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Abstract: The change of the Earth’s climate and the increasing human action (e.g., increasing
impervious areas) are influencing the recurrence and magnitude of flooding events and consequently
the exposure of urban and rural communities. Under these conditions, flood hazard analysis
needs to account for this change through the adoption of nonstationary approaches. Such methods,
showing how flood hazard evolves over time, are able to support a long-term plan of adaptation
in hazard changing perspective, reducing expected annual damage in flood prone areas. On this
basis, in this paper a reevaluation of flood hazard in the Benevento province of southern Italy,
is presented, providing a reduced complexity methodological framework for near future flood hazard
prediction under nonstationary conditions. The proposed procedure uses multiple nonstationary
probability models and a LiDAR-derived high-resolution inundation model to provide present and
future flood scenarios in the form of hazard maps. Such maps are derived using a spatialization
routine of stage probability across the inundation model that is able to work at different scales.
The analysis indicates that, overall, (i) flood hazard is going to decrease in the next 30 years over
the Benevento province and (ii) many areas of the Calore river floodplain are going to be subject
to higher return level events. Consequently, many areas would require new guidelines of use as
the hazard level decreases. Limitations of the analysis are related to the choice of the probability
model and the parameter estimation approach. A further limit is that, currently, this method is not
able to account for the presence of mitigation measurements. However, result validation indicates
a very high accuracy of the proposed procedure with a matching degree, with a recently observed
225-years flood, estimated in 98%. On this basis, the proposed framework can be considered a very
important approach in flood hazard estimation able to predict near future evolution of flood hazard
as modulated by the ongoing climate change.

Keywords: floods; hazard; fluvial stage; nonstationary frequency analysis; inundation model

1. Introduction

The change of the Earth’s climate and the increasing human impact are influencing the water cycle
with effects on river discharge [1]. Throughout the world, the ongoing warming associated with local
change in land use and increasing urbanization is modifying both the rainfall pattern and the response
of catchments (in terms of discharge modulation) in a complex manner [2–5]. As a consequence,
extreme river discharge change is highly variable from a region to another. In China, for example,
rivers of the northern semi-arid area are experiencing an increase in river discharge greater than those
in the southern subtropical humid area due to a more accelerated warming and wetting [6]. In the
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United States, increasing trends in many flood flow series have been identified [7]. In northern Europe,
the ongoing climate change is generally increasing annual maximum and decreasing minimum river
flow [8,9]. In southern Europe a robust decreasing trend in water availability has been detected [9].
Accordingly, in Italy, maximum river discharge has a consistent negative trend over the whole national
territory. This downward trend has been explained as an effect of the increasing temperature [10].

Changes in average and extreme river discharges, as a consequence of variation in rainfall
distribution, influence the recurrence and magnitude of flooding events and consequently the exposure
of urban and rural communities [11]. While many areas are experiencing an increase in exposure to
flooding, due to an increase in flood frequency (Southeast Asia, Peninsular India, eastern Africa and
the northern half of the Andes; [12,13]), other areas are dealing with a consistent decrease of these
events and related increase of potential drought hazard [14–16]. In both cases, flood hazard analyses
need to account for this variability to reliably support land planning and policy decision oriented to
protect communities from floods.

Hazard analysis in flood perspective can be completed through a variety of approaches based
on different data types [17–22]. While geomorphological observations can support flood hazard
mapping in ungauged basins, fluvial stage records can support stationary or nonstationary probability
analyses [23–26]. For instance, Guerriero et al. [27] used stationary probability analysis of multiple
fluvial-stage time series to map flood hazard across the Benevento Province. To produce maps form
probability models, they used a flood inundation model derived by LiDAR data (e.g., numerical
floodplain models; [28]) as a basis. This analysis was completed under the assumption of stationarity
avoiding consider the potential presence of trends in available time series.

In presence of significant trend and/or shift in long-term fluvial stage records, consequence
of the ongoing climate change and associated anthropogenic changes in river basins, flood hazard
analysis needs to account for non-stationarity, showing how flood hazard evolve over the reference time
period [26,29–33]. A simple way to account for non-stationarity of hydrological records and predict near
future hazard is to enhance standard extreme value analysis by time dependent modelling of function
parameters [32,34]. Other methods use single or two-way (nonstationary-stationary-nonstationary)
time series transformation and extreme value analysis to derive nonstationary models [25,35].

