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Abstract: Poor data availability on soil hydraulic properties in tropical regions hampers many
studies, including crop and environmental modeling. The high cost and effort of measurement and
the increasing demand for such data have driven researchers to search for alternative approaches.
Pedotransfer functions (PTFs) are predictive functions used to estimate soil properties by easily
measurable soil parameters. PTFs are popular in temperate regions, but few attempts have been
made to develop PTFs in tropical regions. Regression approaches are widely used to develop PTFs
worldwide, and recently a few attempts were made using machine learning methods. PTFs for
tropical Sri Lankan soils have already been developed using classical multiple linear regression
approaches. However, no attempts were made to use machine learning approaches. This study
aimed to determine the applicability of machine learning algorithms in developing PTFs for tropical
Sri Lankan soils. We tested three machine learning algorithms (artificial neural networks (ANN),
k-nearest neighbor (KNN), and random forest (RF)) with three different input combination (sand, silt,
and clay (SSC) percentages; SSC and bulk density (BD); SSC, BD, and organic carbon (OC)) to estimate
volumetric water content (VWC) at −10 kPa, −33 kPa (representing field capacity (FC); however,
most studies in Sri Lanka use −33 kPa as the FC) and −1500 kPa (representing the permanent wilting
point (PWP)) of Sri Lankan soils. This analysis used the open-source data mining software in the
Waikato Environment for Knowledge Analysis. Using a wrapper approach and best-first search
method, we selected the most appropriate inputs to develop PTFs using different machine learning
algorithms and input levels. We developed PTFs to estimate FC and PWP and compared them with
the previously reported PTFs for tropical Sri Lankan soils. We found that RF was the best algorithm
to develop PTFs for tropical Sri Lankan soils. We tried to further the development of PTFs by adding
volumetric water content at −10 kPa as an input variable because it is quite an easily measurable
parameter compared to the other targeted VWCs. With the addition of VWC at −10 kPa, all machine
learning algorithms boosted the performance. However, RF was the best. We studied the functionality
of finetuned PTFs and found that they can estimate the available water content of Sri Lankan soils as
well as measurements-based calculations. We identified RF as a robust alternative to linear regression
methods in developing PTFs to estimate field capacity and the permanent wilting point of tropical Sri
Lankan soils. With those findings, we recommended that PTFs be developed using the RF algorithm
in the related software to make up for the data gaps present in tropical regions.
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1. Introduction

Data on soil hydraulic properties are increasingly used due to the popularization of agricultural
automation and the use of models that support modern agriculture [1]. However, direct measurement
of soil hydraulic properties is laborious, costly, and time-consuming [2,3], so the development of
inexpensive, rapid, alternative methods to estimate those properties is an area of active research [1,4].

Pedotransfer functions (PTFs) are predictive functions used to estimate difficult-to-measure soil
parameters by easily measurable soil parameters [5,6]. Point-based PTFs are used to estimate soil
parameters at specific values of matric potential [1,6]. The soil moisture content at −10 and −33 kPa
(representing field capacity) and moisture content at −1500 kPa (representing permanent wilting point)
are the standard reference values used to develop point PTFs [1,7]. Point-based PTFs have mainly
been developed by regression approaches [8]. During the last few decades, regression approaches
have been successfully used to develop PTFs to estimate specific points on the moisture retention
curve [2,6,9–11]. Recently, machine learning approaches have been used in PTF development, such as
the k-nearest neighbor (KNN) [10,12], artificial neural networks (ANN) [13–15], and random forests
(RF) approaches [16,17]. However, despite the frequent application in hydrological/hydrogeological
research [18–25], machine learning approaches are still hardly used to develop PTFs.

The advantages of different models vary depending on their complexity [2]. Linear models
offer ease of use, parsimony, interpretability, and computational efficiency [6], whereas RF models
offer robustness against input outliers, the ability to compensate for irrelevant inputs, and predictive
power [26]. One study has shown that the PTFs developed using extended nonlinear regression were
superior to the PTFs developed by ANN at predicting soil water retention and the available water
content of soil [27]. Other studies have reported that the PTFs developed by multiple linear regression
(MLR) are either superior [28] or similar to those developed by ANN in terms of their prediction
ability [29]. For predictions of soil bulk density, RF has been found to outperform MLR and ANN in
temperate soils [16,17]. However, such comparisons have been rare for tropical soils.

With the growing population in tropical regions, soil degradation, water scarcity, and food
insecurity pose increasing threats to agriculture, environment, and human livelihoods, and are further
aggravated by climate change [6,30–32]. Although crop and environmental modeling are active areas
of research worldwide, it is restricted by the availability of soil data [33–35]. Most agricultural and
environmental models use soil hydraulic data in their simulations [36–39], but these are limited in many
tropical areas [40,41]. Hence, though extrapolating the PTFs to other regions is problematic, the PTFs
developed for temperate regions are extensively used in tropical regions [1,2]. Other than the evaluation
of attempts to evaluate the applicability of point PTFs developed in other tropical environments to dry
zone soils in Sri Lanka [42] and PTFs developed using linear regression approaches [6], no attempts to
develop PTFs for tropical Sri Lankan soils have been recorded [7]. Hence, in this study, we aimed to
seek the possibility to use machine learning algorithms to develop point PTFs to estimate volumetric
water content (VWC) at −10, −33, and −1500 kPa of tropical Sri Lankan soils. Since most of the
tropical countries have limited laboratory facilities and research budgets, we aimed to investigate the
applicability of different input levels to develop PTFs using machine learning approaches. Further, we
assessed the applicability of VWC at −10 kPa as an input to develop PTFs to estimate FC and PWP and
evaluated the functionality of those PTFs.

2. Materials and Methods

We obtained the required data from the datasets of the Sri Lankan, Canadian Soil Resource
(SRICANSOL) Project [43–45]. Fact sheets on the SRICANSOL project include chemical, physical, and
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hydrological information on Sri Lankan soils and a detailed description of the sampling procedures
and methods of analysis. Gunarathna et al. [6] summarized the information in those fact sheets as
they used the same dataset to develop PTFs using multiple linear regressions. As seen in Gunarathna
et al. [6], samples with missing VWC data were omitted, leaving 323 samples for the study. Table 1
shows the descriptive statistics of the soil properties of selected locations.

