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Abstract: Surface reflectance data acquisition by unmanned aerial vehicles (UAVs) are an important
tool for assisting precision agriculture, mainly in medium and small agricultural properties. Vegetation
indices, calculated from these data, allow one to estimate the water consumption of crops and predict
dry biomass and crop yield, thereby enabling a priori decision-making. Thus, the present study aimed
to estimate, using the vegetation indices, the evapotranspiration (ET) and aboveground dry biomass
(AGB) of the maize crop using a red–green-near-infrared (RGNIR) sensor onboard a UAV. For this
process, 15 sets of images were captured over 61 days of maize crop monitoring. The images of each
set were mosaiced and subsequently subjected to geometric correction and conversion from a digital
number to reflectance to compute the vegetation indices and basal crop coefficients (Kcb). To evaluate
the models statistically, 54 plants were collected in the field and evaluated for their AGB values,
which were compared through statistical metrics to the data estimated by the models. The Kcb values
derived from the Soil-Adjusted Vegetation Index (SAVI) were higher than the Kcb values derived
from the Normalized Difference Vegetation Index (NDVI), possibly due to the linearity of this model.
A good agreement (R2 = 0.74) was observed between the actual transpiration of the crop estimated by
the Kcb derived from SAVI and the observed AGB, while the transpiration derived from the NDVI
had an R2 of 0.69. The AGB estimated using the evaporative fraction with the SAVI model showed,
in relation to the observed AGB, an RMSE of 0.092 kg m−2 and an R2 of 0.76, whereas when using
the evaporative fraction obtained through the NDVI, the RMSE was 0.104 kg m−2, and the R2 was
0.74. An RGNIR sensor onboard a UAV proved to be satisfactory to estimate the water demand and
AGB of the maize crop by using empirical models of the Kcb derived from the vegetation indices,
which are an important source of spatialized and low-cost information for decision-making related to
water management in agriculture.

Keywords: aerial remote sensing; vegetation index; Kcb; water balance

1. Introduction

Modern agriculture faces the major challenge of feeding the world’s population, which is growing
at an accelerated pace and must become fully sustainable in environmental terms [1]. By 2050, twice the
current production of food is expected to be needed to fulfill the needs of the population [2]. For this,
the use of water resources in agriculture should be intensified in the coming years to facilitate greater
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production gains per unit area. According to [3], only 20% of all agricultural areas in the world are
irrigated, but these areas are responsible for 40% of the total food production. Additionally, UNESCO
(2009) [3] estimated that between 1998 and 2030, there will be a 13% increase in water use in agriculture,
resulting in an increase in food production of 36%. Thus, the use of water in agricultural systems
is increasing, which makes new technology and innovations necessary for the proper allocation of
water resources.

Maize is among the most widely consumed sources of carbohydrates in the world and belongs
to the group of plants whose production needs to be increased to supply the estimated population.
However, to increase agricultural production with a minimal environmental impact (primarily on
water resources), technological innovations will be needed in several areas of agriculture, combined
with the expansion of precision farming in medium and small agricultural properties.

Precision agriculture, according to Mulla (2013) [4], involves management a specific site at the
correct intensity and at the right time. For this, it is necessary to use techniques that can constantly
monitor crops but are operationally effective and economically viable. Remote sensing techniques meet
these requirements for precision agriculture [5]. Remote sensing involves using sensors, which collect
terrestrial surface information through electromagnetic radiation, at orbital, suborbital, or terrestrial
levels [6].

Currently, the use of unmanned aerial vehicles (UAVs) is being studied as an alternative option
for suborbital remote sensing, mainly due to their low cost, the versatility in their use and transport,
their high spatial resolution, and the absence of the influence of clouds [7]. This fact makes the
UAV-sensor set an important technology for precision agriculture in large and—especially—in medium
and small agricultural areas.

Among the main types of sensor onboard UAVs, RGNIR (red–green-near-infrared (RGNIR) has
the lowest acquisition cost [8], which makes it attractive for use in agriculture. Nevertheless, this sensor
has limitations in its number of bands and the probability of noise between them [9,10], as this type
of sensor captures wavelengths using only one optical lens. RGNIR is a modified red–green–blue
(RGB) sensor; this modification consists of the removal of the near-infrared wavelength blocker and
the addition of a filter for this wavelength [9,11]; the related band of the blue wavelength is also often
removed. In this way, by using the RGNIR sensor, it is possible to apply vegetation indices based
on red and infrared wavelengths. These indices allow one to evaluate, model, and quantify various
parameters related to crop growth and development, as well as estimate water conditions at a high
spatial resolution, high temporal frequency, and without the influence of cloudiness.