These nonstationary approaches have been recognized as one of the current needs for an improved
analysis and optimization of water resources risk assessment [36]. Such methods should support
also flood hazard analysis in order to prevent underestimation or overestimation of the current and
future probability of a disastrous extreme flood events and related investment planning. However,
they require at least long hydrological records to reliably predict future conditions in a rapidly
changing world [30,37]. In Europe, major rivers have been monitored since at least 18th century. In
Italy, the first monitoring stations have been installed around 1918 and their number has consistently
risen, reaching hundreds of units. The resulting dataset can be of great importance in flood hazard
assessment [38], having the potential to support flood hazard evaluation also in consideration of the
ongoing climate change.

On this basis and with the aim of providing a reduced complexity methodological framework
for near future flood hazard prediction and improving the understanding of flood hazard in the
Benevento province of southern Italy, a nonstationary frequency analysis of data from multiple
hydrometric stations has been completed producing multiple flood hazard scenarios. Especially,
nonstationary generalized extreme value analysis, enhanced by time varying fitting parameters,
and a flood inundation model, were used to derive multiple flood hazard scenarios that describe how
perspective flood hazard is going to change in relation to the ongoing global warming. It is important
to notice that the study area has been already investigated by [27] assuming stationarity of hydrologic
time series. The analysis presented here, and associated framework, represents an evolution of that
proposed by [27] modified as to account for non-stationarity of time series. In this way, the analysis
provides a new original perspective about current and near future flood hazard across the central
sector of the Benevento province.
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2. Study Area

The study area extends crosswise the Benevento province in southern Italy (Figure 1). It comprises
a segment of the Calore river floodplain and three segments of the Ufita, Tammaro and Sabato rivers
floodplains. The considered river segments are approximately 50 km, 1.5 km, 5 km and 11 km long,
respectively. The less developed floodplains segments belong to the tributaries of the Calore river.
A 6 km long segment of the Volturno river is also part of the study area. These rivers are consistently
characterized by a single active channel and eight hydrometric stations actively monitor river stages.
Of these stations, only five, installed before 1999, have a time history characterized by a time-span
longer than 40 years that can be considered significant in nonstationary frequency analysis perspective
(Table 1). The stations selected for the analysis consisted of a staff gauge and water stage data were
acquired using the observational method. Since AD 2000, visual staff gauges were discontinued and
replaced with continuous recording stations equipped with ultrasonic water level sensors. It is expected
that measurements completed with the new system are consistent with measurements completed
using visual inspection of staff gauge. Exceptions are the Benevento and the Chianche stations that
were re-located in AD 2000; in these cases, a geometric correction based on field measurements and
discontinued and working hydrometers measurements was adopted.
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Figure 1. Map showing the study area. Rivers (light blue lines) and cross sections (brown lines) used 
for reconstructing the wDEM are shown in the map. Red symbols depict hydrometric stations 
considered in the analysis: 1-Apice, 2-Benevento, 3-Chianche, 4-Solopaca, 5-Amorosi. The validation 
area is shown as well as UTM 33 N coordinates.  

Table 1. Results from linear regression-based trend analysis. Standard error of estimated parameters 
is reported in parentheses. 

n° Name Installation Year Sample Size Trend p-Value 
1 Apice 1935 53 −0.015 (0.047) 0.001 
2 Benevento 1924 48 −0.019 (0.007) 0.1 
3 Chianche 1967 42 −0.025 (0.005) 0.008 
4 Solopaca 1957 53 −0.040 (0.011) 0.004 
5 Amorosi 1935 68 −0.010 (0.003) 0.01 

This area has been repeatedly affected by river floods and local relict fluvial scarps, represent 
the signature of such historic floods. The most recent event, a destructive flood induced by the 
overflow of the Tammaro and Calore rivers, occurred in 2015. It consistently damaged the town of 
Benevento and rural areas located along the Calore river valley [22,39–41]. During this event the river 
stage of the Calore river increased of several meters reaching approximately 9.5 m and 10 m at the 
hydrometric stations of Benevento and Solopaca, respectively. 

