
p. 61  

 

COMPARATIVE ANALYSIS OF BAYESIAN 

AND FREQUENCY-BASED METHODS 

IN GENOMIC SELECTION FOR 

POPCORN POPULATION BREEDING AND 

OPTIMIZATION OF SNP MARKER DENSITY 
 

Ismael Albino Schwantes1, Antonio Teixeira do Amaral Júnior1, Janeo Eustáquio de Almeida Filho2, 

Pedro Henrique Araújo Diniz Santos1, Fernando Rafael Alves Ferreira1, Gabrielle Sousa Mafra1, 

Marcelo Vivas3, Yure Pequeno de Souza1, Fabio Tomaz de Oliveira1, Ismael Fernando 

Schegoscheski Gerhardt1, Juliana Saltires Santos1 

 
1Laboratório de Melhoramento Genético Vegetal, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, 

RJ. 
2 Bayer Crop Science, Bayer, Passo Fundo, RS. 
3 Laboratório de Engenharia Agrícola, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ. 

Corresponding author: Ismael Albino Schwantes (ismael.schwantes31@gmail.com) 

Abstract - Bayesian methods and frequency-based approaches such GBLUP are used to 
estimate genomic genetic values in recurrent genomic selection. An important factor in 
genetic gain is prediction accuracy; therefore, the objective of the present study was to 
estimate the prediction accuracy of the following methods: GBLUP, Bayes A, Bayes B, 
Bayes Cπ, Bayes Lasso, and RKHS. After establishing the best method, different densities 
of SNP markers were tested. The experiment was implemented using an incomplete block 
design with three repetitions in two locations. Ninety-eight individuals were evaluated using 
10,507 SNPs; the assessed traits were grain yield, popping expansion, and popcorn volume. 
The analyses were performed using R software and a ten-fold cross-validation system. The 
methods were compared using the t-test, via correlation networks and according to the time 
required to perform the analysis. The obtained results showed that the methods did not 
differ statistically with regard to selection accuracy, with high correlation estimates (<0.98); 
however, the GBLUP test stood out for its short analysis time and simplicity of execution. 
With regard to the distinct scenarios of SNP density tested with the GBLUP method, it was 
concluded that the use of ~ 4,800 SNPs led to results similar to those obtained with 10,507 
SNPs. The GBLUP method is recommended for its greater speed in generating analytical 
results and for exhibiting robustness similar to that of other tested methods with the use of a 
small panel of SNPs. 
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Introduction 

Recurrent selection (RS) is one of the most 
important breeding methods to obtain popcorn 
varieties; however, it is a time consuming and effort 
intensive procedure as each selection cycle includes 
three steps: progeny development, evaluation, and 
recombination of superior families. Recurrent genomic 
selection (RGS) a method that uses the principles of 
genomic selection (GS) in RS can reduce the time 
required foreach RS cycle because it allows 
performing evaluation and recombination steps 
simultaneously. This method provides a form of 
direct early selection, i.e., it acts prematurely on 
genes expressed in adult hood (Resende et al., 
2010; Fritsche-Neto et al., 2012). Thus, the time 
required for each selection cycle is reduced to just 
one crop season. 

Meuwissen et al. (2001) marker haplotypes 
simultaneously from a limited number of phenotypic 
records. A genome of 1000cM was simulated with a 
marker spacing of 1cM. The markers surrounding every 
1cM region were combined into marker haplotypes. 
Due to finite population size (Ne = 100 proposed GS, 
which is an approach that consists of predicting the 
genetic potential of individuals using data of a large 
number of markers widely distributed across the 
genome. This prediction is performed using models 
where genomic characterization that results from 
genotyping is used as a source of an explanatory 
variable, and the phenotype of a given trait of interest 
is used as the response variable. This genomic 
prediction model should be added to a training 
population (TP) where individuals are genotyped and 
phenotyped and if this prediction is accurate, the 
model can be applied to breeding populations related 
to the TP (Resende Jr et al., 2012; Almeida Filho et 
al., 2016) it is unknown how accurate genomic 
selection prediction models remain when used across 
environments and ages. This knowledge is critical for 
breeders to apply this strategy in genetic improvement. 
Here, we evaluated the utility of genomic selection in 
a Pinus taeda population of c. 800 individuals 
clonally replicated and grown on four sites, and 
genotyped for 4825 single-nucleotide polymorphism 
(SNP). 