Datasets were organized to develop PTFs under three input levels using sand, silt, and clay (SSC)
percentages (Set 1), SSC percentages and bulk density (Set 2), and SSC percentages, bulk density, and
soil organic carbon (Set 3).

Table 1. Summary statistics of selected tropical Sri Lankan soils.

Minimum Maximum Mean SD Skewness Kurtosis CV%

SA (%) 5.2 99.0 65.1 17.4 −0.329 −0.158 26.8
SI (%) 0.0 38.6 13.1 7.7 0.703 0.503 58.8
CL (%) 1.0 61.4 21.9 13.2 0.517 −0.357 60.4

BD (g/cm3) 1.00 2.00 1.49 0.17 −0.346 0.162 11.3
OC (%) 0.0 4.5 0.6 0.6 2.074 6.980 96.5
VWC10 0.06 0.54 0.24 0.09 0.434 0.419 36.9
VWC33 0.04 0.47 0.21 0.08 0.251 −0.143 39.9

VWC1500 0.02 0.45 0.15 0.07 0.670 1.277 46.5

SA—Sand; SI—Silt; CL—Clay; BD—Bulk density; OC—Organic carbon; VWCx—Volumetric water content at −10,
−33, and −1500 kPa; SD—Standard deviation; CV—Coefficient of variation.

2.1. Feature Selection in Waikato Environment for Knowledge Analysis (WEKA) Software

WEKA stands for Waikato Environment for Knowledge Analysis, which is a data mining tool
developed by the University of Waikato, New Zealand [46]. It provides an excellent interface to run
various learning algorithms, with a range of preprocessing and postprocessing options [46,47]. WEKA
3.8 includes cross-validation as a technique to evaluate the predictive ability of models [6]. We used
10-fold cross-validation as the test option for this study [6]. In 10-fold cross-validation, the sample
randomly divides into 10 equal subsamples and nine of these are used to train the model, while the
remaining one is used for testing the model [6]. We repeated this procedure 10 times, allowing the
maximum data points to be used as testing data. The results of the 10 runs were then averaged by
WEKA to present a single estimation [48].

Feature selection is a process that searches all possible feature combinations to find the combination
that can offer the best prediction. Hence, it helps us to minimize the number of features by removing
the irrelevant and unreliable features and maximize the potency of the classifier. Based on the nature
of the metric used to evaluate the worth of attributes, feature selection techniques can be broadly
categorized into filters and wrappers [49]. Filters use general characteristics of the data to evaluate
the features, whereas wrappers use accuracy estimates provided by the target learning algorithm.
Although computationally expensive, the wrapper is the best feature selection method for accuracy [50].
Feature selection can also be divided into two groups: algorithms that evaluate individual attributes
and algorithms that evaluate subsets of attributes. Algorithms that evaluate the subsets of attributes
can be further distinguished based on the search technique. Some feature selection techniques can
handle regression problems, where the class is a numeric value [50].

The best-first method uses the heuristic information to evaluate the excellence of every attribute
search avenues exposed during the search and continue the search along the direction of highest
excellence [51,52]. It is an instance of the general tree-search algorithm, in which a node is selected
for expansion based on an evaluation function [51]. The evaluation function is interpreted as a cost
estimate; thus, the node with the lowermost evaluation is expanded first [51]. Most of the heuristic
functions include best-first algorithms as a component [51]. There are several best-first search options
such as greedy best-first, A* search, recursive best-first search, etc. [51]. The best-first method scours
the space of attribute subsets by the greedy (hill-climbing) method. Hence, it gives better subset
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selection [49]. Kohavi and John [49] introduced a best-first search that deviates slightly from the
standard versions to stop the search without reaching the explicit goal. The best-first search usually
terminates upon reaching the goal; however, in optimization solutions, the search needs to be stopped
at any point when it reaches the best solution [49]. WEKA 3.8 uses the best-search method explained
by Kohavi and John [49], which was augmented with a backtracking facility. Setting the number of
consecutive non-improving nodes controls the level of backtracking [50]. The best-first search may
start with an empty set of attributes and search forward or start with a full set of attributes and search
backward or start at any point and search in both directions.

We used the WrapperSubsetEval function in WEKA 3.8 to evaluate the attribute sets. It uses a
wrapper approach to evaluate a subset. It uses cross-validation to estimate the accuracy of the learning
scheme for a set of attributes [50]. We evaluated the attributes using five-fold cross-validation with
RMSE as the measure of evaluation. We set the threshold value, as the standard deviation is less than
1% of the mean to stop the evaluation [53]. We used the BestFirst method with backward selection as the
search method for this study. We terminated the search when the number of consecutive non-improving
nodes exceeded five. The backward elimination method is robust to interaction problems but sensitive
to multicollinearity [54]. A correlation matrix of input attributes (Table 2) shows that there is a high
correlation between SA and CL percentages. Therefore, if the selection process picked both SA and
CL, the attribute selection process was reconducted using the forward selection method, because the
forward selection method is robust against the multicollinearity problems. However, it is sensitive to
feature interaction [54]. When conducting the forward selection method, we set the terminating point
as 10, and all others remained like the backward elimination method.

Table 2. Pearson’s correlation matrix between selected attributes.

Variable Sand Silt Clay BD OC VWC10 VWC33 VWC1500

Sand 1
Silt −0.7020 1

Clay −0.9103 0.34429 1
BD 0.42982 −0.4119 −0.3274 1
OC −0.1806 0.2521 0.09184 −0.3316 1

VWC10 −0.7106 0.60833 0.58319 −0.3800 0.21464 1
VWC33 −0.7278 0.60326 0.60888 −0.3951 0.21325 0.96621 1

VWC1500 −0.7482 0.58033 0.64906 −0.404 0.28858 0.91183 0.92891 1

BD—Bulk density; OC—Organic carbon; VWCx—Volumetric water content at −10, −33, and −1500 kPa.