3. Material and Methods 
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The nonstationary flood hazard analysis across the considered sector of the Benevento province 
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Figure 1. Map showing the study area. Rivers (light blue lines) and cross sections (brown lines) used for
reconstructing the wDEM are shown in the map. Red symbols depict hydrometric stations considered
in the analysis: 1-Apice, 2-Benevento, 3-Chianche, 4-Solopaca, 5-Amorosi. The validation area is shown
as well as UTM 33 N coordinates.

Table 1. Results from linear regression-based trend analysis. Standard error of estimated parameters is
reported in parentheses.

n◦ Name Installation Year Sample Size Trend p-Value

1 Apice 1935 53 −0.015 (0.047) 0.001
2 Benevento 1924 48 −0.019 (0.007) 0.1
3 Chianche 1967 42 −0.025 (0.005) 0.008
4 Solopaca 1957 53 −0.040 (0.011) 0.004
5 Amorosi 1935 68 −0.010 (0.003) 0.01

This area has been repeatedly affected by river floods and local relict fluvial scarps, represent the
signature of such historic floods. The most recent event, a destructive flood induced by the overflow of
the Tammaro and Calore rivers, occurred in 2015. It consistently damaged the town of Benevento and
rural areas located along the Calore river valley [22,39–41]. During this event the river stage of the
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Calore river increased of several meters reaching approximately 9.5 m and 10 m at the hydrometric
stations of Benevento and Solopaca, respectively.

3. Material and Methods

3.1. Materials

The nonstationary flood hazard analysis across the considered sector of the Benevento province
was completed on the basis of fluvial-stage time series characterized by a significant length of their
records. In this case, considering the selected nonstationary approach to the problem, only records
longer than 40 years were selected. Such records consist of daily measurements completed by visual
inspection of staff gauge, before AD 2000, and using a continuous recording system equipped with
ultrasonic water level sensors, after AD 2000. Available daily fluvial stage records were used to derive
annual maxima time series characterized by a sample size between 42 values and 68 values (Table 1).
Of the eight stations installed in the study area, only five were considered for the analysis, three
installed along the lower course of the Calore river, one along the Sabato rivers, and one along the
Volturno river (Figure 1).

The flood inundation model used as a basis for spatializing probability models was developed on
the basis of a 4 × 4 m Digital Surface Model (DSM). Such a DSM was derived from a 1 × 1 m LiDAR
DSM (vertical accuracy ~0.25 m) acquired between 2011 and 2012 across the Italian national territory by
the Italian Ministry of Environment (i.e., Second Not-ordinary Plan of Environmental Remote Sensing;
in Italian: Piano Straordinario di Telerilevamento Ambientale, PST-A in Italian).

3.2. Nonstationary Frequency Analysis and Reference Flood Scenario

Nonstationary frequency analysis of selected fluvial stage records began testing time series
for trends. In this perspective, a linear regression function was used e.g., Hess et al. [42] and
Kundzewicz et al. [43]. This method was selected because of its simplicity and the presence of
discontinuities in analyzed time series that prevent the use of more complex nonparametric test,
like the commonly used Mann-Kendall test. In the assumption that a time series ((Yi) = Y1, Y2, . . . , Yn)
is representative of a stochastic process in which a deterministic linear trend component is present
(i.e., non-stationarity), the linear modelling function has the form:

Yt = a + b × t + εt (1)

where t is the time, a is the intercept (i.e., location parameter), b is the trend coefficient, and εt

represents the estimation error. Function parameterization was automatically completed using the
least squares method in MATLAB™ environment and significant trends have been detected for b , 0
and a p-Value lower than 0.1 that confirm rejection of the null hypothesis of no trend in each time series
e.g., Hess et al. [42].

