functions available both
from the edit window and by right-clicking on the
mouse). When loading a response file, one can select the
type of file from the pull-down menu; the default is to
list all ".txt" suffix files. It is also possible to specify the
desired suffix and then click on the "Open" button to
produce a list of all files available in the current direc­
tory. Select the desired response file and click on the
"Open" button to load this dataset into the program; the
status bar will provide an indication of program activity.

When specifying a new set of responses, values are
entered, using the response field below the grid. Enter­
ing a value and pressing the return key will place that
value in the selected response cell and move the field
onto the next response cell. Alternatively, one can choose
response positions in any order. Point-and-click at a cell,
and then enter the appropriate response or use the arrow
keys to move around the grid. Note that, initially, the pro­
gram does not verify that responses are legitimate (i.e.,
that they are part of the response vocabulary). Entry
checking is accomplished when the user attempts to cal­
culate randomization scores by clicking the "Calculate"
button, when any inappropriate responses are reported to
the user for attention.

Where at least one response has been entered into the
response form, the responses can be stored by using the
"Save Response File ..." option from the "File" menu. If
the user attempts to close down the response set window
after changes have been made to an earlier, saved ver­
sion of the file, the program will prompt the user to save
the latest revision.

Other response entry options are the following:
"Empty Grid" button-all the response cells are emp­

tied to allow a new set of values to be entered. The com­
puter provides a warning if this involves erasing unsaved
data.

"Generate" button-takes the value entered in the ad­
jacent field box to specify the number of responses to be
generated using an internal, pseudorandom algorithm.
This allows an exploration of what an appropriate se-

quence of random responses might look like according
to the various randomness tests.

"Calculate" button-checks that the response set
contains only permitted values and then computes the
performance descriptors. A progress bar reports on the
calculations, and the statistic being computed is dis­
played (though often for a subthreshold duration). When
complete, the results are shown in a new window.

For all the functions above, the user may also press the
Alt key together with the relevant, underlined letter on
the button name, as a keystroke alternative to mouse op­
erations. For example, Alt plus the C key is equivalent to
pressing the "Calculate" button.

Once calculated, random generation scores are dis­
played on screen or are made available via button selec­
tions. By default, the program shows the sample size,
along with response frequencies, first-order differences,
repetition distances, repetition gap measures, PL, TPI,
runs, coupon score, R, RNG, NSQ, and RNG2 scores.
Plots of response frequencies, first-order differences,
and repetition distances are available, and further infor­
mation (specification of response pairs and triplets, ad­
jacency scores, and <t> index values) can be selected.

A "Print" button is provided, which sends the results
of specified randomness tests to the default printer. A
"Print to file ..." button allows the user to send (and
compile) scores to a computer file for later analysis or
for use by other programs. If an already existing file is
selected, data are appended to the end of this file. Some
results (e.g., preferred response pairs) are not printed,
because they contain a variable number of results, mak­
ing identification of values problematic. Modal repeti­
tion gap values are available, but where there is more
than a single mode, the first value is given as a negative
number, to highlight the presence ofother modal values.
Scores are saved in the following order: sample size, R,
RNG, NSQ, RNG2, TPI, runs, coupon, ascending (adja­
cent), descending (adjacent), combined (adjacent), re­
sponse frequencies for each alternative, first-order dif­
ferences, repetition distance frequency (length 1-20, and
a summed value for lengths greater than 20), mean rep­
etition gap, median repetition gap, modal repetition gap,
and <t> index values (orders 2 to 7).

OVERVIEW OF RANDOMIZATION
PERFORMANCE MEASURES

In this section, we do not attempt to review the exten­
sive literature on random generation per se (see Brugger,
1997, for an overview). However, we adumbrate the dif­
ferent ways in which human randomization varies ac­
cording to the experimental conditions under which se­
quences are generated and, thus, illustrate some of the
characteristics of the randomness scales.

Experimental studies have shown that, in oral and
written random number generation, the R score is sensi­
tive to the response vocabulary size-that is, the number
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of alternatives (see, e.g., Towse & Valentine, 1997). How­
ever, the R score for random keypress tasks does not nec­
essarily vary significantly with set size, which appears to
illustrate one difference between generation from an in­
ternal set (e.g., numbers) and choice among external ref­
erents (e.g., keys). Supporting this view, the provision of
response alternatives during random number generation
moderates the set size effect (Towse, 1998). Further,
some reports suggest that R increases for oral random let­
ter generation as response speed increases (Baddeley,
1966), although this does not always appear to be the case
for oral number generation (Towse, 1998). The nature of
the response set may be relevant, since Baddeley used
letters of the alphabet (and, therefore, 26 alternatives).
Accordingly, changes in the sequencing of items (e.g.,
an increasing use of alphabet strings) might impact on
the distribution of response usage, as the frequency data
are relatively sparse with large response vocabularies.