An important factor in genetic gain is the 
accuracy of the prediction; in GS, this accuracy may 
be maximized using the model that best fits the 
genetic complexity of the traits of interest (Rabier et 
al., 2016). A substantial range of statistical methods 
with distinct assumptions on the genetic architecture 
of the traits is available in the literature (Meuwissen 
et al., 2001; Gianola and van Kaam, 2008; de los 
Campos et al., 2009) marker haplotypes 
simultaneously from a limited number of phenotypic 
records. A genome of 1000 cM was simulated with a 
marker .spacing  of   1cM.   The   markers   surrounding 

 every 1cM region were combined into marker 
haplotypes. Due to finite population size (Ne=100). In 
addition, several studies have been published that 
compare the main GS methods (Pszczola et al., 2011; 
Heslot et al., 2012; Thavamanikumar et al., 2015), 
however, there are no studies that compare these 
methods in real popcorn breeding populations. 

According to Crossa et al. (2017), the use of 
GS in the breeding of plants may be limited owing to 
two major factors: (i) the cost of genotyping and (ii) 
unclear guidelines on when (i.e. at which step) GS 
can be applied efficiently in the breeding program. 
The cost of genotyping decreases with the decreasing 
density of the SNP panel; thus, the use of a small 
number of SNPs allows genotyping a higher number 
of individuals using the same resource, which thereby 
increases selection intensity, and consequently, the 
genetic gain. Despite the importance of determining 
the correct density of SNPs for the routine 
application of GS, it is yet to be fully addressed in the 
literature on popcorn. 

The objective of the present study is to 
estimate selection accuracy using the following 
methods: GBLUP, Bayes A, Bayes B, Bayes Cπ, 
Bayes Lasso (BL), and RKHS. Once the best method is 
established, different densities of SNP markers are 
tested to determine whether it is possible to obtain 
satisfactory accuracy values using a lower density of 
SNP markers; the aim is to optimize of the use of GS 
in the genetic popcorn breeding. 

 

Materials and methods 

Study population 
The study population is taken from the UNB 

2U population, which is an open-pollinated variety. 
Before being delivered to the Northern Fluminense 
State University Darcy Ribeiro (UENF), it consisted 
of an indigenous sample donated to the University of 
Brasilia (UNB) by the ESALQ/USP, thus getting the 
nameUNB-1. UNB-1was brought to the UENF by 
Professor Joachim Friedrich Wilhelm Von Bülowin 
1993, and it was crossed with the South American 
Mushroom (SAM) popcorn variety. This first filial 
generation was then crossed with a variety of 
popcorn resistant to Exserohilum turcicum 
(Helminthosporium). Three backcrossings with the 
SAM variety were performed after two cycles of mass 
selection to obtain the UNB-2 population. The latter 
produced the UNB-2U population after two cycles of 
mass selection (Pereira and Amaral Júnior, 2001). 
Eight cycles of RS were then performed with the aim 
of gaining the main traits of economic importance 
popping expansion and grain yield. The first cycle was 
composed of full-sibs families (Daros et al., 2002); 
the second, S1 families (Daros et al., 2004); the  third, 
half-sibs families (Santos et al., 2008);  and  the 
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remaining, full-sibs families (Freitas Júnior et al., 
2009; Rangel et al., 2011; Ribeiro et al., 2012; Freitas 
et al., 2014; Guimarães et al., 2018). 

The UENF-14 population used in the present 
study was obtained after the eighth cycle of RS. The 
seeds of the resulting population were sown after the 
recombination of the selected progenies, thus 
initiating the ninth RS cycle that was used in the 
present study. 

 

Genotyping 

The characterization of the polymorphism in 
the genome among individuals of this population was 
performed using 200 DNA samples from the collected 
seedlings, and by using the Capture Seq method 
(Neves et al., 2014) with 5,000 probes evenly 
distributed in the corn reference genome. This 
genome sequencing approach was implemented in the 
collaboration with Rapid Genomics LLC (Florida, 
USA), and it resulted in 21,442 SNPs. 