By applying vegetation indices (VIs), the water conditions of a crop can be estimated using
the basal crop coefficient (Kcb). Past studies demonstrated a reliable relationship between VI and
Kcb [12–15]. This relationship for exposed soil, according to Campos et al. (2018) [15], usually has a
Kcb value close to zero, which reaches its maximum when the crop reaches its peak of vegetative vigor,
i.e., the VI will reach its maximum. However, these studies were conducted using images of orbital
sensors. Thus, it is necessary to evaluate the methodology of Kcb from VIs using a suborbital approach,
involving an RGNIR sensor onboard a UAV.

Using the estimated values of Kcb and the reference evapotranspiration (ETo), it is possible to
determine the potential water demand of a crop in the field [16]. Thus, by adequately quantifying the
evapotranspiration rates in the agricultural system, it is possible to replenish the water required by the
crop. That is, the replenishment of water should meet the crop’s needs, ensuring there is neither a
dearth nor excess of water. Moreover, by knowing the evapotranspiration processes associated with
vegetation indices and climatic data, it is possible to determine the daily increase in the aboveground
dry biomass (AGB) of a crop, since transpiration is related to the entry of CO2 into the plant, which is
converted by the photosynthetic process into biomass [17].

AGB has been estimated via parameters derived from the evapotranspiration processes using data
from orbital sensors for maize [18–20], wheat [21], and sorghum [22]. However, there are no studies
using the Kcb parameters to estimate the maize AGB with an RGNIR sensor onboard a UAV. Therefore,
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this study is important because AGB prediction using a low-cost sensor could be applied by small- and
medium-sized farmers.

Since water is an important input for agriculture and remote sensing is an important tool in AGB
prediction, the present study aimed to apply and evaluate, using an RGNIR sensor onboard a UAV,
empirical models based on Kcb to estimate the actual crop evapotranspiration via a normalization of
the vegetation indices’ Normalized Difference Vegetation Index (NDVI) and Soil-Adjusted Vegetation
Index (SAVI) values and to apply, using the evapotranspiration parameters, models to estimate the
aboveground dry biomass (AGB) of the maize crop.

2. Material and Methods

2.1. Study Area

This study was carried out in an area of 2600 m2 located in the “Prof. Diogo Alves de Mello”
experimental field, which belongs to the Federal University of Viçosa (UFV) in the municipality
of Viçosa, Minas Gerais State, Brazil (Figure 1). According to Köppen’s climatic classification [23],
the climate of the region is Cwa (humid subtropical). The maximum average temperature is 26.7 ◦C,
and the minimum average temperature is 15.4 ◦C, with an average annual accumulated precipitation
of 1250 mm [24]. The soil of this area is classified as deep clay-textured Latossolo Amarelo (Oxisol) [25].
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2.2. Crop Planting and Management

Maize (Zea mays L.) was sown on 15 October 2018, with a spacing of 0.28 m between plants and
0.50 m between rows. Seedling emergence began on 20 October 2018. At 25 days after emergence
(DAE), chemical control of weeds was performed using the active ingredient glyphosate at a dose
of 0.89 kg ha−1. Two fertilizations were performed: one involved sowing with 300 kg ha−1 of the
NPK formulation 8:28:16, and the other involved sowing at 38 DAE with nitrogen fertilization at the
recommended dose of 300 kg ha−1 using urea as the source.

2.3. Data Acquisition

2.3.1. Field Data

In total, 54 maize plants were collected at 46 (18 plants), 52 (22 plants), and 59 (14 plants) DAE to
quantify the aboveground dry biomass (AGB). Different dates were used for collection to follow the
temporal variability of the crop; as the maize develops, until it reaches antithesis, the vegetation index
also tends to increase. In this way, the sensor was able to identify the spatial and temporal variability.
The collections were carried out randomly between plants, as well as between planting rows, avoiding
the collection of two nearby plants to avoid the influence of the leaf of one plant on the other, which
would be captured by the RGRNIR sensor. After collection, the plants were separately placed in
paper bags and dried in a forced-air circulation oven at a temperature of 70 ◦C for 72 h. After this
period, the samples were removed from the oven, and the plants were weighed. Each collected plant
was georeferenced with a Global Navigation Satellite System (GNSS) RActual-Time kinematic (RTK)
Topomap T10 receiver. This receiver was used due to its high accuracy and to determine the exact
location of each plant collected in the field.

2.3.2. Aerial Data

Aerial imaging started from 03 DAE and ended at 61 DAE (Table 1), always at 10 h (UTC/GMT-3).
The imaging ended at 61 DAE because of the technical conditions of the device.

Table 1. Image acquisition dates and weather conditions at the time of imaging.