Once detected a consistent trend in all of the available records (i.e., a downward trend),
nonstationary frequency analysis of annual maxima time series was completed by adopting the
approach of using standard extreme value analysis enhanced by time dependent modelling of
function parameters e.g., Coles [34]. Especially, standard extreme value analysis was completed using
a Generalized Extreme Value parametric distribution function GEV [44] to describe available annual
maxima time series (Table 1; station positions are in Figure 1). This function has the following form:

F(x) = exp
{
−

[
1 + ξ

(x − µ
σ

)]−1/ξ
}

f or ξ , 0 (2)

where ξ is the shape parameter, σ is the scale parameter and µ is the location parameter. To account
for non-stationarity, the location parameter µ is considered to change with time and its variation is
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represented by a linear trend model e.g., Coles [34], Delgado et al. [45] and Gül et al. [46] in which the
trend µtrend is considered equal to the trend of the time series:

µt = µ0 + µtrend × t (3)

Parameters estimation was completed using the gev.fit function of the ismev package implemented
in R (http://cran.r-project.org/package=ismev; Table 2) and a matrix of covariates corresponding
to the modeled time (including discontinuities) was used for nonstationary condition simulation.
Models parameterization was based on the maximum likelihood estimator (MLE) that provide function
parameters and associated standard error (Table 2).

Table 2. Nonstationary GEV probability models parameters estimated using the Maximum Likelihood
Estimator (MLE). Standard error of estimated parameters is reported in parentheses.

n◦ Station ξ σ µ0 µt

1 Apice −0.014 (0.075) 0.798 (0.084) 4.402 (0.247) −0.015 (0.004)
2 Benevento −0.075 (0.091) 1.554 (0.174) 4.320 (0.416) −0.019 (0.007)
3 Chianche +0.055 (0.093) 0.533 (0.065) 2.034 (0.168) −0.025 (0.005)
4 Solopaca −0.045 (0.095) 1.521 (0.167) 4.955 (0.411) −0.040 (0.011)
5 Amorosi −0.213 (0.120) 0.804 (0.086) 2.899 (0.210) −0.010 (0.003)

To describe and quantify uncertainty in the estimation of flood magnitude, related to the
characteristics of time series (i.e., sample size and continuity [47,48]) the 95% confidence intervals were
derived on the basis of the estimated standard error. Since the location parameters varies with time,
such estimation was completed considering the initial location parameter µ0 as reference. To estimate
the degree of fit of probability models, residual analysis was completed considering a probability
models in which location parameter is estimated such that R2~max (i.e., µ = µ0 + µt × sample size/2).
Such analysis indicates a very high goodness of fit of the probability models (R2 ≥ 0.94; Figure 2).

Following the method described by Guerriero et al. [27], developed probability distributions were
used as basis to prepare multiple probability of exceedance databases representative of each selected
scenario. Each database, containing probability models for each considered station, was developed
using a specific location parameter calculated in reference to the specific flood hazard scenario to
be modeled (corresponding to a defined time period in year; i.e., the t parameter of Equation (3)).
Particularly, a past flood hazard scenario corresponding to the flood hazard in AD 2000, a current
flood hazard scenario corresponding to the flood hazard in AD 2020 and two near future scenarios
corresponding to the flood hazard in AD 2030 and AD 2050 were considered.

Since flood hazard analysis requires the definition of a boundary condition, in other words the
identification of a design or extreme event [49], a 500-years flood has been considered. This choice is
consistent with the guideline of the Italian Ministry of Environment suggesting that a 300-years to
500-years event should be considered as reference flood scenario in hazard evaluation perspective.
Nonstationary models indicate that the 500-years event has an estimated magnitude that varies in time
and space as reported in Table 3.

Table 3. Magnitude of 500-years floods, expressed in m, as modeled by probability distributions.

Apice Benevento Chianche Solopaca Amorosi

2000 6.2 10.6 4.7 11.5 5
2020 5.9 10.2 4.6 10.6 4.8
2030 5.7 10 4.4 10.3 4.7
2050 4.4 9.7 3.9 9.5 4.5

http://cran.r-project.org/package=ismev
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conditions (i.e., µ = µ0) and best fit condition (such that R2~max; i.e., µ = µ0 + µt × sample size/2) and 
variation in time (years) of the location parameter of the nonstationary GEV models (c,f,i,l,o). Dark 
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uncertainty associated to estimated flood magnitude at specific return period in the initial condition 
(i.e., µ = µ0). As expected, low frequency flood has much significant uncertainty associated to 
magnitude estimation. 

