
Behavior Research Methods, Instruments, & Computers
1986, 18 (6), «J8-6/7

The computational connection in vision:
Early orientation selection

STEVEN W. ZUCKER
McGill University, Montreal, Quebec, Canada

It is widely accepted that computer implementations can playa role in verifying psychological
theories. In this paper, I argue for a much broader and more abstract role for computation, in
particular, one that includes formulation as well as verification. Consideration of issues of ab­
stract computation-what should be computed and how-provides a level of analysis between eco­
logical issues at the problem level and realization issues at the physiological level. This is the
computational connection. The paper reflects my personal experience so that my argument can
be made concretely. I concentrate on the evolution of one theory of orientation selection, and I
show how we were led to differential geometry from "line detectors"; how parallel, distributed
computational modeling led to novel proposals regarding curvature estimation; and how these
proposals predicted psychophysical sensitivity to discontinuities.

The leap from neurophysiological observations through
psychophysics to function has been a cornerstone of how
theories are inferred in vision. This leap, however, has
been clouded by the informality of many of the steps and
the lack of feedback among them. Incompletely or
heuristically specified theories are notoriously difficult to
validate (or, for that matter, to invalidate). Computers and
the theory of computation have begun to change this,
however, and in this article I attempt to illustrate how
computation has played a central role in my developing
ideas about one aspect of early vision: orientation selec­
tion. I shall argue that computational theorizing, in addi­
tion to precision and validation, has led to several sur­
prises regarding the subtlety of interpreting experimen­
tal data.

Constraints on visual theorizing arise from many differ­
ent sources, and the general idea behind computational
modeling is to utilize as many of these constraints as pos­
sible. Physical structure gives rise to constraints about the
world, and projection gives rise to image constraints.
Physiology provides constraints about (the details of)
mechanisms, and psychophysics about their input/output
properties. Viable theories are those that can account for
a collection of these constraints at different levels of ab­
straction; successful theories are those that lead to new
predictions.

This paper is a personal one and focuses on the evolu­
tion of my ideas about early orientation selection; for a
wider view of the role of computation on the evolution
of vision, see Marr (1982) and Zucker (1981; in press a).
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THE FORMATION AND INFERENCE OF
IMAGE INFORMATION

Perhaps the most common definition of vision in com­
putational circles is as inverseoptics; that is, images are
formed by a physical process in which light reflects off
of objects and is then imaged by an optical system. Since
the goal of vision is to produce descriptions of physical
scenes, if the above process could be inverted-that is,
if the light could somehow be run backward in time from
the image to the world-then the physical properties of
the objects could be inferred.

Inverse optics is clearly impossible without extra con­
straints, and much of the computational literature
describes various attempts to find specific problems that
can besolved under specific constraints (Ballard & Brown,
1982; Levine, 1985; Zucker, 1981, in press a). Many of
these relate directly to the image formation process (e.g.,
various attempts at recovering shape-from-shading infor­
mation), but further organization is necessary for the pro­
gram resulting from these attempts to be successful.

Levels of Inference
The physical world is rich in structure that projects into

images, and this richness implies a high degree of com­
plexity among all attempts to deal with it. Of course, the
antidote to complexity is organization. If the books in a
library were arranged randomly, then on average half of
them would have to be examined to find any particular
one. But if the books were organized, for instance, ac­
cording to hierarchical categories, such as those used in
the Dewey decimal system, then the savings in search time
could beenormous. Analogously, the knowledge in vision
systems needs to be organized. More general structures­
those that are likely to arise in wide classes of natural
images-must be inferred first; such inferences then pro­
vide the foundation for subsequent inferences.

Copyright 1986 Psychonomic Society, Inc. 608



COMPUTATION AND ORIENTATION SELECTION 609

The Ubiquity of Orientation: Curves,
Contours, and Surface Coverings

Perhaps the most ubiquitous structures in all scenes in­
volve orientation. Contours arise from object boundaries,
changes in material or lighting, and such surface mark­
ings as creases and pinstripes. Contours can be arranged
into surface coverings as well; consider fur patterns or
wheat fields. The local ingredient in all such patterns is
orientation, and the prevalence of orientationally selec­
tive cells throughout the early visual system underlines
its importance (Hubel & Wiesel, 1977). This raises the
question for computational types: How can orientation in­
formation be computed? This question provides the
launching point for our studies.