With this genotypic information and using the 
Plink software (Purcell et al., 2007), three filters 
were applied in the following sequence: a) exclusion 
of individuals with > 10% missing data; b) exclusion 
of SNPs with > 5% missing data; and c) exclusion 
of SNPs with minor allele frequency (MAF)< 5%. 
The application of these filters resulted in 196 
individuals and 10,507 SNPs, of which 98 individuals 
were used in the S1 progeny trial. 

 

Phenotyping 

Two experiments were designed using the 
S1 families obtained from the above method. The 
first experiment was conducted in the State 
Agricultural College Antônio Sarlo, in Campos dos 
Goytacazes, in the northern region of the Rio de 
Janeiro State, located at 21º 45’ S and 41º 20’ W; it has 
an altitude of 11 m, with a climate classified as 
tropical rainforest with a mean annual rainfall of 
1.023 mm, a potential annual evapotranspiration of 
1.601 mm, and a mean annual temperature of 23 °C. 
The second experiment was conducted in the 
PESAGRO-RIO Experimental Station in Itaocara, 
located in the northwest region Fluminense, at 21º 39′ 
12″ S and 42º 04′ 36″ W; it has an altitude of 60 m, 
with a mean annual temperature of 22.5 °C and a 
mean annual rainfall of 1.041 mm. Both experiments 
were set up in August 2016. An incomplete block 
design was used with three repetitions; the population 
density was 60.000 plants per hectare. Management 
practices were implemented according to the crop’s 
requirements. 

The phenotyped traits were the following: 
grain yield, expressed in kg ha-1; ii) popping 
expansion, determined in a  plastic  bowl without  oil, 
with three repetitions per plot, using samples of 30 g 
of grain. Popping was performed in the microwave 
oven   for   2  min.    Subsequently,   the   volume   of 

expanded popcorn was measured in a 2.000 mL 
cylinder and the result was divided by the initial 
grain weight of 30 g and expressed in mL g-1; and iii) 
volume of expanded popcorn per hectare (PV), 
obtained by multiplying the mean productivity of 
the plot by popping expansion, which yielded the 
mean volume of expanded popcorn per hectare of crop, 
expressed in m3 ha-1 (PV=GY x PE/1000). The 
adjusted means (LS-Means) were estimated based on 
the phenotypical observations and accounting for crop 
moisture, initial stand, and experimental design. 
 

Statistical methods and cross-validation 

In this study, the prediction accuracies (for the 
traits under the study) of the following methods were 
compared: GBLUP, Bayes A, Bayes B, Bayes Cπ, BL, 
and RKHS. The t-test was used to identify the 
differences among the methods, with a confidence 
interval of 95%. A ten-fold cross-validation was used 
to assess the efficacy of the selection (Resende Jr et 
al., 2012; Almeida Filho et al., 2016;).In this process, 
the estimates were adjusted with 90% of the 
population’s individuals, whereas the genetic merit of 
the remaining 10% was predicted considering only 
marker data. This model fitting process was repeated 
10 times, and in each cycle, the genetic merit of a 
different group of individuals was predicted while 
ignoring their phenotype. 

 
GBLUP 

The genomic best linear unbiased predictor 
(GBLUP) method is a model of individuals where the 
pedigree-based kinship matrix is replaced by the 
kinship matrix, which is estimated using markers. 
The generation of genetic relationship matrix (GRM) 
markers with the same MAF contribute equally to 
genetic variance. Therefore, this model is in accordance 
with the infinitesimal model of inheritance, which is a 
widely used model in classical quantitative genetics 
and assumes that the traits are polygenic, with the 
number of genes tending to infinity and all 
contributing equally to phenotypic variation. 

The adjusted GBLUP model is formulated as 
 

y =  + g +      Eq. 1 

Where y is the vector of phenotypic data 
(adjusted mean) of a given trait, µ is the intercept of 
the model, g is the random effect of the genomic 
estimated breeding value (GEBV), and ε is the effect 
of random error. 