Figure 2. Time series (a,d,g,j,m) recorded at hydrometric stations considered for the analysis,
nonstationary Generalized Extreme Values (GEV) probability models (b,e,h,k,n) indicating initial
conditions (i.e., µ = µ0) and best fit condition (such that R2~max; i.e., µ = µ0 + µt × sample size/2)
and variation in time (years) of the location parameter of the nonstationary GEV models (c,f,i,l,o).
Dark dashed lines of GEV models graph depict 95% confidence interval and provides an overview
of the uncertainty associated to estimated flood magnitude at specific return period in the initial
condition (i.e., µ = µ0). As expected, low frequency flood has much significant uncertainty associated
to magnitude estimation.
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3.3. Flood Hazard Mapping Accounting for Multiple Probability Model

For converting databases of probability of exceedance in high resolution flood hazard maps, the
procedure and code proposed by Guerriero et al. [27] was used. This procedure consists in deriving
a flood inundation model of the study area from topographic data and subsequently in using
an interpolation/substitution routine to spatialize each probability of exceedance database using the
inundation model as reference. The adopted routine iteratively extracts each line of the probability
database containing the reference fluvial stage and associated probability for each considered station
and interpolates probability values across the study area, on the basis of the position of each station
creating a probability raster. Once spatialized, the interpolated values of probability of exceedance are
iteratively assigned to corresponding cells in terms of X and Y coordinated of the inundation model
that contain the modeled fluvial stage.

In this case, the flood inundation model was computed as a difference between the available
DSM and the water surface digital elevation model (wDEM). The wDEM was computed through the
interpolation of a triangulated irregular network of the water elevation data at cross-sections defined
along the river reaches following indication of [50] Figure 1. The obtained inundation model was
normalized to the maximum magnitude of the modeled 500-years flood and subsequently used in flood
hazard spatialization through the procedure proposed by Guerriero et al. [27].

Due to the presence of multiple probability of exceedance databases corresponding to past, current
and near future flood hazard scenarios, multiple flood hazard maps were produced and classified.
Flood hazard maps classification was completed identifying specific hazard zones: a (i) very high
hazard zone, floodable by a 1-year to 5-year floods, a (ii) high hazard zone, floodable by a 5-year to
30-year floods, a (iii) medium hazard zone, floodable by a 30-year to 100-year floods and a (iv) low
hazard zone, floodable by a 100-year to 500-year floods. Flood magnitude for each specific return
period was derived from probability analysis considering that the theoretical return period is the
inverse of the probability of exceedance.

3.4. Validation

To validate results from the analysis, a comparison between the 225-years floods extent predicted
by a specifically developed flood hazard scenario corresponding to the AD 2015 and that observed
during the event of October 2015 across the lower sector of the Calore river by Guerriero et al. [22]
see Figure 1 was completed. Such choice is related to the indication of probability models that the
return period of the October 2015 event is around 225 years. To validate the model, the degree of
matching of the observed vs. predicted flooded areas across this part of the study area was considered
e.g., Molinari et al. [51]. Since Guerriero et al. [27] indicated that this flood hazard mapping approach
can be considered an alternative also to hydraulic simulation-based flood hazard analyses, 2D hydraulic
simulation of estimated hydrographs was not completed for validation purposes.