Date DAE
Growth Stages T RH VW Rs ETo Pd Pd−1 Pbi

(◦C) (%) (m s−1) (MJ m−2 d−1) (mm) (mm) (mm) (mm)

10/22/2018 3 V2 19.65 71.50 2.70 16.42 3.41 0.00 0.00 21.2
10/31/2018 12 V3 23.95 71.00 2.50 17.53 3.83 0.00 1.60 42.6
11/02/2018 14 V4 24.4 73.50 1.30 22.46 4.38 0.20 13.20 13.4
11/07/2018 19 V5 24.25 67.00 2.00 14.88 3.29 0.00 0.200 32
11/12/2018 24 V6 24.75 67.50 1.90 20.25 4.34 0.00 0.00 67.6
11/15/2018 27 V7 24.6 73.00 3.50 18.56 4.31 7.00 0.00 7.00
11/23/2018 35 V8 22.9 71.00 3.30 17.10 4.02 0.00 0.00 139.8
11/28/2018 40 V10 22.95 70.50 1.10 24.38 4.73 0.20 10.20 13.8
11/30/2018 42 V12 24.25 68.50 3.20 23.76 5.05 5.00 0.00 5.00
12/04/2018 46 V12 22.75 74.00 0.90 14.67 3.15 0.00 3.40 29.4
12/10/2018 52 V13 19.8 80.50 0.20 15.07 3.19 0.20 1.80 64.2
12/12/2018 54 V14 24.15 67.50 2.00 26.74 5.49 0.00 0.00 0.00
12/14/2018 56 V14 25.35 63.50 2.50 29.65 6.07 0.00 0.00 0.00
12/17/2018 59 VT 25.20 66.50 3.00 28.70 5.95 0.00 0.00 0.00
12/19/2018 61 VT 27.75 60.50 2.50 27.05 5.8 0.00 0.00 0.00

DAE = Days after emergence; T = Average air temperature; RH = Average relative humidity; Vw = Average
wind velocity; Rs = Incident solar radiation; ETo = Reference evapotranspiration; Pd = Precipitation of the
day; Pd−1 = Precipitation of previous day; Pbi = Precipitation between imaging events.

During the imaging period, an RGNIR sensor onboard an unmanned aerial vehicle (UAV) was
used to capture 15 sets of images (Table 1). The UAV used was a DJI Phantom 4 manufactured by DJI



Water 2020, 12, 2359 5 of 20

Innovations (Figure 2). Phantom line drones are multirotor vehicles [26] with a flight autonomy of
approximately 30 min.
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(b) front view of the aircraft highlighting the Mapir Survey 3 sensor.

The sensor (Figure 2b) was a Survey 3 manufactured by the Mapir company. According to the
manufacturer, this sensor has three filters that differentiate between the red, green, and near-infrared
wavelengths. The wavelength ranges for the respective filters are 640–680, 525–575, and 820–880 nm,
respectively [27]. The sensor can capture images at a resolution of 12 Megapixels (4000 × 3000 pixels)
and with adjustable time intervals (in the present study, we used 2 s). These images were stored
automatically on a micro memory card in the JPEG format with an 8-bit radiometric resolution.

For the images to always have the same pattern of capture (to avoid interfering with the results),
flight planning was elaborated using the DroneDeploy application. Flight planning was set to an
altitude of 50 m with a front overlap of 85%, a side overlap of 75%, and a velocity fixed at 3 m s−1.
The time spent by the UAV flying in the study area was approximately 3 min. After acquiring the
image sets, the images were mosaiced. This process was carried out in the software Agisoft PhotoScan,
thereby generating a file in the GeoTIF format with three bands (Red, Green and NIR). The images
exported from this software had pixels with a spatial resolution of 0.025 m, which were aggregated
to 0.5 m for optimized processing. For the field information to be estimated by the sensor, it was
necessary to perform the geometric correction and digital number conversion using the physical values
of reflectance to allow for the subsequent calculation of the vegetation indices.

2.4. Data Processing

2.4.1. Geometric Correction

The MAPIR survey 3 Sensor uses a GNSS receiver that allows one to capture the georeferenced
images. However, the receiver has low accuracy that generates random errors in each image,
thus requiring accurate georeferencing. For this purpose, eight wooden pickets were installed in the
area designated for the experiment, and their coordinates were obtained by a GNSS RTK Topomap
T10 receiver. These pickets served as a control point for georeferencing. Geometric correction was
performed in the images after the mosaicking process.