 

For this model, it was assumed that 

 

g ~ N (0, G2
) 

  N (0, I 2 


),  Eq. 2 
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Where I and G are identity and GRM matrices, 
respectively. The components of variance were 
estimated with the AI-REML algorithm using the 
ASReml package (Butler, 2009) of the R software 
(R Core Team, 2013). 

 

Bayesian methods 

Alternatively, regression models that fit the 
SNPs as co-variables were compared (de los Campos 
et al., 2013; Gianola, 2013). The versatility of the 
regression models stems from different presumptions 
assumed by the effects of the markers, which are 
integrated into these models via Bayesian inference. 
The following general model is assumed. 

 

 

Where yj is the phenotypic value previously 
corrected by experimental design (adjusted mean); µ is 
the intercept; ai is the effect of the allelic replacement 
of the marker i; xij is the co-variable related to the 
genotype of the individual j and to SNP i; xij is the 
number of the copies of the less frequent allele of 
individual j for marker i (2, 1, or 0), and εj is the 
effect of random error. 

In general, the following may be assumed 
under the Bayesian approach (Pérez and de los Campos, 
2014): 

 

For the effect of allelic replacement (a_i), 
the assumptions were formulated according to 
the assumed priors, among the several priors 
available in the literature (Habier et al., 2011; De los 
Campos et al., 2013; Gianola, 2013; Pérez and de los 
Campos, 2014). A brief summary of each tested 
method is provided below. 

 
Bayes A 

The assumptions of the Bayes A method allow 
markers with the same MAF to have different 
contributions to genetic variance because the 
variances of the effect of the markers are 
heterogeneous (Pérez and De los Campos 2014) e.g., 
the number of marker effects. The Bayes A method 
was proposed by Meuwissen et al. (2001) and 
assumes that 

 

 

Bayes B 

The Bayes B method can be understood as a 
complement to the Bayes A method, because in 
addition to fitting markers with heterogeneous 
variances, it assumes that some markers are not in 
linkage disequilibrium (LD) with any gene. Thus, 
their effect is null. The Bayes B method is formulated 
via a mixture of distributions (Pérez and De los 
Campos, 2014) considering the following 
assumptions. 

 

 

 

Bayes Lasso (BL) 

Similar to the previous Bayesian methods, the 
BL method assumes heterogeneous variances for the 
marker effect, and it also assumes that several markers 
may not be in LD with any gene. However, the 
selection of markers in BL is performed indirectly, 
via the marginal distribution of marker effects, which 
is double exponential (DE) (Park and Casella, 2008; 
de los Campos et al., 2009). This distribution is more 
leptokurtic than the prior marginal t-Student 
distribution used in Bayes A and B (Gianola et al., 
2009). The BL that was adjusted in this study assumes 
the following. 

 

 

According to Park and Casella (2008) and los 

Campos et al. (2009),  

 

 

 

Bayes Cπ 

The Bayes Cπ method was proposed by (Habier 
et al., 2011). In this method, similar to the Bayes B 
method, it is assumed that some markers are not in LD 
with any gene and, therefore, has null effect. However, 
all SNPs of non-null effect exhibit homogeneous 
variance. Thus, in this model, SNPs with the same 
MAF that are in LD with the genes that govern the 
trait have the same proportion of genetic variance. 