4. Results

4.1. Floods Probability

Table 1 reports result from time series trend estimation using a linear regression fit. As indicated
in the table, time series present a downward trend characterized by a slope coefficient that range
between −0.040 and −0.010. Results from p-Value analysis indicate statistical significance of trends
in the analyzed time series. It is important to notice that time series recorded at the Benevento station is
characterized by a p-Value equal to the considered significance threshold. This result might be related
to the presence of wider discontinuities in this time series. In addition, the coherence of the trend with
that characterizing the further two stations installed along the Calore river, and the spatial variation
of trend coefficients (slope) that mimics a consistent decrease down valley, should be considered as
indicators of consistence of the significant trend detected by linear regression in the hydrometric record
registered at the Benevento station.
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Figure 2 reports time series GEV probability models and calculated location parameters µ
(between AD 2000 and AD 2050) used for flood hazard maps computation. Figure 2a,d,g,j,m show
time series registered at the hydrometric stations considered in the analysis (Table 1). Time series
reported in Figure 2a,d,j provide an overview of the characteristics of the Calore river, while time series
reported in graphs g and m provide an overview in the characteristics of the Sabato and Volturno
rivers, respectively. In the case of the Calore river, a tendency to an increase of maximum fluvial stage
down-valley is observable with a peak at the Solopaca station where a maximum level of 10 m has
been observed. Figure 2a,d,g,j,m report also nonstationary GEV probability models as linear function,
indicating time variation of the magnitude of 5-years, 10-years, 30-years, 50-years, 100-years, 200-years
and 500-years events (multi-color lines). As expected, such variation is characterized by a linear trend
having a slope equals to µtrend.

Figure 2b,e,h,k,n show relative frequency distributions and obtained initial GEV models
(i.e., µ = µ0). Such models offer an overview of the potential magnitude of the flood at different return
periods for the area of study. Especially, for the Calore river, the magnitude of the 10-years flood
varies between approximately 4.2 m and 8.3 m and the magnitude of the 100-years flood between
approximately 6 m and 11.3 m. As indicated by 95% confidence intervals (i.e., dashed lines), such
estimation is characterized by larger uncertainty in comparison with that of the station located along
the Sabato and the Volturno rivers. Along the Sabato river, the magnitude of the 10-years and 100-years
floods is estimated in 3.4 m and 4.9 m, respectively. Along the Volturno river, the magnitude of these
two potential events are estimated in approximately 4.4 m and 5.3 m, respectively. Such graphs also
report the probability models calculated considering a location parameter µ such that R2~max. Overall,
the R2 is higher than 0.94.

Figure 2c,f,i,l show variation of the GEV distributions location parameter µ with time as modeled
by a linear trend function in the reference period (i.e., AD 2000 to AD 2050). Overall, the location
parameters follow the downward trend characterizing the time series with equal slope coefficient.

4.2. Maps Showing Flood Hazard Evolution

Maps reported in Figures 3 and 4 depict flood hazard evolution in the study area between AD
2000 and AD 2050. Figure 3a,b depict zonation in flood perspective referred to a past and a present
scenario, corresponding to AD 2000 and AD 2020, respectively. Figure 4a,b depict zonation in flood
perspective referred to two future scenarios, a first one (a) corresponding to AD 2030 and a second one
(b) corresponding to AD 2050. A general increase with time of extent of areas floodable by high return
period events is observable from the maps. This increase is consistently related to the decrease of the
extent area floodable by low return period events.

The past flood scenario (i.e., AD 2000) indicates how a large fraction of the floodplains belonging
to the study area were classified as a high to very high hazard zones. Zones of medium to low hazard
were poorly developed. The industrial area of Benevento was an exception since a significant part
of this area was floodable by a 100-years to 500-years event. Moving from the past to the present
(i.e., AD 2020) and then to the two future scenarios (i.e., AD 2030 and AD 2050), an increase of the
zones floodable by events characterized by 30-years to 100-years and 100-years to 500-years flood
events is observable. This is consistent with the downward trend observed in time series. These maps
offer a perspective of the evolution of the hydrologic response of the floodplain to floods.

Maps of Figure 5 shows flood hazard at selected locations of the study area. Three zones of
particular significance in terms of human influence on river dynamics e.g., Di Baldassarre et al. [52]
are considered. The zones are (1) the manufacturing area of Benevento (Figure 5a,d,g,i), (2) a sector
its urban and sub-urban area (Figure 5b,e,h,m) and, (3) the lower part of the Calore river floodplain
(Figure 5c,f,i,n). From these maps, an increase of the zones floodable by events characterized by
30-years to 100-years and 100-years to 500-years flood events in time is observable.
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Figure 5. Magnification of zonation in flood perspective scenario at selected relevant regions of the
study area (i.e., dark polygons of Figure 1). Figure (a–c) show the past flood hazard scenario (i.e., AD
2000) across the area covered by polygons a, b and c, respectively, in Figure 1. Figure (d–f) show the
present flood hazard scenario (i.e., AD 2020). Figure (g–i) and (l–n) show the future flood hazard
scenarios (i.e., AD 2030 and AD 2050, respectively).