2.4.2. Conversion from Digital Numbers to Physical Values

The sensor onboard the UAV provides image values using digital numbers (DNs), which need
to be converted to physical values of reflectance. For this process, five low-cost panels at different
grayscales (black; dark grey; intermediate gray; light gray; and white) were used. These panels were
made of artificial Napa, a material whose composition is based on PVC, with the textile portion made
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from polyester. These panels had an area of 1.5 m2 each and were placed next to the study area
on all flights carried out. The reflectance of each panel was determined in the laboratory using a
spectroradiometer. With the aid of the QGis® 2.18 software [28], the mosaiced images were cut based
on the area of each panel. Subsequently, the average DNs of the red and infrared bands corresponding
to each panel were extracted, and a regression was used to determine an equation of conversion
between the DNs of the panels quantified by the MAPIR sensor and their average values of reflectance
obtained by the spectroradiometer. This procedure was performed for each image mosaic (i.e., on each
imaging occasion).

To improve the computational performance of image processing, pixels of the images were
aggregated from 0.025 to 0.5 m. In this way, the images were reduced from 4,100,000 to 10,400 pixels.

2.4.3. Vegetation Indices (VI)

To analyze crop behavior during the crop cycle and apply models of evapotranspiration to the
maize crop, the Normalized Difference Vegetation Index (NDVI) developed by Rouse et al. (1974) [29]
and the Soil-Adjusted Vegetation Index (SAVI) developed by Huete (1988) [30] were used. These indices
were obtained according to Equations (1) and (2), respectively,

NDVI =
ρNIR − ρR

ρNIR + ρR
(1)

SAVI =
ρNIR − ρR

ρNIR + ρR+L
∗ (1 + L) (2)

where ρNIR is the near-infrared reflectance, ρR is the red reflectance, and L is the soil adjustment factor.
This factor varies according to the canopy density, and values from 0.25 to 1.0 can be adopted. However,
the present study adopted 0.5, as recommended by Houte (1998) [30], and applied the general approach
by García and Pérez (2016) [31] and Gilabert et al. (2002) [32], and the specific approach for maize
crops by Zhang et al. (2019) [33].

2.4.4. Actual Crop Evapotranspiration from VI

After estimating the indices, the actual crop evapotranspiration (ETa,) was calculated. ETa is the
sum of the actual transpiration (Ta) and evaporation (E). The actual transpiration (Equation (3)) is a
biophysical process involving water loss through the stomata present in the leaves after being involved
in the physiological processes of the plant [34] while considering the soil moisture conditions

Ta = Kcb ∗Ks ∗ ETo (3)

where Kcb is the basal crop coefficient, Ks is the stress coefficient, and ETo is the reference
evapotranspiration calculated from the meteorological data by the Food and Agriculture Organization
(FAO)-56 method [16].

In turn, evaporation (Equation (4)) is a physical process of water loss from the soil or the surface
of plants, as water transitions from a liquid form to vapor [16]

E = Ke ∗ ETo (4)

where Ke is the evaporation coefficient.

Kcb Estimated by the VI

According to Choudhury et al. (1994) [35], there is an exponential relationship between the
transpiration coefficient (Tc), shown in Equation (6), and the leaf area index (LAI). Thus, when the
LAI is maximal, the crop will have a higher coefficient of transpiration. Tc is described as the ratio of
transpiration under stress-free conditions to the maximum crop evapotranspiration when the vegetation
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fully covers the soil (that is, under higher values of LAI). Thus, Kcb is given by the product of the maximum
value of Kcb (Kcbmax) (the tabulated value [16]) and the coefficient of transpiration (Equation (5))

Kcb = Kcbmax ∗ Tc (5)

When no saturation occurs, the maximum value of LAI coincides with the maximum value of
VI [35]. Choudhury et al. (1994) [35] replaced LAI with VI to estimate Tc (Equation (6))

Tc= 1−
(

VImax−VI
VImax−VImin

)n

(6)

where n corresponds to the K/K’ ratio; K is a coefficient related to the leaf architecture of the crop,
varying from 0.5 to 0.7; and K’ is a coefficient that varies from 0.5 to 0.7 and from 0.8 to 1.3 when the
vegetation indices used are SAVI and NDVI, respectively [35].

Replacing Tc in Equation (5) with Equation (6) yields Kcb from the VI (Equation (7))

Kcb= Kcbmax

[
1−

(
VImax−VI

VImax−VImin

)n]
(7)

Equation (7) is a generalized model used to determine the Kcb of the crop from the VI. The Kcbmax

adopted for the maize crop was 1.15 [16].
In the present study, the VIs of Equations (1) and (2) were used to determine the Kcb of maize

throughout its growth. For NDVI, it was only necessary to replace the VI of Equation (7) with the
NDVI values, assuming the mean value between coefficients K and K’. For SAVI, the VI parameters
of the equation above were replaced; however, according to Choudhury et al. (1994) [35], the ratio
between K and K’ is equal to 1.