FEATURE DETECTORS: THE
PHYSIOLOGICALLY MOTIVATED APPROACH

First, I will concentrate on the problem of inferring
curves from images. The standard approach to the
problem has its roots in the feature detection paradigm
inspired by results from electrophysiology (Lettvin,
Maturana, McCulloch, & Pitts, 1959). Stated in its sim­
plest form, this paradigm maintains that templates for par­
ticular pattern features exist (perhaps as receptive fields)
and that these templates can be matched against image
information.

The matching mechanisms consist, in tum, of two dis­
tinct steps: measurement and selection. If the measure­
ment step is linear, then it amounts to a convolution (or,
roughly speaking, a computation indicating the correla­
tion between a symmetric feature template and a piece
of the image). Reichardt (1961) and Uttal (1975) have em­
phasized such procedures; however, the selection step that
follows is inherently nonlinear, since it is designed to
choose the templates that match the image best (i.e., those
with the strongest convolution values).

Line Detectors and Orientationally
Selective Neurons

The feature detection paradigm is particularly attrac­
tive for orientation selection, given the prevalence and
arrangement of orientationally selective cells in the early
visual cortex. In particular, leaving many of the details
aside, the receptive fields ofso-called simple cells (Hubel
& Wiesel, 1977) seem ideally suited to function as line
templates. They can be modeled by a Gaussian envelope
in their preferred direction and a difference ofGaussians
in the orthogonal direction (Wilson & Gelb, 1984; see
Figure I). Furthermore, such cells are organized (in cor­
tical area V I and elsewhere) as a system of columns,
which suggests that each position in the image is covered
by a cell "with" each orientation. Such an architecture
seems to reveal the algorithm: try each orientation at every
position, and select those orientations with significant
matches. If the simple cells carry the convolutions, then

interactions between simple cells can be postulated to per­
form the significance test, for example, by maximum
selection (Blakemore, Carpenter, & Georgeson, 1970).
Unfortunately, the elegance of this scheme notwithstand­
ing, in this form it cannot work in general.

The Computational Failure of
the Line Detector Paradigm

Since the line detector paradigm is specified so well,
it can be verified by computer. Computational experiments
show that, if the curves are perfectly straight lines, and
if the lines are of high contrast and far apart, the line
detector scheme will work. But they also show that if the
lines change direction (i.e., if they curve) and are close
together (with respect to receptive field size), the scheme
will fail (see Figure 2). Similarly, it will fail to distinguish
between smooth curves and comers, and it will fail for
textured patterns consisting primarily of oriented infor­
mation (Zucker, 1982). Clearly, there is more to curve
detection than convolutions and local maxima selection.

A more detailed examination of Figure 2 reveals the
problem. Although the convolutions carry the informa­
tion about orientation, they do not do so in a way that
makes its subtleties explicit. The information is spread
out around the contour and across different orientations
at each position. Distinctions between different curves are
blurred. The selection process must be sufficiently power­
ful to deal with these subtleties.

A COMPUTATIONAL ANALYSIS OF
ORIENTATION SELECTION

A computational analysis of a problem implies more
than simple verification; it consists in design as well. I
have shown above how theories can be verified using com­
puters; I will now show how ideas from computation can
influence theory formation. In particular, before consider­
ing how something can be computed, an analysis of the
problem can suggest what must becomputed. I therefore
begin with the question: What is a curve?

Traces, Tangents, Curvature, and Curves
A (parameterized, differentiable) curve is a differen­

tiable map from an (open) interval to points on the image
plane. The trace of a curve consists in the set of points
through which the curve passes. In actual problems only
a discrete sampling of the trace is given, but it is usually
embedded in other image structures. Somehow the curve
must be inferred from this noisy, incomplete, and embed­
ded trace, while the trace itself is segmented from other
image structure. Or, to state it differently, if the exact
trace were known, then curve detection would simply be
a matter of interpolating the curve between the trace
points. The issues would then be ones of smoothness (e.g.,
order of interpolating polynomials and of localizing dis­
continuities [Pavlidis, 1982)). For the problem of orien-
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Figure 1. A model of a simple c:eD's ree:eptivefield. Itcooslstsof a Gau&<iao envelope in the preferred
orientation and a difference of GauSslans in the ortbogonal direction. Functionally, the Gaussian
smootbes over intensity variations alongthe contour, whereas the difference ofGaussians sbarpens
the spatial localization of the operator (Zucker & HwnmeI, 1986). Computationally, this receptive
field can he thought of as an operator which, within its linear range, is convolved against image
infonnation (Rosenfeld & Kat, 1982).(Of course, the image information is first preproc:essed, e.g.,
separated into positive and negative contrast channels.) 'The result of the convolution is then a linear
average (1.,) estimate of the match between the local image pattern and the receptive field tem­
plate; stronger convolutions indicate a better matcb.