𝑦𝑗 = 𝜇 +  𝑥𝑖𝑗
𝑛𝑜  𝑆𝑁𝑃𝑠
𝑖=1 𝑎𝑖 + 𝜀𝑗 , (Eq. 3) 1 

𝜇~𝑁 0,106 ; 1 

𝜀𝑗 |𝜎𝑒
2~𝑁 0, 𝜎𝜀

2 ; 2 

𝜎𝜀
2|𝑔𝑙, 𝑆𝜀~𝜒−2(𝑔𝑙, 𝑆𝜀).    (Eq. 4) 3 

𝑎𝑖|𝜎𝑎𝑖

2 ~𝑁(0, 𝜎𝑎𝑖

2 ); 1 

𝜎𝑎𝑖

2 |𝑔𝑙, 𝑆𝑎~𝜒−2 𝑔𝑙, 𝑆𝑎 ; 2 

𝑆𝑎 |𝑟, 𝑠~𝐺 𝑟, 𝑠 .   (Eq. 5) 3 

𝑎𝑖|𝜎𝜀
2 , 𝜏𝑖  

2~𝑁(0, 𝜎𝜀
2𝜏𝑖  

2); 1 

𝜏𝑖
2|𝜆~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 0.5𝜆2 ; 2 

𝜆|𝑟, 𝑠~𝐺𝑎𝑚𝑚𝑎(𝑟, 𝑠).    (Eq. 7) 3 

Eq. 6 

Eq. 3 

Eq. 4 

Eq. 7 

Eq. 8 

Eq. 5 
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RKHS 

The semi-parametric regression method 

reproducing kernel Hilbert spaces (RKHS) is a 

procedure that predicts the genetic merit of the 

individuals directly, i.e., it forgoes the estimation of 

the marker effect. In fact, GBLUP is a special case of 

RKHS (De los Campos, 2009); however, in the 

present study, the RKHS model was adjusted 

according to the kernel averaging approach (De los 

Campos et al., 2010) using three functions of 

genotype data. 
 

 

 
where 

 

 

 

 

 

 

 

Where D is the Euclidean distance matrix 

considering the data set of SNPs (dosage given 

allele). 𝜑𝑖 is the i-th bandwidth value that controls the 

magnitude of the covariance among individuals; the 

used bandwidth values were 5/h, 1/h, and 0.2/h, 

where h corresponds to the 0.05 percentile of D, 

which leads to local, intermediate, and global 

Gaussian kernels (González-Camacho et al., 2012; 

Tusell et al., 2014). ⊕ is the direct sum operator; 

the other components of the model have been 

previously explained. In this model, the estimation of 

the total genotypic value (additive and non- additive 

effects) was confounded (Morota and Gianola, 2014) 

by the component,  𝑔𝑖
3
𝑖=1 , and it was not possible to 

perform orthogonal decomposition. 

 

Correlation network and computational 

processing times 

After the GS models were fitted, correlation 

network analysis was performed among the different 

methods to identify the most optimal method. In 

addition, the computational processing time of each 

method was calculated. The frequency-based model 

was fitted using the rrBLUP package and the Bayesian 

 

models were fitted using the BGLR package of the R 

software. Each method was analyzed ten times in 

random order 

 
Different densities of SNP markers 

After the identification of the best method for 

GRS, different densities of SNP markers were 

evaluated using LD, which is defined as the non-

random association of alleles at different loci; it is 

calculated as the difference between the observed 

frequency and the expected frequency of the 

haplotypes considering the independent segregation 

of the alleles (Weiss and Clark, 2002). 

To assess the possibility of using less dense 

panels of SNPs, filters were applied using the LD-

pruning approach, which consists of keeping only 

one SNP when two SNPs are in LD above the 

threshold; there- fore, thresholdsfrom0.05(resulting 

in 418 SNPs) to1(complete panel with 10,507 SNPs) 

were used for LD r2 statistics, considering the entire 

length of the chromosome in the comparisons and 

filters. Thus, the selective accuracies for the traits 

under study were obtained to detect the lowest density 

of SNPs with satisfactory accuracy. LD-pruning was 

performed using Plink (Purcell et al., 2007). 

 

Results and discussion 
 

Comparison of the methods 

The selective accuracies of the tested methods 
were statistically similar according to the t-test, with 
a confidence interval of 95%. For the GY trait, the 
accuracies were between 0.1922 for the BL method 
and 0.2685 for the Bayes A method, with an overall 
mean of 0.2428. The Bayes A, Bayes B, Bayes Cπ, 
and GBLUP methods provided similar results, with a 
prediction accuracy of ~0.26. The BL and RKHS 
methods provided inferior results, with prediction 
accuracies of 0.1922 and 0.2030, respectively (Figure 
1). Wang et al. (2015) also obtained similar results 
with different models for GY in wheat. 
Riedelsheimer et al. (2012) did not find major 
differences between the Bayes B and other models 
in the prediction of several traits, including traits with 
QTLs with major effects in maize. 