Evaporation Coefficient (Ke)

To quantify the Ke, it was necessary to determine the daily water balance in the soil over the
61 days of crop monitoring. In the study area, the soil was collected to measure the field capacity on a
volumetric basis (θFC), the wilting point on a volumetric basis (θWP), and the soil bulk density (ds).
The soil of the study area had a θFC of 0.33 m3 m−3, a θWP of 0.21 m3 m−3, and a density of 1.20 kg m−3.
θFC and θWP were used to calculate the maximum water depth that could be evaporated, as suggested
by Allen et al. (1998) [16], using a 0.10 m layer of soil subject to evaporation. The entire water balance
procedure was carried out strictly as described in Bulletin 56 published by FAO [16].

Stress Coefficient (Ks)

Ks was quantified via the daily soil water balance using Equation (8) [16]

Ks =
TAW−Dr

TAW−RAW
=

TAW−Dr

(1− p) RAW
(8)

where TAW is the total available soil water in the root zone (mm), Dr is the moisture depletion, RAW is
the readily available water in the root zone, and p is the fraction of TAW that the plant can extract from
the root zone without undergoing water stress.

TAW is calculated based on the daily rooting depth of the crop (Zr) along with θFC and
θWP (Equation (9))

TAW = 1000(θFC − θWP)Zr (9)

RAW was calculated by Equation (10)

RAW = pTAW (10)
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According to FAO Bulletin 56 [16], the p for a maize crop is 0.55 when the crop potential ET (ETpc)
is equal to 5 mm d−1. When the ETpc diverges from 5 mm d−1, Equation (11) is used for correction

p = 0.55 + 0.04
(
5− ETpc

)
(11)

After completing all the processes above, the actual transpiration and evapotranspiration of the
crop were determined.

2.4.5. Estimation of Aboveground Dry Biomass

The aboveground dry biomass (AGB) was calculated using the model developed by Monteith
(1972) [36] according to Equation (12), which quantifies the daily increase in the dry biomass of the
crop based on the water and radiation parameters

AGB = εmax·E f ·APAR·0.864 (12)

where AGB is the aboveground dry biomass in kg ha−1 d−1; εmax is the maximum radiation use
efficiency, which is equal to 3.5 g MJ−1 for maize [19]; Ef is the evaporative fraction; APAR is the
absorbed photosynthetically active radiation (W m−2); and 0.864 is the factor for unit conversion.

The evaporative fraction was replaced by the ratio between the actual crop evapotranspiration
and the reference evapotranspiration used by some authors [37,38], which was also adopted in the
present study.

The APAR was obtained by the product between the NDVI and incident solar radiation (Rs) [39–41],
according to Equation (13)

APAR = (1.26·NDVI− 0.16)·(0.48·Rs) (13)

To statistically compare the aboveground dry biomass estimated by the models and the
aboveground dry biomass observed in the field, the geographic coordinates of each plant collected
were used to establish a 1 m radius from the georeferenced point and generate a representative circular
area of 3.14 m2 for each plant collected. This area provided the average biomass increase on each day
of the imaging until plant collection. Subsequently, the values of daily biomass were integrated with
time to obtain the value of the dry biomass accumulated until the day of the collection.

2.5. Validation of Estimated Aboveground Dry Biomass

Since biomass is a parameter measured in the field, validation using measurements of dry biomass
was performed to assess the reliability of the models for actual crop evapotranspiration (ETa) estimated
by the VI because it was not possible to measure ETa in the field during the experimental period.

For statistical comparisons between the estimated and observed AGB, the statistics presented in
Equations (14)–(17) were applied to quantify the relationships and the errors between the biomass
measured in the field and the biomass estimated by the images of the UAV

R2 =

[∑n
i=1

(
Pi− P

)(
Oi−O

)]2[∑n
i=1

(
Pi− P

)2
][∑n

i=1

(
Oi−O

)2
] (14)

RMSE =

√∑n
i=1(Pi − Oi)2

n
(15)

MAE =
1
n

n∑
i=1

|Pi − Oi| (16)
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MBE =
1
n

n∑
i=1

(Pi − Oi) (17)

where Pi is the value predicted by the model, Oi is the observed value, P is the average value obtained
by the model, O is the average value observed, and n is the sample number.

3. Results and Discussion

3.1. Kcb Derived from the VIs

The mean values of the vegetation indices (VIs) NDVI and SAVI can be visualized in Figure 3.
The VIs were observed to increase over time following plant growth.
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Difference Vegetation Index (NDVI) (a) and Soil-Adjusted Vegetation Index (SAVI) (b).