2.2. Approaches Used to Develop Pedotransfer Functions (PTFs)

2.2.1. K-Nearest Neighbor

K-Nearest neighbor (KNN) algorithms are among the simplest algorithms because of the simple
underlying principle and lower computational demand [55]. This type predicts the unknown output
values based on available input instances with some known input and output instances [56]. KNN
does not use predefined functions to estimate a target output; instead, it searches a reference dataset
through the k-nearest neighbor data points for a set of input attributes that yields the output most like
the target output. Hence, the performance of the KNN method heavily depends on the proximity of
data points to each other in the dataset [7,57]. Instance-based learning (IBL) algorithms were derived
from nearest-neighbor pattern classifiers. Though it is much closer to the edited nearest neighbor
algorithms [58], IBL overcame some of the limitations the edited nearest neighbor algorithms show [59].
Nearest neighbor algorithm presence in WEKA 3.8 (weka.classifiers.lazy.IBk) is an instance-based
learning algorithm [59]. It uses normalized distances for all attributes so that attributes with different
scales have the same impact on the distance function [47]. The KNN parameter specifies the number
k of nearest neighbors to use for predicting the test instance, and a majority vote determines the
outcome. The similarity between the target soils and the known instances is measured by the distance.
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The nearest neighbor algorithm in WEKA 3.8 operates with two major hyperparameters such as
number of neighbors (K parameter) and distance weighing [60]. The K parameter is bounded between 1
and 64 [60]. However, in most cases, it is used as the square root (rounded upward to the nearest whole
number) of the number of instances of the dataset. Leaving one out, cross-validation can be used to
select the best k value between 1 and the value specified as the K parameter [60]. The distance weighting
method could be no distance weighing, weight neighbors by the inverse of their distance, or weight
distance by one minus their distance [60]. The distance weighting function could be Euclidean distance,
Manhattan distance, filtered distance, or Minkowski distance. A set of different nearest neighbor search
algorithms are also available in WEKA 3.8.

We ran the WEKA Experimenter to tune the algorithm for the K parameter, distance weighing
method, and distance function. In most cases, the inverse of distance and Euclidean distance function
showed the lowest RMSE. Hence, we weighted the distances of neighbors by the inverse of their
distances, which is more influential closer to the predicted value. As the distance function, WEKA 3.8
uses the Euclidean distance as the default, considering the computational efficiency. Considering the
computational efficiency and lowest error in most cases during the finetuning assessment, we kept the
nearest search algorithm and distance function at their defaults in WEKA 3.8. In the default, WEKA 3.8
uses the linear nearest neighbor search, which is the fastest search algorithm among them. We set the
square root of number of instances as the KNN parameter (k), and the CrossValidate function was used
to find the optimum number of neighbors (between 1 and k) for the classification. Window size defines
the number of instances allowed in the training pool. In the default setting of WEKA 3.8, the window
size stays open without limiting the size. Hence, we used the default window size of WEKA 3.8.

2.2.2. Artificial Neural Networks

The artificial neural network (ANN) method uses an information processing system inspired
by the structure, processing method, and learning ability of biological neural networks. The ANN
does not require prior knowledge of input–output relationships [61,62] and it is more practical than
other approaches, because it can handle complex nonlinear systems easily [63,64]. The input vector
of neurons (xj) in network is weighted, summed, and biased to produce the hidden neurons (yk)
(Equation (1)). The hidden neurons consist of the weighted input (wjk) and a bias (bk). Then the hidden
neurons yk are operated by an activation or transfer function (f ; Equation (2)). This activation function
is a monotonic function, which reflects the nonlinearity in the input-output relationship. However,
activation functions need options such as sigmoid, hyperbolic, or pure linear functions. Therefore,
the output from the hidden neurons is processed again (Equation (3)) and the transformed to another
activation function (F; Equation (4)). Then the weights and biases are obtained in ANN by minimizing
the objective function (Equation (5)) through an iterative procedure [62].

yk =

j∑
j=1

w jkx j + bk (1)

rk = f (yk) (2)

vl =
k∑

k=1

uklrk + bl (3)

zl = F(vl) (4)

O
(
w jk, bk, ukl, bl

)
=

Ns∑
n=1

Np∑
m=1

[
tn,m − t′n,m

(
w jk, bk, ukl, bl

)]2
(5)
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where j is the number of input neurons, k is the number of hidden neurons, z is the output, Ns is the
number of calibration samples, Np is the number of parameters, t is the observed variables, and t′ is
the predicted variables.

The multilayer perceptron (MLP) is a type of ANN based on a back-propagation algorithm [48]
that is commonly used for PTF development [14]. Back-propagation was a landmark in ANN because
it provides a computationally efficient way to train MLPs [61].

MLP in WEKA 3.8 operates on three hyperparameters: the number of hidden nodes, learning
rate, and momentum. The number of hidden nodes defines the number of nodes in hidden layers [60].
The stability of the neural network, and hence the error, is determined by the number of hidden
neurons. The learning rate controls the speed at which the model learns. Specifically, it controls
the amount of apportioned error that the weights of the model are updated with each time they are
updated, such as at the end of each batch of training examples [65]. It can range from 0.1 to 1.0.
With a well-configured learning rate, the model will learn to best approximate the function given
the available resources. In general, a high learning rate allows the model to learn faster (but on a
sub-optimal set of weights), while a lower learning rate may allow the model to learn a more optimal
set of weights but may take significantly longer [65]. Momentum is a coefficient that controls how
quickly the old examples get down-weighted in the moving average [66]. Momentum varies between
0.1 to 1.0. The most straightforward momentum trick is to make the updates proportional to this
smoothed gradient estimator instead of the instantaneous gradient to remove some of the noise and
oscillations involved in the gradient descent [66].