tation selection, however, not only are the exact trace
points unknown, but they are confused with other image
contrast structure as well.

The mathematical properties of curves most relevant
here come from differential geometry (do Carmo, 1976).
If the mapping defining the curve were known, it could
be differentiated at each point. The first derivative of the
curve with respect to arc length, or a parameter that runs
along the curve, is called the tangent to the curve. In an
infinitesimal sense, then, the tangent is the best linear ap­
proximation to the curve at every point. The second
derivative, appropriately normalized, is the curvature, or
the rate of change of the tangent along the curve.

Unfortunately, neither the trace nor the mapping are
given; these must be inferred during the process of curve
detection. The above differentialgeometry, however, sug­
gests a natural way to proceed when coupled with two
lessons from the theory of computation.

The Two Stages of Curve Detection: Orientation
Selection and Curve Synthesis

Recall the example of the Dewey decimal system dis­
cussed previously. As stated, the principal lesson was that
if local and abstract decisions could be made, then the
efficiency of searching a large data space would be im­
proved substantially. For this principle to be applied to
orientation selection, however, it needs to be modified
to include a second point: in the face of uncertainty, each
of the local decisions cannot be too fine grained (Zucker,
in press b). Imagine, to continue the example, that some­
one had randomly erased some of the letters defining the
categories and the books. As more noise is added, it be­
comes increasingly difficult to read the titles and
categories, and at some critical level one would begin to
use more effort in trying to use the classification system
than would be incurred by a brute force search. Orienta­
tion selection, as we shall see, requires making coarse,
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Figure 2. Anexample illustrating the failure of convolution foDowed by maximal response selection as an algorithm
for orientation selection. (a) An image of two closely spaced curves. (b) The result of convolving operators, such
as the one shown in Figure 1, against the image of curves above. Eight orientations were used at every position,
and a short line segment indicates which of these convolutions were among the top 45% of the total responses. This
thresholding algorithm is equivalent to selecting the strongest responses at each position, but e\imioating those with
only weak values. Observe the thick tangent field that is indicated, with responses flaring around the ends and be­
tween the curves. It is impossible to recover the original curves from this tangent field; thus, more sophisticated
selection (or operator-interpretation) techniques are required.
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local decisions first, and then following them with finer
grained, more global ones.

Consider, for now, only the local/global distinction, be­
cause the differential geometry suggests such a break­
down. Recall that the tangent is the first derivative of the
curve (with respect to arc length). Thus, if the tangents­
the best local, linear approximations to the curve at each
point of the trace-could be found, then they could readily
be integrated into a global curve. Hence, we are natu­
rally led to consider two conceptual stages for any process
of curve inferencing, the first in which local information
is recovered and the second in which global information
is recovered. The first stage clearly amounts to orienta­
tion selection, for which the goal is the inference of a lo­
cal description of the curve everywhere along it. We for­
malize this goal as a vector field of tangents. The second
stage amounts to curve synthesis, or the formation of in­
tegrals through this vector field.

Stage 1 (orientation selection). Stage 1 estimates
a discrete, quantized vector field of tangents. This
is a spatial arrangement over quantized positions of
unit vectors with discrete orientations. Each tangent
touches the contour at exactly one position (on the
quantized trace) and points approximately in the
direction that the curve is going as it passes through
that point. Thus, inherent in inferring the tangent field
is the inference of the discrete trace of the curve.

Stage 2 (curve synthesis). Stage 2 finds integral
curves through the vector field. The second stage of
the model is based on the fact that the tangent is the
first derivative of the contour, which suggests that
contours can be recovered by a process of integra­
tion. Since the tangent field is actually quantized in
space (into, say, retinotopic coordinates) and orien­
tation (only n distinct tangent orientations are ex­
plicitly represented), the integration involves solv­
ing an approximation problem subject to inequality
constraints about position, tangent, and curvature.
This approximation problem will be treated formally
in a separate paper.