The accuracy for PE was between 0.3811 
(RKHS) and 0.4164 (GBLUP), with an estimated 
overall mean of 0.4007. The results of the Bayes Cπ, 
BL, and RKHS methods were lower, estimated 
around 0.39. The GBLUP method stood out with 
an accuracy of 0.4164 (Figure 1). Xu et al. (2018) 
reported that GBLUP was better than the Bayesian 
methods in the prediction of six maize traits. Some 
authors have reported the predominance of additive 
effects in the gene expression of PE (Burnham Larish 
and   Brewbaker, 1999; Pereira  and  Amaral  Júnior,  

Eq. 9 

Eq. 10 

Eq. 11 
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2001; Freitas Júnior et al., 2006; Santos et al., 2008). 

According to Wang et al. (2015), the existing GS 
methods are mostly based on an additive model and 
hence it is difficult to precisely estimate non-additive 
variation. It is thus inferred that the best values of 
accuracy obtained for PE are explained by the higher 
heritability, i.e., lower environmental influence on the 
manifestation of the trait. 

The accuracy for PV was between 0.2517 
(RKHS) and 0.3037 (Bayes Cπ), with an overall mean 
of 0.2829. The Bayes B, Bayes Cπ, and GBLUP 
methods provided similar results, with estimated 
values around 0.30. The BL and RKHS methods 
resulted in lower estimates, with values around 0.25 
(Figure 1) and were therefore less accurate. 
According to Amaral Junior et al. (2016), the use of PV 
as a super-trait circumvents the challenge faced by 
specialists in popcorn breeding, with regards to the 
occurrence of a negative correlation between PE and 
GY, because PV allows obtaining gains simultaneously 
in the two main traits of economic importance. The 
accuracy estimates for the PV trait were intermediate 
compared to those for the PE and GY traits; the 
GBLUP, Bayes A, and Bayes B methods provided the 
most satisfactory results for selection purposes, as 
was the case for GY and PE. 

In correlation network analysis, variables are 
represented by points connected by arrows of varying 
thickness, depending directly on the intensity of the 
correlation. The stronger the correlation between 
two variables, the thicker is the line that connects the 
points of the mesh of the network (Silva et al., 2016). 
Correlation networks have been used to characterize 
complex systems in several areas, including biology 
(Di Leo et al., 2011; Pearce et al., 2015), public 
health (Saba et al., 2014), food science (Monforte et 
al., 2015), and breeding (Silva et al., 2016). In the 
present  study,  the   correlation   between  the   results  

 obtained for the traits in the different methods was 

higher than 0.98 (Figure 2). This result is a further 
indication that there are no significant differences 
between the tested methods. 

Heslot et al. (2012) compared different 
methods to analyze the computation time required to 
conduct GS studies. In the present study, the analysis 
of the computation time needed to obtain the results 
for each method showed that it was considerably less 
for the GBLUP method as compared to those of the 
other methods, with an almost instant output. The 
results of Bayesian models were obtained in 
approximately 4 min, whereas the results of GBLUP 
were obtained in less than 1 s (Table 1). According to 
Wang et al. (2018), the estimation process using the 
Bayesian approach is usually lengthy, which restricts 
its application. 

In summary, considering the results obtained 
using the different methods for the traits under study, 
it is concluded that there were no statistically 
significant differences between the methods. However, 
the GBLUP, Bayes A, and Bayes B methods stood out 
for providing-numerically more accurate estimates for 
all traits in the study. However, because the GBLUP 
method had simplicity in execution, a shorter analysis 
time, and because it was numerically more accurate 
for the main trait of popcorn quality (PE), this method 
is indicated for GRS in the popcorn crop. 

 

Different densities of SNPs 

The estimation of LD should be one of the first 
analyses in GS, with the aim of investigating the 
utilized marker informativity. According to 
Resende (2008), the genetic variation of a 
quantitative trait may be explained by the presence 
of markers in LD with minor or major effect QTLs, 
because only the markers in disequilibrium are used 
to determine phenotypes from genotypes. 