We used the MLP function in WEKA 3.8 (weka.classifiers.functions.MultilayerPerceptron) for this
study. We optimized the number of hidden neurons, learning rate, and momentum using the inbuilt
CVParameterSelection function of WEKA 3.8. We varied the learning rate and momentum from 0.1 to
0.9, with increments of 0.1 per step. We optimized the algorithm for the number of hidden neurons from
1 to twice the number of attributes (2N). The learning rate varies from 0.2 to 0.4, while the momentum
varies from 0.1 to 0.3 for different input and VWC levels. Hence, in this study, we set the learning rate
and momentum to 0.3 and 0.2, respectively, which are the default values in WEKA 3.8. The choice of
the number of hidden layers and neurons is vital to the success of this method. Sheela and Deepa [67]
have summarized the approaches taken by various authors to decide the number of hidden nodes.
Since we used the default values for learning rate and momentum, we used a trial-and-error approach
to find the optimum number of hidden neurons, starting with one neuron and adding individual nodes
(dynamic node creation) up to 2N, and selected the best result.

2.2.3. Random Forest

The random forest (RF) approach to data exploration, analysis, and predictive modeling combines
the decisions of individual decision trees that learned independently. Decisions made by RF are much
stronger and more stable than those of the individual trees [68]. Random forest is relatively robust
to errors and outliers. The generalization error for a forest converges as long as the number of trees
in the forest is large, thus overfitting to the training dataset is not a problem [69]. However, after a
certain point, the benefit gained from learning more trees becomes smaller than the added cost in
computation time.

The random forest algorithm in WEKA 3.8 does not show any dependencies or constraints
between parameters [60]. It operates with three hyperparameters: number of trees, number of features,
and maximum depth. The number of trees is an integer between 2 and the maximum number of
iterations defined by the user [60]. The algorithm itself defines the number of trees, considering the
error [60]. The number of features is the number of randomly sampled attributes used as candidates
at each tree node [60]. At each node in the RF, the method selects the best result among a subset of
predictors randomly chosen at that node. This counterintuitive strategy performs well compared to
other classifiers [70]. RF schemes are relatively insensitive to the number of attributes selected for
consideration at each node; however, they typically use a value between 1 and log2d + 1 or d/3, where
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d is the number of predictor variables [69]. The accuracy of the RF also depends on the strength of
the individual classifiers and the level of dependence between them. It is ideal for maintaining the
strength of individual classifiers without increasing their correlation. Users can define the range of
maximum depth to which to grow the forest. The maximum depth of the tree is bounded from 2 to 20.
However, it can be unlimited when the value is set to 0 [60].

We optimized the number of iterations (number of trees), depth of the forest, and number of
features of all input and VWC levels using the inbuilt function of CVParameterSelection of WEKA 3.8.
For the optimization, we varied the number of trees from 10 to 500. However, the optimum number of
trees was less than 100 for all the input and VWC levels. Therefore, in this study, we used 100 as the
maximum number of iterations, which is the default of WEKA 3.8. In this study, we chose the nearest
whole number to one-third of the number of attributes [70] as the number of features. We optimized
the maximum depth from 1 to 2N, and the best results were selected.

2.3. Using Volumetric Water Content (VWC)10 as an input to Predict VWC33 and VWC1500

In some instances, it may be necessary to estimate PWP and FC with strict accuracy. In such
cases, the PTFs above may not be able to provide estimations with excellent accuracy. Hence, we may
have to rely on field estimations. Although the estimation of FC is relatively simple compared to
PWP, the estimation of PWP may not be practical because it is time-consuming and requires specific
laboratory equipment. Therefore, we searched for ways to increase the accuracy of PTFs to estimate
PWP by further refining using VWC as an input [71,72]. We used VWC10 as an input along with SSC,
BD, and OC to estimate the PWP of tropical Sri Lankan soils. Furthermore, we refined the PTFs to
estimate VWC33 using VWC10 as an input variable. VWC10 is easily measurable compared to VWC33
and in most cases VWC33 is considered as FC under Sri Lankan conditions. We kept this assessment
separate here we used VWC as an input, whereas we used it as an output in earlier steps. Furthermore,
we assessed the functionality of those PTFs by comparing the ability to predict the soil’s available
water content.

2.4. Model Evaluation

We assessed the performances of the PTFs developed by different machine learning methods
and input levels in terms of the following statistical functions using the hydroGOF package [73] of
R software [74].

It can detect the additive and proportional differences in the observed and predicted means and
variances. We used the correlation coefficient (r), mean absolute error (MAE), root-mean-square error
(RMSE), coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE), index of agreement (d), and
confidence index (CI) to assess and compare the PTFs developed by different methods and different
input levels. The correlation coefficient (Equation (6)) and the coefficient of determination (Equation (7))
are simple statistics that can provide an insight into how well the estimated and observed data are
correlated [75]. MAE (Equation (8)) and RMSE (Equation (9)) are often used to see how close estimates
are to the observations [75]. The NSE (Equation (10)) is a normalized statistic that determines the
relative magnitude of the residual variance compared to the measured data variance [76]. NSE ranges
from −infinity to 1, and close to 1 indicates a perfect match. Willmott [77] proposed the index of
agreement (Equation (11)) as a standardized measure of the degree of model prediction error. The range
of d is between 0 and 1, where 1 indicates a perfect match and 0 indicates no agreement at all. Model
performance can be classified into six classes (>0.85 = Excellent, 0.76 − 0.85 = Very good, 0.66 − 0.75 =

Good, 0.61 − 0.65 = Reasonable, 0.51 − 0.60 = Poor, 0.41 − 0.50 = Very poor, and <0.40 = Extremely
poor) based on the confidence index (CI; Equation (12)) [78,79].

r =

∑N
i=1

(
Si − S

)(
Oi −O

)
√[∑N

i=1

(
Si − S

)2
+

∑N
i=1

(
Oi −O

)2
] (6)
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R2 =


∑N

i=1

(
Oi −O

)(
Si − S

)
√∑N

i=1

(
Oi −O

)2
√∑N

i=1

(
Si − S

)2


2

(7)

MAE =
1
N

N∑
i=1

|Si −Oi| (8)

RMSE =

√√√
1
N

N∑
i=1

(Si −Oi)
2 (9)

NSE = 1−

∑N
i=1 (Oi − Si)

2∑N
i=1 (Oi −O)

2 (10)

d = 1−

∑N
i=1 (Oi − Si)

2∑N
i=1

(∣∣∣Si −O
∣∣∣+ ∣∣∣Oi −O

∣∣∣)2 (11)

CI = r× d (12)

where N is the number of data instances used for modeling, Oi is the observed target value, Si is
the simulated target value, O is the mean of observed target values, and S is the mean of simulated
target values.