The NDVI values are higher than SAVI values because of the L coefficient used for soil brightness
attenuation present in the methodology of the latter. For both indices, greater spatial variability was
observed from 03 to 27 DAE, as illustrated by the greater interval between the first and third quartiles
of the boxplots. This situation occurred because of the high weed infestation in the experimental
area since the crop does not yet fully cover the cultivated area. Ten days after chemical control,
this variability was reduced, and only maize plants were present in the area. For NDVI, the maximum
recorded value was 0.69, and for SAVI, the maximum value was 0.58—both at 61 DAE. Zhang et al.
(2019) [33], using a MicaSense Red Edge sensor onboard a UAV, found maximum values of NDVI
and SAVI for a maize crop at 75 DAE, equal to 0.85 and 0.65, respectively. For NDVI, Toureiro et al.
(2017) [42] found a maximum value of 0.80 at 85 DAS (days after sowing) for a maize crop using images
from Landsat 5. Taghvaeian et al. (2012) [43], using terrestrial sensors, found a maximum value of 0.69
for SAVI, noting that maize plants fully covered the soil.

Figure 4 presents the mean values of Kcb, Ke, dual Kc, and Ks for the maize crop on each day of
the image.

As observed in Figure 3, the VI tends to increase with crop growth. Thus, the Kcb values derived
from these indices also tend to increase (Figure 4a) following an increase in the VIs. However, a greater
discrepancy is observed with the Kcb determined by the empirical model of NDVI. This result may be
related to the coefficient “n” applied to the model, which determines the Kcb via the NDVI proposed
by Choudhury et al. (1994) [35], whereas SAVI does not use this coefficient [44].

Studies using Kcb derived from NDVI have demonstrated a good linear relationship, with a
coefficient of determination above 0.80 between Kcb and NDVI [12,42]. Likewise, the present study
found linearity between these two parameters, with an R2 of 0.81, whereas SAVI and its relationship
with Kcb yielded an R2 of 0.99. This difference between the two indices is related to the aforementioned
coefficient “n”.
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Figure 4. Mean values of Kcb (a), Ke (b), dual Kc (c), and Ks (d) for the maize crop 61 days after emergence.

By using the NDVI index to estimate Kcb, a saturation of the vegetation index may occur,
especially for plants with a C4 metabolism. This means that the plant will continue to develop,
but the Kcb estimated by the NDVI will remain stable at a maximum limit. However, according to
Duchemin et al. [44], the impact of NDVI saturation is not critical for the estimation of transpiration.
The SAVI index, on the other hand, due to the L coefficient of soil brightness attenuation, does not
show saturation and may be more appropriate for reducing errors in the estimation of Kcb and
subsequent transpiration.

Contrary to the Kcb value (Figure 4a), Ke (Figure 4b) tends to decrease as the crop grows and
develops. This is a normal condition, as the effect of this coefficient is reduced with an increase in
vegetation cover. The expansion of leaf area intercepts solar radiation, which can reach the ground,
reducing the latent heat of vaporization. Consequently, with less energy interacting with the moist soil,
there will be less evaporation of water from the soil. Another factor affecting the value of Ke is the
soil moisture condition, as moister and more exposed soil has greater potential for evaporation [45].
Figure 4b shows that the reduction in Ke is not constant, with variations in the values caused mainly
by precipitation (Table 1). As observed for Kcb, the values of Ke differ in the same image based on the
parameter’s calculation, as proposed by the FAO Bulletin 56 [16], which takes into account the values
of Kcb.

Figure 4c presents the value of the dual Kc obtained by the sum of Kcb and Ke. Throughout the
crop cycle, the dual Kc values were high, almost always close to 1.00. At the beginning of the cycle,
the dual Kc values were influenced mainly by the high value of Ke due to the availability of water in
the soil and decreased with maize growth. In Figure 4c, it is possible to observe that some values of
dual Kc exceed 1.20. Theoretically, this should not happen because, when calculating Ke, the value of
1.20 is adopted as the maximum Kc allowed for the maize crop [16]. Thus, until the moment that Ke

exerts influence on the dual Kc, the latter’s value should not exceed 1.20, and, when Ke ceases to exert
influence, this value should not exceed 1.15 (maximum Kcb for maize). However, due to the presence
of weeds and excess moisture in the evaporating layer, higher values of Kcb occurred at the beginning
of the cycle.

During the monitoring, a total precipitation of 436.00 mm (Table 1) was recorded, with occurrence
at least once a week until 52 DAE. From that day until 61 DAE, there was no record of precipitation.



Water 2020, 12, 2359 11 of 20

Thus, the soil was expected to remain close to field capacity until 52 DAE. Figure 4d presents the
stress coefficient (Ks) in the experimental area, where mild stress was observed at 27 DAE due to
low precipitation (7 mm) over an interval of 3 days. Ks decreased slightly after 56 DAE and more
sharply at 59 and 61 DAE. As there was a drought period from 52 DAE, the water present in the
effective root system zone was demanded by the atmosphere through the processes of evaporation and
transpiration, which, consequently, reduced the water content available for the crop (i.e., by increasing
moisture depletion in this zone and causing the plant to spend more energy to remove the water
chemically bound to the soil). The SAVI model used to determine Kcb was more sensitive to water
stress because this model tends to have a higher basal coefficient, thereby influencing the greater
potential transpiration of the crop.