This is precisely the breakdown that we have adopted
(Parent & Zucker, 1985; Zucker, 1982). Since Stage 2
in the model is relatively unconstrained physiologically
and psychophysically, 1 we shall now concentrate on
Stage 1, or orientation selection. As in the full process
of curve detection, orientation selection itself can be
thought of as a two-step process.

Orientation Selection as a Two-Step Process:
Measurement and Interpretation

The goal of Stage 1 in the model is to isolate the trace
of the curve. But observe that this leads to something of
a chicken-and-egg problem. If the curve were known, then
its discrete trace (the set of pixels or, equivalently, the
set of quantized retinotopic positions) could simply be cal­
culated. But since it is the curve that we seek, how can
the trace be calculated? The answer lies in simultaneously

inferring both the trace and local models for the curve.
The tangent and the curvature define the local model at
each point. The result is a structure that is referred to
mathematically as a tangent field; the goal of orientation
selection, I propose, is the computation of the tangent
field. The simple-eell receptive fields discussed previously
provide sufficient measurements; it is their interpretation
that must be considered in more detail. Orientation selec­
tion, or the computation of a tangent field, can therefore
be thought of as consisting of the following two steps:

Step 1. Perform measurements on a representation
of the image patterns. The biological constraint to use
simple-eell receptive fields as templates is very com­
pelling. But the interpretation of these convolutions
is not unique, so we must perform Step 2.

Step 2. Interpret the results of the measurements.
This step is formulated both abstractly as a functional
minimization problem and concretely as a coopera­
tive network that computes solutions to the problem
(Parent & Zucker, 1985). Physiologically, this
amounts to interactions between the various recep­
tive fields. Mathematically, it amounts to minimiz­
ing a functional through curvature variation [Parent
& Zucker, 1985].

The first step is standard. It amounts to convolving the
simple-eell receptive field operators at each explicit orien­
tation against the image. The results are stored in what
can be thought of as an orientation column (Hubel &
Wiesel, 1977) at each position. With this given, I now
concentrate on the interpretation step.

A fundamental constraint on both biological and artifi­
cial vision systems is the discrete sampling inherent in
the retinotopic array. This spatial quantization is such that
many different curves in the real world project into the
same discrete trace. How then, given only an approxi­
mation to the discrete trace or a sampling of the points
through which the curve passes, can the correct one be
selected? In general it cannot; rather, the best that one
can hope for is consistency among all the choices. The
most natural choice is the smoothest curve from among
the possible ones, and we use smoothness constraints to
obtain estimates of how the curve is behaving in the neigh­
borhood ofeach possible trace point. The estimates model
the tangent and curvature locally, and smoothness dictates
limits on their differences (parent & Zucker, 1985).

It is important to note that the mathematics continue be­
yond tangents (first derivatives of the curve with respect
to arc length), curvatures (second derivatives), change in
curvature (third derivative), and so on. But it turns out
that considerations through curvature are sufficient for
situations such as the one in Figure 2, in which curva­
ture information can be used to separate the two curves
from one another by eliminating the (incorrect) responses
between them.

The key to estimating the tangents and curvatures is to
observe that they are not independent; for the proper
parameterizations, the tangent is the first derivative of the
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curve with respect to arc length, and curvature is the sec­
ond derivative. The tangent must cover nearby trace
points, and curvature estimates must cover the underly­
ing tangents.' But these relationships are differential; on
the discrete grid they can only hold approximately. This
suggests the maximization of a functional: one would
naturally like the above relationships to hold as much as
possible. Fortunately, computational theory again suggests
how this can be accomplished.

Distributed, parallel algorithms for functional max­
imization. Given the need to maximize certain func­
tionals, which, in this case, can be specified in terms of
the (estimated) trace, the (estimated) tangent, and the (es­
timated) curvatures, one could appeal to the existing liter­
ature to determine how this might be accomplished
(Leuenberger, 1971); however, other constraints exist that
are necessary for any such scheme to be biologically plau­
sible. Neurons in the early visual system are not connected
densely, but rather form local clusters of distributed net­
works (Gilbert & Wiesel, 1981). Parallelism is every­
where, over spatial distributions and across functions.
Somehow, the algorithms for functional minimization
must capture this distributed, parallel structure.