4.3. Validation

Results of validation analysis are depicted in Figure 6a. Especially, a comparison between data by
Guerriero et al. [22] representative of the area inundated by the 2015 flood event and the estimated
225-years flood scenarios is presented. The degree of matching between the area floodable by a 225-year
event estimated by the model with that affected by the 2015 flood, is of 98%. At specific locations,
the hazard model tends to slightly overestimate the extent of the flooded area introducing false positive
in the estimation. The zones that suffer from major differences in estimation are the confluence between
the Calore and the Volturno rivers and where the morphology of the river valley is particularly complex
like the zone at the beginning of the area selected for the validation.
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mapped in the lower reach of the Calore river on October 2015 (data from [22]). Inset graph show
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2015. Grey symbols represent magnitude of the 2015 event and associated return period estimated with
the developed probability models. (b) Comparison between floodplain zonation in flood perspective,
as derived by the Basin Authority guidelines across the area considered for validation purpose, and the
current hazard scenario (AD 2020).

5. Discussion

The analysis suggests that the considered time series have a statistically significant downward
trend. Such negative trend is consistent with the observed change in river discharge in southern Europe
as consequence of the ongoing warming [10], thus it is potentially the signature of the ongoing climate
change. In addition, authors of Magliulo et al. [53] indicated that, before AD 2000, the Calore river
experienced incision, narrowing and reduction in the fluvial bars area. These changes, consistent with
the negative trend in river discharge, were potentially related also to the increased presence of human
infrastructures and activities. However, the analysis provides only a statistical overview of trend that
might be difficult to associate to the physics of the system [54]. For the selected study area, this is
connected to the presence of discontinuities in the time series and the absence of reliable information
about past human modification especially over the long-term. In this condition, being worthwhile the
use of nonstationary approach for hazard analysis [36], the use of frequency analysis of annual maxima,
enhanced by time dependent modelling of fit parameters (or other covariates like teleconnections;
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Coles [34], Gilroy and McCuen [55] and Lima et al. [56], can be recommended because the inference
about the nature of the trend is included in the model and does not need to be necessarily interpreted [57].

In the specific case, only the location parameter of the probability distribution was considered to
change with time. Although this is the simplest way to account for non-stationarity, Šraj et al. [32]
indicated that, in estimation of flood magnitude, this approach has smaller uncertainty in comparison
with those that use multiple time-varying parameters. In addition, a trend in a time series, may not be
a direct consequence of a deterministic process, since other statistical behaviors such as long-range
dependence (LRD) may induce trend-like behaviors [58]. This is the case of long-term climatic
oscillation that might be not fully related to the ongoing climate change and considerable a fully
stochastic process. On this basis, in the presented analysis, the prediction of future flood hazard was
limited to the next 30 years in which the representativeness of results can be speculated.

Results from nonstationary extreme-value analysis indicate that the magnitude of the extreme
flood scenario (i.e., 500-years event) is going to decrease by 10% to 30% between AD 2000 and AD
2050. In this perspective, the GEV probability function is suitable to describe the statistical behavior of
annual maxima, also under nonstationary conditions [59], but tends to underestimate the intensity
of very high return period events [34]. Thus, a different probability model might be selected for
improving the analysis and uncertainty related to flood magnitude estimation needs to be evaluated and
considered in future predictions [47]. Computed confidence intervals indicated substantial uncertainty
in magnitude estimation of low return period events, also in relation to the limited sample number
of available time series, the presence of discontinuity, and the use of the MLE estimator in model
parameterization. Several authors indicated that the use of the Bayesian approach (MCMC estimator)
often provides a better estimate of model parameters (i.e., narrower confidence interval; Šraj et al. [32]
and Parkers and Demeritt [60]. In addition, Katz et al. [61] indicated that, with short time series,
MLE approach might provide unrealistic estimate of the shape parameter. Uncertainty estimation
has, then, to be carefully taken into account since unrealistic parameterization of probability models
can lead to an under/overestimation of flood magnitude, especially for low probability events [47].
Having say that, validation analysis indicated a very high accuracy of the hazard model that, associated
with its intrinsic high resolution, make hazard estimation more reliable also in presence of urban
areas [62].