3.2. Actual Transpiration and Evapotranspiration of the Maize Crop

The actual transpiration of the crop (Ta) is presented in Figure 5. Low values of Ta occurred
at the beginning of the cycle due to the lower vegetation cover (i.e., the smaller the photosynthetic
component, the less the transpiration).
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At 14 DAE, it is possible to observe isolated areas in the image with transpiration around 3 mm
caused by the incidence of weeds in the area with an ETo of 4.58 mm (Table 1). In the images for 19 DAE,
the weeds showed more advanced development than those in the previous images, but their Ta was
lower due to the ET on this day (3.29 mm). At 24 DAE, there was high variability of Ta influenced by
the strong weed development and high value of ETo (4.34 mm).

After herbicide application (25 DAE), there was a reduction in the Ta rate influenced by the effects
of the toxicity of the active ingredient on the weeds. Glyphosate prevents CO2 assimilation by reducing
the stomatal conductance and, consequently, the transpiration of the plants [46]. Another factor that
influenced the Ta on this day was Ks (Figure 4d), which reduced the transpiration of the crop via water
stress. From 35 DAE, only the maize crop prevailed in the area, so transpiration from the experimental
area was influenced by both the crop and the environmental conditions during imaging. At 46 and
52 DAE, there was a sudden reduction in Ta. This occurrence was attributed to the low radiation on
these days, which reduced the photosynthesis and transpiration rates along with the low estimated
value of ETo (Table 1). The image for day 56 was strongly influenced by ETo (Table 1) and by the
absence of water stress, Ks = 1.00 (Figure 4d). Thus, at 56 DAE, the crop had higher Ta. For days 59
and 61, crop transpiration was limited by the water stress (Ks < 1) caused by drought. Thus, although
the crop had high vegetative vigor, its values of ETo were close to 6 mm (Table 1), so the Ta was lower
than 5.5 mm on average.

The Ta determined by the empirical model of Kcb derived from the NDVI showed greater spatial
variability than the empirical model of Kcb derived from SAVI. This phenomenon can be observed in
Figures 5 and 6. In Figure 6a, a greater interval than that in Figure 6b can be clearly observed between
the first and third quartiles. The discrepancy between the models is related to the aforementioned
coefficient “n”.
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Figure 6. Descriptive statistics of the actual transpiration of maize crop by the models derived from the
NDVI (a) and SAVI (b).

The transpiration of the crop facilitates the accumulation of AGB, since the efflux of water through
the stomatal opening occurs simultaneously with the influx of CO2, and the latter is related to the
photosynthetic process [34,47]. Past studies demonstrated that an increase in CO2 entering into the
maize plant, up to a certain limit, positively impacts the increase in its biomass (with water available in
the soil) [17,48,49]. Thus, the transpiration model most strongly related to AGB has greater potential
for predicting transpiration.

Figure 7 presents the relationship between the AGB of maize plants collected in the field and
the accumulation of the actual crop transpiration for the models derived from the NDVI (Figure 7a)
and SAVI (Figure 7b). This Figure shows that the empirical model based on SAVI has a higher
predictive capacity than the model based on NDVI, providing an R2 of 0.74 for the maize biomass.
Campos et al. (2018b) [50], using values of Kcb derived from SAVI and corrected by water and thermal
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stress coefficients, recorded an R2 of 0.94 for the biomass of the same crop in rainfed areas and 0.96 in
irrigated areas, albeit using satellite images, unlike the present study, which used low-cost sensors.
Twohey et al. (2019) [51], measuring the direct transpiration of maize in a greenhouse, found an R2 of
0.92 for the maize’s biomass. The predictive capacity of transpiration using a low-cost sensor onboard a
UAV is important for the agricultural monitoring of crop water conditions in areas with low investment
capital where it is not possible to perform orbital imaging.
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Figure 7. Linear regression between the accumulated actual transpiration (iTa) of the maize crop
(with its biomass) using the models derived from the NDVI (a) and SAVI (b).

The actual evapotranspiration of the crop (ETa) obtained by the coefficients of the plant, soil, and
ETo is shown in Figure 8. The ETa is high at the beginning of the crop cycle, unlike the values of Tr,
especially when the soil is not protected from the vegetation cover. These higher values of ETa are due
to the evaporation of water present in the soil. This indicates that transpiration was low during these
days and that evaporation from the diffusion of water vapor present in the evaporative layer was high.
These situations were also observed by Rosa et al. (2016) [45] when studying dual Kc in a maize crop
under field conditions. The same behavior of spatial and temporal variability observed for Ta was
also observed for ETa. The influence of the evaporative component occurs until 56 DAE (Figure 4b).
From this day, the water demand of the area is due to the transpiration component.