We have developed the mathematical theory for one
class of such algorithms, which we call relaxation label­
ing processes (Hummel & Zucker, 1983; see also Bal­
lard, Hinton, & Sejnowski, 1983, for related references).
One set of specific interconnections that estimate the trace,
tangent, and (coarse) curvatures so that they are mutu­
ally consistent (i.e., they maximize a certain natural func­
tional) has been developed by Parent and Zucker (1985).
The result is a cooperative network of interactions that
runs between the initial convolution values, iteratively
changing them so that they become more consistent with
current curvature estimates. That it works successfully
is exhibited in Figure 3.

The dynamics of the network intuitively run as follows.
The initial convolutions are given, say as response values
in orientation columns. Take these values as initial esti­
mates of which tangents are actually indicated in the im­
age, with large responses representing higher certainty.
Now, initial estimates of curvature can be calculated from
these initial tangent estimates by integrating information
over a slightly larger neighborhood. Once curvature es­
timates are available, the underlying tangent estimates that
they cover can be adjusted (recall that curvature varies
with the change in tangent direction) to make them more
consistent with each other. But now the tangent estimates
have changed, so the curvatures must be recalculated. This
process of re-estimation and adjustment for consistency
is repeated until convergence.

There is a serious issue of how many iterations are re­
quired for convergence. My computational experience in­
dicates that two iterations are sufficient for all applica­
tions that we have attempted. If the number of iterations
is low enough so that they can beimplemented by repeti­
tions of the "wetware" in which each one is carried out,
then two iterations are certainly within the limits of bio­
logical plausibility.

Figure 3. An example illustrating the success of our curvature­
based orientation selection scheme. <a) A low-contrast image of a
fingerprint, an image containing many closely spaced, thin curves.
Observe that curvature varies from almost straight to very curved
and that some of the curves stop. (b) The tangent field produced
by our algorithm superimposed on the image in <a). Observe that
the tangents coincide exactly with the bright curves and that none
of the problems illustrated in Figure 2 are apparent here.

It is important to stress that results of computational
experiments involving curves (rather than straight lines)
led to the realization that curvature is so important. Other
researchers (e.g., Grossberg & Mingolla, 1985) have thus
far appeared to concentrate their computational experi­
ments on (piecewise) straight contours, and therefore have
not yet confronted curvature.
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Endstopping and curvature estimation. It is clear
from the above computational considerations that curva­
ture plays an essential role in orientation selection. With
this motivation, then, we sought ways in which curva­
ture could be reliably calculated. Again, computational
experiments-this time with our network (Parent &
Zucker, 1985)-provided the key. The experiments re­
vealed that only coarse curvature estimates are required
at this step. That is, only a small number of possible cur­
vature values is sufficient; it is not necessary to compute
curvature to several decimal places (recall the argument
above about noisy library searches). Current implemen­
tations use only seven possible curvature "classes":
straight; curved to the left in small, medium, and large
amounts; and similarly curved to the right. Of course,
the highest curvatures must respect the geometric limita­
tions imposed by a discrete sampling grid.

The standard approach to computing curvature involves
fitting splines or polynomials, and then differentiating
them symbolically. But this approach is very susceptible
to noise, so that small errors in positioning often lead to
large errors in estimating curvature. We have developed
another technique, however, that provides only coarse
curvature estimates, but does so reliably (Dobbins &
Zucker, 1986). It amounts to a certain rectified differ­
ence between "simple cells" at similar positions but with
different receptive field characteristics. Interestingly, if
one were to do the computational equivalent of electro­
physiology on this part of the network, the curvature con­
sistency computation would appear to have introduced
endstopping onto the simple cells' receptive fields. End­
stopping is the property whereby a cell's response in­
creases with a line stimulus of increasing length, but only
up to a point. Following this point, the response decreases.
It is usually assumed that endstopping has something to
do with end-point determination. Our computational per­
spective has suggested another alternative that is consis­
tent with the known physiology (in particular, it could
amount to layer 4 and layer 6 local circuits, mediated by
an inhibitory interneuron) (Dobbins & Zucker, 1986).