The Diebold–Mariano test is used to compare the modeling accuracy of different models (Equation
(13)). We compared the simulation accuracy of the models using the Diebold–Mariano test [80] of the
forecast package [81,82] in R statistical software. We selected the best performing method, considering
the lowest RMSE values in each input levels as the base method. If two methods recorded similar values,
we considered the highest CI value among them to choose the best performing method. To compare
the input levels, input level 1 (Set 1) was used as the base method.

DM =
d√

2π f̂d(0)
n

(13)

where 2π f̂d(0) is a consistent estimate and n is the sample size.

3. Results and Discussion

3.1. Selection of Essential Parameters to Estimate Volumetric Water Content (VWC) of Sri Lankan Soils at −10,
−33, and −1500 kPa by Selected Machine Learning Algorithms

Using a feature selection approach, we evaluated the importance of different input parameters
on the prediction of different targeted volumetric water contents (VWCs) using different machine
learning algorithms and different input levels. We conducted the feature selection process using the
wrapper approach and best-first search method. Three selected machine learning algorithms showed
contrasting results (Table 3) as well as input levels.
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Table 3. Attributes selected by each algorithm for each input levels to estimate volumetric water
content (VWC) for Sri Lankan soils.

Input
Level VWC

ANN KNN RF

SA SI CL BD OC SA SI CL BD OC SA SI CL BD OC

Set 1
VWC10 � � � � �
VWC33 � � � � �

VWC1500 � � � � �

Set 2
VWC10 � � � � � � �
VWC33 � � � � � � � �

VWC1500 � � � � � � �

Set 3
VWC10 � � � � � � � � � � �
VWC33 � � � � � � � � � � �

VWC1500 � � � � � � � � � �

KNN—k-nearest neighbor method; ANN—artificial neural networks; RF—random forest.

When we use SA, SI, and CL (SSC) as input variables, the ANN algorithm selected SA and SI as
essential variables to estimate VWC10 and VWC1500, and SI and CL as essential variables to estimate
VWC33. With the inclusion of BD as an input variable, the selection processes of the ANN algorithm for
all VWC levels selected SI, CL, and BD as important parameters and excluded SA from their selected
attribute list. During the selection process for VWC10 and VWC33, the addition of OC to SSC and BD
did not affect the variable lists of the ANN algorithm and remained as the list for Set 2. However, the
ANN algorithm chose OC, SA, and BD as essential parameters to predict the VWC1500.

For SSC, the KNN algorithm only selected SA as an essential parameter to predict VWC10, VWC33,
and VWC1500. Even with the addition of BD to SSC, the KNN algorithm did not change the list of
important parameters to predict VWC10 and VWC1500. However, it selected SA and BD as essential
parameters to predict VWC33. With the addition of OC to SSC and BD, the KNN algorithm selected all
attributes except SA as essential parameters to predict VWC10. Furthermore, it selected SA, SI, BD,
and OC as essential parameters to predict VWC33, while SI, Cl, and OC were selected as essential
parameters to predict VWC1500.

Conforming to the close linear relationships among the three selected VWCs, feature selection
of the RF algorithm showed quite a similar variation among the VWCs; however, it varied among
the input levels. For SSC, the RF algorithm selected SA and SI as essential parameters to predict the
VWC10 and VWC1500, while SI and CL were selected as essential parameters to predict the VWC33.
With the addition of BD to SSC, all VWC levels selected SA, SI, and BD as essential parameters for their
predictions. With the addition of OC as an input variable to SSC and BD, all VWC levels selected SA,
SI, BD, and OC as essential parameters for their predictions.

3.2. Development of Pedotransfer Functions (PTFs) to Estimate Volumetric Water Content (VWC) of Tropical
Sri Lankan Soils at −10, −33, and −1500 kPa

Table 4 listed the performances of PTFs developed by three machine learning algorithms (KNN,
ANN, and RF) using the above attributes. Although we did not use all indices to compare the methods
and input levels, we mention these as they may be needed in future comparison studies.

RMSE values revealed that the PTFs developed by the RF algorithm gave more accurate results
than the ANN algorithm, irrespective to the level of input. The PTFs developed by the KNN algorithm
also gave comparative results in some instances, such as all input levels of VWC33, input level 3 of
VWC10, and input level 1 of VWC1500. With the addition of BD and OC as inputs, in all three moisture
levels, the ANN, KNN, and RF algorithms enhanced the level of accuracy. MAE values also revealed
the superiority of the KNN and RF algorithms over the ANN algorithm for all VWCs and all input
levels. The RF algorithm showed better results than the KNN algorithm for almost all input levels and
target VWCs. With the addition of BD as input, in all three VWC levels, the RF and ANN algorithms
enhanced the level of accuracy. The KNN algorithm also enhanced the accuracy, with the addition of
BD only for VWC33. The addition of OC to SSC and BD increased the prediction ability of the RF and
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KNN algorithms for all VWCs, while the ANN algorithm showed improvement only for VWC1500.
NSE, d, and CI values also show a similar pattern of performance with the addition of BD and OC.

Table 4. Performance of the pedotransfer functions (PTFs) developed to estimate volumetric water
content (VWC) by selected algorithms for Sri Lankan soils.