Figure 9 illustrates the influence of Ke on the water demand of the crop. Here, the average of the
boxplots starts above 2 mm, contrary to Figure 6.

The methodology based on dual Kc normally tends to present higher values of evapotranspiration
at the beginning of the crop cycle because it considers the quantification of two isolated coefficients
that are summed [45]. Conversely, when the water content is quantified using a single Kc, the estimate
of water demand in the initial stages of the crop tends to be lower, since this Kc represents the mean
value between the evaporation of soil water and the transpiration of the crop [52].
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3.3. Estimation of AGB

Figure 10 shows the spatial and temporal variation of the daily increase in aboveground dry
biomass (AGB) using the evaporative fraction derived from the NDVI and SAVI. Until 24 DAE, the daily
increase was promoted by both the crop (still at the beginning of its growth) and the weeds present
in the area, as discussed earlier. After day 27, the largest daily increases occurred at 40 and 56 DAE,
and the lowest increases occurred at 46 and 52 DAE for both models. On days 40 and 56, the daily
incident solar radiation was equivalent to 23.38 and 29.25 MJ m−2 d−1 (Table 1), respectively. At 46
and 52 DAE, the radiation was 14.67 and 15.07 MJ m−2 d−1 (Table 1), respectively. Thus, radiation
promoted gains in the daily increase in biomass.
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from the NDVI (a) and SAVI (b).

Solar radiation is the parameter used to calculate the photosynthetically active radiation established
in Equation (13). Thus, the higher the radiation is, the more the biomass will increase. Solar radiation
stimulates the photosynthesis, formation, and development of plant organs, as well as biomass
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and grain yield [53]. Thus, the larger the amount of radiation reaching the crop is, the higher the
photosynthetic rate and increase in biomass will be. Another factor that influences biomass production
when using the model in Equation (12) is the evaporative fraction, which is the ratio between the
actual evapotranspiration of the crop and the reference evapotranspiration. In the images for 59 and
61 DAE, the stress coefficient was below 1 (Figure 4d), thereby reducing the evaporative fraction
and, consequently, reducing the daily increase in biomass. Some recent studies have shown the
negative influence of water stress on maize biomass [54–57]. However, this premise has already been
scientifically consolidated.

Figure 11 presents the same behavior of variability for ETa (Figure 8). The first and third quartiles
of Figure 11a are higher than those of Figure 11b because the input evaporative fraction in the model
comes from ETa.
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The AGB estimated using the evaporative fraction derived from the NDVI tends to overestimate
the true values by 0.033 kg m−2 on average, with an RMSE of 0.104 kg m−2 and an R2 of 0.74
(Figure 12a). The estimation of AGB using the evaporative fraction derived from the SAVI model tends
to overestimate the true values, on average, by 0.006 kg m−2, with an RMSE of 0.092 kg m−2 and an
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R2 of 0.76 (Figure 12b). Thus, using a model based on SAVI to calculate the Kcb offers demonstrably
superior performance for estimating the AGB.

In general terms, using an RGNIR sensor to quantify the evaporative fraction and applying the
model to estimate the increase in daily biomass proved to be relatively precise. This makes the use
of an RGNIR camera a viable alternative for predicting the AGB, which is extremely important for
farmers who need greater spatial and predictive details for their crops.

4. Conclusions

The use of an RGNIR sensor onboard a UAV was able to identify the spatial and temporal
variability of a maize crop, along with its vegetative development. This result is important because
the present device has a low acquisition cost. When applying the NDVI and SAVI vegetation indices,
it was possible to note disturbances in the experimental area, caused mainly by weed infestations and
water stress.

The Kcb estimated with the RGNIR camera using empirical models based on the vegetation indices
proved to be a viable alternative for water management in agricultural crops, which is of great interest
in small rural properties due to the low cost and versatility of the equipment.

The actual transpiration of the crop using the Kcb derived from SAVI had a better correlation with
the biomass collected in the field compared to the transpiration calculated by the Kcb derived from
the NDVI.

The statistical analyses revealed that the biomass estimated using the models of the evaporative
fraction derived from the vegetation indices tends to overestimate the biomass measured in the field.
Estimating the biomass using the evaporative fraction derived from SAVI was more satisfactory,
presenting fewer errors and a better coefficient of determination than the model derived from NDVI.

The results achieved in the present study make it possible to spatially manage water in agriculture
using UAV and RGNIR sensors, thereby integrating irrigation management into the assumptions of
precision irrigation.
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