PREDICTIONS FROM THE THEORY

The value of any abstract theory is, to a large extent,
both in its explanatory power and in the predictions that
arise from it. I have already shown that computational
theories can suggest novel interpretations of physiologi­
cal function. I now discuss two more predictions of the
theory and some of their consequences.

Sensitivity to Discontinuities
The presence of discontinuities is one of the key fea­

tures of contours. Discontinuities arise in the outlines of
objects that stand in an occlusion relationship, and they
often indicate abrupt changes in properties arising from
different objects. They can certainly not be ignored in any
theory of orientation selection, and since smoothness con­
straints play a key role in our computational theory, one
might expect problems to arise in the neighborhood of

discontinuities. This is not the case, however, at least to
the extent that the human visual system is capable of
localizing discontinuities.

Imagine a pair of straight lines that meet at a corner,
an inverted V shape. Now imagine rounding out this
corner, say by smoothing it with the computationalequiva­
lent of sandpaper. What is the minimal amount of smooth­
ing to which we are sensitive? Or stated in other terms,
what is our sensitivityto distinguishingsharp corners from
high curvatures? Clearly such a question is relevant eco­
logically, since corners, not high curvatures, arise from
occlusions.

Computationally, one would expect the sampling quan­
tization to determine this sensitivity, at least in part. We
have examined it psychophysically, using a variant of the
above idealized displays. Instead of solid lines, we have
used dotted ones, and instead of rounding off the corner,
we have rotated the dots in phase with respect to it. When
a dot is placed right on the corner, of course, the display
appears to be two (dotted) lines meeting at a corner
(Figure 4). As the top dot is moved from the corner, it
remains sharp until a certain displacement, when it sud­
denly looks rounded (Figure 4, middle); this smooth ap­
pearance persists for further displacements (until the next
dot approaches the corner) (Link & Zucker, in press a).
Our algorithm exhibits precisely this sensitivity to discon­
tinuities (Figure 4).

Curves and Surface Coverings: One- and
Two-Dimensional Oriented Patterns

The success of the theory thus far might lead one to
believe that it will work on all patterns rich in oriented
structure. In a preceding section, The Ubiquity of Orien­
tation: Curves, Contours, and Surface Coverings, l out­
lined several ways in which patterns exhibiting orienta­
tion would arise: bounding contours of objects, surface
creases, and surface coverings. Since curves of the sort
that we have already discussed cover many examples of
the first two possibilities, let us now consider surface
coverings. Examples of such patterns might includegrassy
fields, fur, and hair coverings.

Observe that, by their very composition, surface cover­
ings differ fundamentally from individual curves; they
consist in very large numbers of curves (e.g., hairs), all
of which are roughly parallel to each other, but which
go in and out of occlusion relationships at close intervals
and frequently. Thus, they are topologically two­
dimensional patterns, as opposed to one-dimensional
curves. Or to state it intuitively, one can only walk along
a curve in the forward or backward directions; a sideways
step takes one off the curve. But for two-dimensional sur­
face coverings, one can walk both along the curves (hairs)
and across them (from hair to hair). Surface coveringsmust
reflect the dimensionality of the surfaces that they cover.

These topological differences are born out computation­
ally. If we run our orientation selection network on an
image of a fur pattern, the result is isolated short tangents
associated primarily with the highlights (Figure Sa). Since
the hairs interweave so much, the coherent image inten-
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sity structures necessary for localizing the hairs (contours)
are missing. In fact, the hairs themselvescannot even be
imaged, because they are under other hairs. What is re­
quired is an interpolation process that "spreads" the
orientation information across contours-that is, in a
direction perpendicular to the local orientation-as well
as along them. Such a process is described in Zucker
(1985); that it works is shown in Figure 5b.

The consequences of such a lateral spreadingof orien­
tation informationwould be expected to be most evident
psychophysically in the neighborhoodof orientationdis­
continuities, and this is in fact the case (Link & Zucker,
in press b). One might also ask whether the physiologi­
cal substratecould support suchlateral spreadingas well,
and the evidenceis beginningto emerge that certaincom­
plex cells exhibit processes with precisely this structure
(T'so, Gilbert, & Wiesel, 1986). Like endstopping,
however, the functional role for these lateral excitatory
processeshas been elusive, and againcomputational the­
orizing may have led to a viable explanation.