Set Method r MAE RMSE R2 d NSE CI DM

VWC10

1
ANN(3) 0.665 0.0532 0.0678 0.442 0.802 0.425 0.53 S
KNN(11) 0.665 0.0492 0.0669 0.442 0.789 0.438 0.52 S

RF(3) 0.708 0.0467 0.0631 0.502 0.812 0.502 0.57 -

2
ANN(5) 0.700 0.0507 0.0648 0.490 0.824 0.475 0.58 S
KNN(11) 0.665 0.0492 0.0669 0.442 0.789 0.438 0.52 S

RF(5) 0.732 0.0458 0.0608 0.539 0.830 0.538 0.61 -

3
ANN(3) 0.700 0.0507 0.0648 0.490 0.824 0.475 0.58 S
KNN(11) 0.762 0.0420 0.0581 0.580 0.843 0.577 0.64 NS

RF(7) 0.764 0.0440 0.0577 0.583 0.851 0.583 0.65 -

VWC33

1
ANN(2) 0.694 0.0479 0.0614 0.478 0.820 0.455 0.57 S
KNN(12) 0.708 0.0446 0.0588 0.502 0.819 0.501 0.58 NS

RF(4) 0.727 0.0435 0.0572 0.529 0.829 0.529 0.60 -

2
ANN(5) 0.705 0.0467 0.0605 0.497 0.833 0.473 0.59 S
KNN(12) 0.754 0.0425 0.0548 0.568 0.846 0.568 0.64 NS

RF(6) 0.756 0.0419 0.0545 0.572 0.851 0.572 0.64 -

3
ANN(5) 0.705 0.0467 0.0605 0.497 0.833 0.473 0.59 S
KNN(8) 0.772 0.0398 0.0530 0.597 0.857 0.596 0.66 NS

RF(7) 0.772 0.0400 0.0530 0.596 0.858 0.595 0.66 -

VWC1500

1
ANN(3) 0.711 0.0372 0.0494 0.492 0.824 0.472 0.58 S
KNN(12) 0.727 0.0346 0.0475 0.528 0.826 0.528 0.60 NS

RF(4) 0.748 0.0337 0.461 0.560 0.842 0.559 0.63 -

2
ANN(6) 0.723 0.0367 0.0485 0.487 0.826 0.452 0.58 S
KNN(12) 0.727 0.0346 0.0475 0.528 0.826 0.528 0.60 S

RF(6) 0.764 0.0324 0.0446 0.584 0.855 0.584 0.65 -

3
ANN(4) 0.736 0.0367 0.0482 0.519 0.834 0.512 0.60 S
KNN(12) 0.754 0.0335 0.0459 0.569 0.830 0.560 0.63 S

RF(6) 0.777 0.0312 0.0435 0.603 0.857 0.601 0.67 -

r—Pearson correlation coefficient; MAE—Mean absolute error; RMSE—root-mean-square error; R2—Coefficient
of determination; d—Index of agreement; NSE—Nash–Sutcliffe efficiency; CI—Confidence index;
DM—Diebold–Mariano Test (the best performing method (lowest RMSE, if RMSE equal, then highest CI) was
selected as the base method, NS—No significant difference from the best method, S—Significant difference from
the best method, KNN—k-nearest neighbor method; ANN—artificial neural networks; RF—random forest; Values
in brackets are: for KNN—value used as K after optimizing between 1 to 18 (SQRT (# of ins.)), for ANN—value
selected as number of hidden nodes after trial and error selection from 1 to 2N, and for RF—value selected as depth
after trial and error selection from 1 to 2N.

The results of the Diebold–Mariano test showed the superiority of the RF algorithm at all input
levels. In some cases, the KNN algorithm performs equally to the RF algorithm. For all input levels
and VWCs, the RF algorithm showed significantly higher performance than the ANN algorithm.
Furthermore, the RF algorithm had significantly better performance than the KNN algorithm at the
first two input levels (Set 1 and 2) of VWC10 and last two input levels (Set 2 and 3) of VWC1500.
With the addition of BD as an input variable, the RF algorithm showed a significant boost in accuracy
in VWC10 and VWC33 predictions (Table 5). The ANN algorithm also significantly enhanced the
accuracy with the addition of BD for VWC10. The KNN algorithm did not select BD as an essential
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parameter to predict VWC10 and VWC1500; however, it showed significantly increased accuracy in
VWC33 predictions with the addition of BD as an input parameter. The addition of OC and BD as
input parameters significantly improved the performance of the PTFs developed by the RF algorithm
to estimate all targeted VWCs. The addition of BD and OC significantly improved the ability of the
PTFs developed by the KNN algorithm to predict VWC10 and VWC33. However, with the addition of
BD and OC, KNN did not show significantly improved performance, except for VWC10. These results
agree with the previous findings, which have reported an enhancement of accuracy with the addition
of BD and OC to SSC [2,11,83,84].

Table 5. Statistical comparison of the pedotransfer functions (PTFs) developed by different input levels.

Input Level

Volumetric Water Content at

−10 kPa −33 kPa −1500 kPa

ANN KNN RF ANN KNN RF ANN KNN RF

Set 2 S - S NS S S NS - NS
Set 3 S S S NS S S NS NS S

KNN—k-nearest neighbor method; ANN—artificial neural networks; RF—random forest; NS—No significant
difference from input level Set 1; S—Significant difference from input level Set 1.

Figure 1 shows the relationships of measured VWC and PTF-estimated VWC for different input
levels assessed by different machine learning algorithms. The closeness of points to the 1:1 line
indicates the model’s efficiency. Figure 1 shows the superiority of the RF algorithm to the other selected
algorithms, with the observations strictly related to the predictions of the PTFs developed by the RF
algorithm. Furthermore, it shows accuracy enhancement with the addition of BD and OC as input
parameters for the model predictions of the RF algorithm. Figure 1 shows that the linearity of the
observed–estimated relationship increases with the decrease in VWCs of soils, as VWC1500 showed
the closest and most stable relationship compared to VWC33 and VWC10. A similar relationship
was reported by Gunarathna et al. [6] for their PTFs developed using the multiple linear regression
approach. With the addition of BD and OC, only the RF algorithm showed improved performances for
VWC33 and VWC1500 by the RF method. The KNN algorithm slightly underpredicted both FC and
PWP at most input levels, especially in soils with higher FC and PWP. Among the targeted VWCs,
VWC10 showed the highest error among the PTFs developed using the KNN algorithm. Among the
PTFs developed using the ANN algorithm, those developed to estimate VWC10 and VWC33 showed
poor performance compared to those developed to estimate VWC1500.
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Figure 1. Relationship between measured and estimated volumetric water contents under different
machine learning methods.