The production of item associates (particularly neigh­
boring values to the just-articulated item) is strongly re­
lated to the temporal interval between responses. The
faster the rate of production, the greater the proportion of
adjacent items and repetitive pairs that are used (Badde­
ley, 1966). Thus, measures such as A and RNG vary sub­
stantially with response speed conditions and, therefore,
also with associated scores, such as NSQ, TPI, and PL
(since strings ofadjacent items are used, the phase length
increases). The reliance on adjacent items is also likely
to be evident from inspection of the FOD distribution.

Intriguingly, the avoidance of repetitions in random
sequences and the repetition distances that are produced
seem rather invariant across experimental manipulations
(Towse, 1998; Wagenaar, 1970). Wagenaar reported that
¢ varied with the number of alternatives in a keypress
task, although it is not clear whether this was due in part
to small response vocabularies, since, for example, rep­
etitions are more forced in a two-alternative task. The
repetition avoidance phenomenon has been linked to the
operation of competitive queuing mechanisms in con­
nectionist networks-that is, automatic self-inhibition
processes that prevent response perseveration of highly
active nodes in a distributed neural network (for a discus­
sion, see Towse, 1998). Repetition avoidance has been
reported to be less evident among bilateral hippocampal
amnesics (Brugger, Landis, & Regard, 1992).

In sum, it is apparent that, although many of the mea­
sures of random generation performance are statistically
related to each other (Ginsburg & Karpiuk, 1994; see
below), not all scores intercorrelate highly, and not all
are sensitive in the same manner. The type of random
generation task employed, the speed ofresponse, and the
choices available for response, as well as the psycholog­
ical population under investigation (Brugger et al., 1996)
are all important variables. In addition, some character­
istic patterns of human random generation, such as the
avoidance of repetitions, do not necessarily imply a strate-

gic effort to respond in a particular way; specific phe­
nomena may ultimately be shown to be a by-product of
other generation mechanisms. However,unless researchers
have at their disposal a variety of performance descrip­
tors, progress on such matters may be slow.

Finally, comparison of randomization statistics must
be independent of bias from particular task configura­
tions. Thus, for example, the response length and the num­
ber of response alternatives will affect the baseline val­
ues according to several randomness tests. For example,
with more responses, more pairs occur, and, thereby,
more repeated pairs are likely (picked up by the RNG mea­
sure). Differences in randomization performance across
certain manipulations should, therefore, be interpreted
in the context of expectations derived from theoretical
distributions. One method for achieving this is to use the
"pseudorandom set" function of RgCalc, which attempts
to produce a pseudorandom sequence from an internal
(VisuaIBasic) algorithm according to the criteria speci­
fied by the user. For value-critical Monte Carlo tests, ad­
ditional sources of random sequences may be sought
(see, e.g., Kendall & Babington Smith, 1939).

Measures of Randomness: A Principal
Components Factor Analysis

As part of an experiment described in Towse and
Valentine (1997), subjects produced written random se­
quences, using numbers between 1 and 10, inclusive. To
explore the measures of randomization available from
the RgCalc program, these sequences were reanalyzed
and entered into an exploratory principal components
analysis. There were 94 subjects in the original corpus of
data from a 10-choice condition in Towse and Valentine;
1 individual was dropped from the present analysis as a
univariate outlier on a number of variables. Variables
that were entered into the principal components model
were (in alphabetical order); A, coupon, ¢ index(2gram),
¢(3gram), ¢(4gram), ¢(5gram), ¢(6gram), ¢(7gram), R,
repetition gap(mean), repetition gap(median), repetition
gap(mode), RNG, RNG2, runs, and TPI. Owing to ex­
treme multicollinearity (r 2: .95), NSQ (related to RNG)
and phase length( 1) (related to TPI) scores were ex­
cluded. In those instances in which at least one alterna­
tive was not used, a nominal coupon score of 101 was en­
tered, and in cases where there was more than one modal
repetition gap, the first lower, value was used.

From examination of the scree plot, four factors were
extracted (together, accounting for 66.9% of the vari­
ance), and varimax rotation was used, with a cutoff value
of .45 for inclusion of a variable in the interpretation of
factors (Tabachnick & Fidell, 1996). Table I shows the
results of this analysis, with variables ordered by (load­
ing) size. Factor labels were constructed on the basis of
known statistical properties ofthe randomness scores, as
well as from empirical findings in the psychological lit­
erature. Two measures-RNG and repetition gap(me-
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Table 1
Variables (Ordered by Size of Loading) Contributing to Factors

Factor I: Factor 2: Factor 3:
Equality of Response Usage Short Repetitions Prepotent Associates

R qJ(2gram) Runs
Repetition gap (mean) qJ(3gram) TPI
Coupon qJ(4 gram) A
RNG2 Repetition gap (mode) RNG
RNG
Repetition gap (median)

Note-Data are taken from Towse and Valentine (1997).

Factor 4:
Long Repetitions

qJ(5gram)
qJ(7gram)
qJ(6gram)
Repetition gap (median)

dian)-substantially contributed to more than one fac­
tor; other variables loaded on a single factor only.