A key point of the used framework and its application is the possibility of deriving flood hazard
maps from nonstationary probability models through a sort of “classification” of a LiDAR derived
flood inundation model [27]. This is related to the use of a specific procedure of flood hazard
spatialization [27] that, being able to consider multiple probability-models in a high dimensionality
framework (i.e., space and time [63]), is able to work at local to regional scale.

The maps indicate that, overall, flood hazard is going to decrease across the study area in the
next 30 years and many areas would require new guidelines as the hazard level decreases. This is
an important implication derived by the adoption of a nonstationary approach for time series
analysis. A comparison between the current flood hazard scenario and the floodplain zonation
in flood perspective adopted by the Basin Authority of southern Apennine of Italy (Figure 6b) indicate
substantial differences in terms of hazard estimation, especially in the identification of zones floodable
by events characterized by a return period between 100 years and 500 years. In addition, the Basin
Authority zonation is substantially based on the identification of two zones, a first floodable by
a 100-years event and a second floodable by a 300-years event.

Conversely, the produced hazard maps are able to better describe flood hazard assigning to each
cell of the inundation model the return period of the event that can involve that specific area, providing
distributed information across the study area. The production of multiple scenarios describing also
what is likely to happened in the near future extends the descriptive capability of the proposed method,
that should be able to support a long-term plan of adaptation for scenarios of hazard change reducing
expected annual damage in flood prone areas [64].
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6. Conclusions

In this paper flood hazard across the central sector of the Benevento province in southern Italy
was analyzed accounting for non-stationarity of available time series, proposing a reduced complexity
framework for flood hazard analysis that account for the ongoing climate change. The procedure,
modified from that proposed by Guerriero et al. [27], uses multiple probability models and a LiDAR
derived high resolution inundation model to provide present and future flood scenarios in the form
of hazard maps. The possibility of producing prospective flood hazard scenarios is related to the
non-stationarity of records, consequence of the ongoing climate change and associated anthropogenic
changes. In the proposed framework, non-stationarity induced by the ongoing climate change associated
with human effects is considered by adopting standard extreme value analysis, enhanced by time
dependent modelling of the location parameter. In this way, among the available hydrological records,
only time series having a relevant length have been selected (i.e., samples > 40). Flood hazard maps
are produced through a routine of spatialization of stage probability across the inundation model that
is able to work at different scale.

Hazard zonation maps provide an overview of the flood hazard in this area, already hit by
a number of destructive flood events, showing how riverine flood hazard is going to change in the
next 30 years. Especially, according to global river discharge projections, in this part of the Europe,
flood hazard is going to decrease in the near future with a decrease in magnitude of extreme flood events
(i.e., 500-years flood) of between 10% and 30%. Consequently, many areas would require new guidelines
of use as the hazard level decreases. For instance, restrictions along floodplains might be re-modulated
on a decadal basis and new guidance in the context of the agricultural production adaptation might be
provided. This is an important implication derived by the adoption of a nonstationary approach for
time series analysis underlining the relevance of the proposed framework. In this way, predictions are
able to support a long-term plan of adaptation for both scenarios of hazard change reducing expected
annual damage in flood prone areas.

Limitations of the proposed analysis are related to the use of GEV probability model that
tends to underestimate the magnitude of low frequency events and the use of MLE approach for
model parameterization that might introduce ambiguity in probability model shape. However,
result validation indicates a very high accuracy of the proposed procedure with a degree of matching
with a recently observed 225-years flood of 98%. On this basis, the proposed framework, representing
an evolution of that proposed by Guerriero et al. [27], can be considered relevant in flood hazard
estimation due to its ability of predicting near future evolution of flood hazard as modulated by the
ongoing climate change.
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