3.3. Error Distribution of Developed Pedotransfer Functions (PTFs) to Estimate Volumetric Water Content
(VWC) of Tropical Sri Lankan Soils at −10, −33, and −1500 kPa

Figure 2 shows the distribution of residuals of PTF predictions. Errors of all PTFs show symmetric
distribution, with a tendency to cluster in the middle of the plots. The error is clustered around
the 0 (of the Y-axis), without any apparent pattern. Furthermore, the error did not show any trend.
Therefore, the residual analysis confirmed the random distribution of error in all three algorithms, input
levels, and target VWC levels. Hence, model predictions can be accepted as fair predictions. The RF
algorithm showed comparatively better error distribution (fewer scattered data points compared to
the central cluster near the 0 of the Y-axis) compared to the other two algorithms. Furthermore, error
analysis confirmed that there are no outliers in the dataset, which was also confirmed using the inbuilt
function of data preprocessing of WEKA 3.8.
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Figure 3 shows the relationship between the percentage of points predicted within the tolerance
(Y-axis), with error tolerance on the X-axis. The error on the X-axis is the absolute error. The resulting
curve estimates the cumulative distribution function of the error, which is known as the error
characteristics curves. The error characteristics curves showed that more than 60% of observations
were within the error tolerance of 0.05 m3/m3 for all algorithms for all input levels, except the ANN
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algorithm, to predict VWC10 using SSC as the input variable (Figure 4). With the addition of BD as an
input variable to SSC (Set 2) and the addition of OC to the Set 2 (Set 3), the curves moved upwards,
closer to 1, confirming the improved accuracy with the addition of BD and OC. According to the
performance shown in Table 4 and Figures 2–4, we suggest using input level 3 (SSC, BD, and OC) to
estimate VWC 10 and VWC33 (field capacity) with the RF or KNN algorithm for tropical Sri Lankan
soils. To estimate the VWC1500 (permanent wilting point), we suggest using the RF algorithm, using
SSC, BD, and OC as input methods. However, the use of Set 1, 2, or 3 depends on the availability of
data, as most of the available datasets and laboratory facilities are limited to Sri Lanka. For places
where data are limited, SSC data can be used to predict field capacity and wilting point with acceptable
accuracy by applying the RF algorithm.Water 2019, 11, x FOR PEER REVIEW 15 of 23 
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machine learning algorithms in this study and results reported by Gunarathna et al. [6] for the multiple
linear regression (MLR) method.

Error characteristic curves (Figure 3) show that the PTFs developed by the KNN and RF algorithms
can estimate FC with reasonable accuracy. Therefore, field-level assessment of field capacity can
successfully be replaced by the PTFs developed using the RF and KNN algorithms. However, attention
should be paid to the accuracy requirement of the user. Error characteristic curves (Figure 4) show
that the PTFs developed by the RF and KNN algorithms to estimate −1500 kPa were able to estimate
over 80% of the population with an error less than 0.05 m3/m3 using any input level. Therefore,
the estimation of PWP is quite accurate and can be done even with minimum inputs such as SSC.
The estimation of PWP using laborious and resource-consuming field- or laboratory-level experiments
can be successfully replaced by the PTFs developed by the RF or KNN algorithms. The PTFs developed
by the RF or KNN algorithm using SSC, BD, and OC predicted about 70% of the population within
an error range of 0.05 m3/m3. Hence, the PTFs developed by the RF and KNN algorithms can be
successfully used to predict field capacity with reasonably good accuracy.

3.4. Comparison of the Pedotransfer Functions (PTFs) Developed by Machine Learning Algorithms with
Previously Reported PTFs Using MLR Method

Gunarathna et al. [6] developed PTFs to estimate VWC at −10, −33, and −1500 kPa using different
input levels. We calculated the VWC of −10, −33, and −1500 kPa for respective input levels of this study
using the equation from Gunarathna et al. [6]. Compared to their results, we found that, regardless
of the level of input attributes, the PTFs developed by the ANN algorithm were inferior to those
developed by MLR (Figure 4). Fereshte [29] and Minasny et al. [85] also reported the inferiority
of ANN in predicting VWC at −10, −33, and −1500 kPa. Except for the cases with low input level
(Set 1) and high moisture levels (−10 and −33 kPa), the PTFs developed by the RF algorithm were
superior to the results reported by Gunarathna et al. [6] using MLR. The KNN algorithm also showed
superior results to those from Gunarathna et al. [6] for high input (Set 3) and high moisture levels.
Other researchers have reported that, at high moisture levels, the KNN algorithm was a competitive
alternative to MLR for predicting points on the water retention curve [86] and a competitive alternative
to the ANN algorithm for predicting the cation exchange capacity [87]. For cases with low moisture
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levels (−1500 kPa), for all input levels, the results reported by Gunarathna et al. [6] were generally
superior to the PTFs developed by the KNN and ANN algorithms, while the RF algorithm showed
superior results to MLR. The RF algorithm showed reasonable or good results for all input levels and
target VWC levels, except VWC10 with SSC. With high input levels (Set 3), the RF algorithm showed
good performance at all target VWC levels.