The first factor is termed equality of response usage
and indicates whether individuals use alternatives pref­
erentially (i.e., satisfy the equipotentiality criterion in
random generation; Towse, 1998). The second factor,
short repetitions, represents the repetition avoidance ten­
dency over small sequence lengths. The third factor,pre­
potent associates, indicates the tendency to produce
stereotyped strings such as adjacent items, whereas the
fourth factor, long repetitions, represents the repetition
tendency over somewhat larger sequence lengths. The
complete set of factor loading scores are provided in the
Appendix.

We hasten to point out that the principal components
analysis, although illuminating, is limited both by the
precision and by the comprehensiveness of the depen­
dent variables (i.e., the randomness scores), as well as by
the modest sample size for adequate factor analysis. In­
sofar as the measures lack complete precision in tapping
a psychological mechanism, multiple indices that load
on each underlying factor might be valuable in psycho­
logical analyses, as these tests are likely to be differen­
tially sensitive to performance. With respect to the com­
prehensiveness constraint, the problem is substantial, in
that there are innumerable randomness tests one could
implement; additional underlying factors might be es­
tablished if the appropriate measurement were known.
This argument, of course, points to the utility of a psy­
chological analysis of the cognitive operations that un­
derlie human performance, to establish the motivation
for developing specific tests to capture some relevant as­
pect of performance.

In sum, however, despite the limitations in the inter­
pretation of these data, analysis converges strongly with
experimental findings in identifying several distinct com­
ponents to randomly generated sequences and, thereby,
extending the factor analysis provided from a smaller
sample set and reduced variable range in Ginsburg and
Karpiuk (1994).

MEASURES OF RANDOMNESS NOT USED

Although we have examined the literature for different
measures of random generation performance, we have
not implemented all known or possible randomness tests.

A number of measures are variants on those already pro­
vided:

Series (Ginsburg & Karpiuk, 1994)-essentially
equivalent to the A measure.

Repetitions (Ginsburg & Karpiuk, 1994)-measure
available from repetition distance table.

Variance ofdigits (Ginsburg & Karpiuk, 1994)-es­
sentially equivalent to R score.

Digram repetitions and cluster ratio (Ginsburg & Kar­
piuk, 1994)-both a form ofRNG score.

Poker (Ginsburg & Karpiuk, 1994)-represents repe­
titions over an arbitrary sequence length, but essentially
available from other measures such as the repetition dis­
tance table.

CI and C2 (Neuringer, 1986)-a measure of the sim­
ilarity ofresponses across separate random response sets
and, therefore, not computable directly. However, the
pairs for this measure can be combined manually and
then entered as a single sequence. The RNG and RNG2
score will then equate to Cl and C2 values.

Higher order distributions. Analysis of three-gram
and longer sequences is not presented here (except for
specific measures such as repetition distances), because
human randomization data are generally too sparse to
permit appropriate analysis of data.

OTHER FORMS OF THE
RANDOMIZATION TASK

Although RgCalc has been designed to be as flexible
as possible as an analytic tool, there may be some forms
of the randomization task that cannot be dealt with, at
least in a straightforward fashion. For example, some re­
searchers have promoted the paradigm of a random in­
terval production task (Stuyven & Van der Goten, 1995).
Here, subjects are asked to tap a key and to make the
temporal gaps between responses as random as possible.
An analogous situation would be the request to make
random movements (random lengths) over time. In both
cases, subjects produce continuous data rather than
choosing between discrete alternative categories. Con­
sequently, analysis of the quality of responses may re­
quire more specialized methods (clustering of response
values may be revealing, for example, or graphical forms
of time-series analyses). However, the response data
might also be sorted into an appropriate set of groups
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(e.g., temporal intervals or distances). Responses having
been transformed into categorical choices, standard an­
alytic tests described above could then be applied.
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APPENDIX
Factor Loading Scores From

Principal Components Analysis
Measure Factor I Factor 2 Factor 3 Factor 4

R ,9451 .0354 .0565 .0461
Repetition gap (mean) -,8272 -.2364 .0338 -.2283
Coupon ,7561 .0796 -.0320 -.1643
RNG2 ,6695 -.2358 .2701 .1703

¢(2gram) .2107 .8342 .0743 .0008
¢(3gram) -.1466 .8255 .0124 .0808
¢(4gram) -.0881 .6693 -.1044 .2650
Repetition gap (mode) -.2783 -.6357 .0393 -.3268

Runs -.0905 - .2063 .8568 .0243
TPI - .1466 -.2086 -.8522 -.0679
A .0237 .0322 .8231 -.0544
RNG .5425 -.1856 .6285 .0634

¢«5gram) -.1121 .1642 .1884 .7076
¢(7gram) .0992 .0972 - .0294 ,6654
¢( 6gram) .0677 .07 I2 - .032 I .6339
Repetition gap (median) .5243 -.4028 .0810 .5834

Note-Data are taken from Towse and Valentine (1997). Values in bold
denote inclusion of variable on a particular factor.
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