 

Table 1. Estimate of the times required to obtain results using the Bayes A, Bayes B, and GBLUP methods. 

 

Model 
Time (s) 

Mean Standard deviation 

Bayes A 229.3784 1.2024 

Bayes B 282.6650 1.7503 

GBLUP 0.0143 0.0038 
 

 

Considering that the assumptions of the GBLUP 
provided the most satisfactory results, different 
densities of SNPs were subsequently evaluated to 
identify the most beneficial density, considering the 
significant cost of generating a high amount of 
markers. Thus, 20 different densities of SNPs were 
tested – varying between 10,507 (r2=1.00) and 418 
(r2=0.05) – using the LD  (r2)  as  a  filter  (Figure 3). 

 For example, the threshold for 6,766 SNPs was 
r2=0.7, i.e., if two markers had r2>0.7, only one was 
retained. For the trait GY, the highest accuracy value 
(0.303) was obtained with the use of 6,766 SNPs 
(r2=0.70); however, a similar accuracy (0.296) was 
obtained with 4,848 SNPs (r2=0.45). For the trait PV, 
a panel of 4,848 SNPs (r2=0.45) also provided a good 
accuracy result, with an estimate of 0.311 (Figure 3).  
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For the GY and PV traits, densities lower than 
4.406 SNPs (r2=0.40) led to lower accuracies, with 
the exception of the accuracy value obtained with a 
density of 418 SNPs (r2=0.05). However, the latter 
result was probably a false-positive result; this is in 
accordance with Dickson et al. (2011) study which 
states are variants may lead to unacceptable rates of 
false-positives. According to Litonjua and Celedo 
(2006), there are three potential conditions that make 
an association between a polymorphism and a 
phenotype significant: (1) the occurrence of aspurious 
relationship; (2) the proximity of a functional variant 
at an adjacent locus (LD); and (3) the locus directly 
affecting the expression of the phenotype. 
Utsunomiya et al. (2013) reported that small errors in 
the determination of genotypes can also result in 
unacceptable levels of type I (false-positive) and II 
(false-negative) errors. 

For PE, the highest accuracy (0.416) was 
obtained with 10,507 SNPs (r2=1.00); however, the 
use of 4,406 SNPs (r2=0.40) also resulted in a similar 

accuracy (0.402). Accuracy varied between 0.416 
(10,507 SNPs) and 0.332 (418 SNPs), which was 
considerably lower than the variation observed for 
additive trait GY (Figure 3). Wang et al. (2015) 
analyzed the data of the “Wheat Global Pro- gram” of 
the International Center for Maize and Wheat 
Breeding (CIMMYT) and observed that the precision 
and predictive capacity of GBLUP remained relatively 
constant for additive traits, and it was independent of 
the number of QTLs used. 

According to Hiremath et al. (2012), SNPs 
markers are receptive to automation and to high yield 
approaches, which can be implemented to reduce the 
costs of genotyping. Considering the results obtained 

in the different scenarios of SNP density assessed in 
the present study, it is in ferred that the use of ~ 4,800 
SNPs (r2=0.45) leads to similar or better results than 
those obtained with 10,507 SNPs (r2=1.00). 
Therefore, it is possible to reduce the density of SNPs 
by approximately 50%, which results in a significant 
reduction of the costs of GRS in popcorn. 

 

 

 

 

 

Figure 1. Estimates of the predictive accuracy of the means obtained for the Bayes A, Bayes B, Bayes C, Bayes 

Lasso (BL), GBLUP, and RKHS methods in a popcorn population for the traits grain yield (GY), popping 

expansion (PE), and popcorn volume (PV). 
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Figure 2. Correlation networks obtained in the GBLUP, Bayes A, Bayes B, Bayes C, BL, and RKHS methods for 

the traits GY, PE, and PV (p<005). 
 

 
 

Figure 3. Prediction accuracies obtained with different densities of SNPs using the GBLUP method for the traits 
GY, PE, and PV. 

 

 

Conclusions 

 
The GBLUP method can be applied 

successfully. A considerable reduction in costs was 
obtained with the use of a small panel of SNPs. 
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