3.5. Inclusion of Volumetric Water Content as an Input Parameter

We searched for ways to increase the accuracy of PTFs when estimating PWP by further refining
them using VWC [71,72]. We used VWC10 as an input along with SSC, BD, and OC to estimate the
PWP of tropical Sri Lankan soils. Furthermore, we refined the PTFs to estimate VWC33 using VWC10
as an input variable. VWC10 is easily measurable compared to VWC33 and in most cases VWC33 is
considered as FC under Sri Lankan conditions. In the feature selection process of both VWC levels,
all three algorithms selected VWC10 as an input. Figure 5 and Table 6 show the accuracy of the new
PTFs developed by including VWC10 as an input. The results revealed that the inclusion of VWC10
as an input tremendously increased the performance of all algorithms; however, RF is still the best.
According to the error characteristics curves, the PTFs developed by the KNN and RF algorithms (to
predict PWP) predicted more than 60% of the population within an error tolerance level of 0.02 m3/m3

and over 90% of the population within an error tolerance level of 0.05 m3/m3. In the case of FC, all the
algorithms predicted over 70% and 95% of the population within an error tolerance of 0.02 m3/m3 and
0.05 m3/m3, respectively. All the statistical criteria confirmed the excellent predictability of the PTFs
developed by all three algorithms. Few studies tried to use VWCs as inputs of PTFs. However, almost
all studies attempted to develop parametric PTFs [71,72,88,89]. In those studies, they used VWC33 and
VWC1500 as input(s) of the PTFs developed to estimate soil water retention parameters or saturated
hydraulic conductivity. With the inclusion of VWCs as inputs, they reported improvements in their
PTFs. The ROSETTA model is a famous example of using VWCs as input parameters to estimate water
retention parameters [72]. In our study, we noticed an improvement in the performance of PTFs with
the inclusion of VWC10 as an input parameter. Since the estimation of VWC10 is much easier than that
of PWP and also significantly easier than the FC (in most studies in Sri Lanka used VWC33 as FC),
the inclusion of VWC10 as an input parameter could be an excellent option to increase the accuracy
of PTFs.

Table 6. Performance of VWC10-supported pedotransfer functions (PTFs) developed to estimate
volumetric water content (VWC)1500.

Algorithm Inputs R MAE RMSE R2 d NSE CI

ANN-33 CL, VWC10 0.965 0.016 0.022 0.932 0.982 0.931 0.948
KNN-33 SA, VWC10 0.966 0.016 0.022 0.932 0.981 0.931 0.948

RF-33 SA, SI, BD, VWC10 0.971 0.015 0.020 0.943 0.984 0.941 0.955
ANN-1500 SI, CL, OC, VWC10 0.897 0.022 0.031 0.805 0.942 0.797 0.845
KNN-1500 SA, CL, OC, VWC10 0.902 0.020 0.030 0.814 0.944 0.812 0.851

RF-1500 SA, SI, BD, OC, VWC10 0.912 0.020 0.029 0.832 0.948 0.828 0.865
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3.6. Functionality of Volumetric Water Content (VWC)-Supported Pedotransfer Functions (PTFs)

We estimated the available water content (AWC) of tropical Sri Lankan soils using field-observed
FC and PWP and PTF-estimated FC and PWP to check the functionality of the developed PTFs
(Figure 6). The results showed that AWCs calculated using PTFs have quite a close relationship with
the measurement-based AWC values. Among the three machine learning algorithms, RF showed a
better correlation compared to the other two algorithms because of the comparatively better predictions
of both FC and PWP. Residual plots (Figure 7) show that both FC and PWP reported the random
distribution of errors compared to the AWC. Error shows a slight negative trend, which indicates a
slight overestimation of AWC, especially for soils with a high water-holding capacity. Gunarathna
et al. [6] reported similarities of observations and PTF estimations in irrigation water estimations for
the tropical Sri Lankan soils. The PTFs developed here show significantly better estimations of FC and
PWP of tropical Sri Lankan soils than Gunarathna et al. [6] presented. Hence, this overestimation may
not be an issue for field-level applications. However, the authors suggested more studies to further
finetune the available PTFs or develop new PTFs for tropical Sri Lankan soils. Furthermore, we suggest
further functionality assessments of these PTFs for numerous uses, including process-based models.
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4. Conclusions

We used a wrapper approach and a best-first search method to identify ideal candidates for
developing PTFs using different machine learning algorithms. Different machine learning algorithms
choose different input combinations to develop PTFs for targeted VWCs. We developed PTFs to
estimate the VWC of Sri Lankan soils at −10 (VWC10), −33 (VWC33), and −1500 (VWC1500) kPa
with good accuracy using different machine learning algorithms (ANN, KNN, and RF) with different
input levels for SSC (Set 1), SSC + BD (Set 2), and SSC + BD + OC (Set 3). Statistical criteria, residual
analysis, and error characteristic curves were used to compare the performance of machine learning
algorithms. We found that the RF algorithm gives significantly better results compared to the other
selected machine learning algorithms for all input levels and targeted VWC levels. Among the input
combinations, a combination of SSC, BD, and OC led to significantly better performance compared
to the other input levels. We compared our PTFs with the PTFs reported by Gunarathna et al. [6] for
tropical Sri Lankan soils. We found that the PTFs developed by the RF algorithm are superior to those
reported previously, especially with high input attributes. We assessed the possibility of using VWC10
to develop PTFs to estimate VWC33 and VWC1500 using machine learning algorithms. With that
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addition, all three machine learning algorithms boosted the performance and showed superior accuracy
compared to the PTFs developed earlier. Among the three machine learning algorithms, RF was the
best. We studied the functionality of VWC10-supported PTFs to estimate the AWC of tropical soils and
found that those PTFs were reliable for estimating the AWC of tropical Sri Lankan soils.

We developed a hierarchy of PTFs for input ranges using different machine learning algorithms
and identified the RF algorithm as the most robust machine learning algorithm for developing PTFs for
tropical Sri Lankan soils. Therefore, we recommend that the PTFs developed using the RF algorithm be
incorporated in the relevant software to make up for the data gaps in tropical regions. Since SSC alone
can estimate FC and PWP with reasonable accuracy, we suggest using a set of options (based on input
level) to giving users the ability to choose input combinations (such as SSC, SSC and BD, SSC, BD, and
OC and SSC, BD, OC, and VWC10). This may help with catering to most users in data-scarce tropical
regions. Although the new PTFs had good accuracy for AWC estimations, we suggest further validation
of the functionality of these PTFs for numerous applications, including process-based models.
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