CONCLUSION
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Figure 4. AnlIIustration of the kind of psychophysical prediction
that emerges from our computationlll modeling. (a) A coIledion of
three doUed lines meeting abruptly at a comer. In the bottom dis­
play a dot is pIlIced rigbt on the comer, wbereu In the middleand
top IUuatrations the dot is displaced iDI:raIIiD&IY farther from the
comr:F. The middle.......til" tulitliPOllds to thepoIition at wbidl
subjects stated the comer appeared smooth (rather than sharp) In
link and Zaer's (In press a) experiments. (b) The result of our
orientation selection algorithm. Observe that the lower curve is dis­
continuous, repl'elll!nting a sharp comer (with multiple tangents
repl'elll!nted there), whereas the other two are smooth.

There is always a sense in which scientificdisciplines
are influencedby the current zeitgeist, and vision is no
exception. Computers have greatly extended both the
quantity and quality of experimental psychophysics and
physiology, and computationhas provided a theoretical
perspective that has, up until now, largely been lacking.
Perhaps if computation had been available100yearsago,
the great debates betweenMach and von Helmholtz over
neural networks and unconscious inference could have
been far more productive. Computation providesthecon­
nectionbetweenproblemsand solutions, and betweenal­
gorithms and implementations.

In this paper, I attemptedto highlightthe role of com­
puters and computationin a much more focusedproblem
domain, that of orientation selection. This is the process
by whichorientedentitiesare inferred from image struc­
tures. Computer implementations were used to demon­
strate the weaknesses of standardapproaches, and thereby
to illuminate the more subtle aspects of the problem of
orientationselection. The result forced us to analyze the
problem more abstractly, and led to the introduction of
techniques from differential geometry. The seemingly
straightforward questionof line detection evolvedintothe
inference of the trace, tangent, and curvature of arbitrary
curves. Basic constraints fromphysiology and psyclqlhysics
influenced the resulting theory, especially the shape of recep­
tivefields and the regular interconnection arrangement sug­
gested by neurons. The result ledbothto newcomputational
ideas for maximizing functionals and to an algorithm for
orientation selection. Finally, to complete the loop, the
algorithm led to new psychophysical results (regarding
sensitivity to discontinuities) and to new functional in­
terpretations of physiology (endstopping and curvaturees­
timation, and complex cells and oriented textures).

Orientationselectionwas chosen becauseof its promi­
nence in early vision and because of the many different
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Figure s.Anillustration of the difference betweenone-dimensional curves
and two-dimensional surface coverings. We show in particular that surface
coverings, SUth as hair patterns, require lateral interpolation, or processing
ocross curves, in addition to processing along curves. (8) The result of run­
ning the orientation selectionalgorithm for curves on an image of 8 hair pat­
tern. Observe that the tangents are indicated e&<lentially where the highlights
are strong. But they are scattered sparsely and do not capture the Dow of the
hair. (b) The tangent field obtained when lateral interpolation Is included in
the orientation selectionprocess. Observe now that the tangent field Is dense
in two directions (actually, onlyevery sixth tangent is shown, so that the tan­
gents' lengthscan properly indicate orientation). It may be thecase that some
subset of complexcells perform this type of lateral interpolation via excita­
tory interconnections betweenneurons with similarlyoriented receptivefields.
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constraints fromphysiology andpsychophysics thatcould
be broughtto bear on it. Butwhatappearedto be a rather
simple single process turned out to be a network of several
ratherdifferent ones. Thesedifferences emergedbetween
tangents andcurvatures, andbetween curvesand textures.
As Uttal (1981) points out, the Gestalt laws have been
notoriously difficult to formalize; the previously unrecog­
nized differences mentioned above may be responsible,
at least in part (Zucker, in press a). Moreover, indica­
tions are that a similar theory will underlieearly optical
flow computations (in which the two spatialdimensions
are generalized to three spatiotemporal dimensions)
(Zucker& Iverson, in press). Whetheror not these ideas
will stand the test of time, they certainly illustrate how
computers and computation have begun to influence
research in vision.
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NOTES

I. Stage 2 can be readily formulaIed in mathematical Ierms at this
point, but such a formulation is outside the scope of this paper.

2. Althoughcurvature was defined in terms of derivatives, it can also
be thought of in terms of "change in tangent" along the curve.




