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Abstract: Drought stress seriously affects crop growth, development, and grain production.
Existing machine learning methods have achieved great progress in drought stress detection and
diagnosis. However, such methods are based on a hand-crafted feature extraction process, and the
accuracy has much room to improve. In this paper, we propose the use of a deep convolutional neural
network (DCNN) to identify and classify maize drought stress. Field drought stress experiments
were conducted in 2014. The experiment was divided into three treatments: optimum moisture, light
drought, and moderate drought stress. Maize images were obtained every two hours throughout
the whole day by digital cameras. In order to compare the accuracy of DCNN, a comparative
experiment was conducted using traditional machine learning on the same dataset. The experimental
results demonstrated an impressive performance of the proposed method. For the total dataset,
the accuracy of the identification and classification of drought stress was 98.14% and 95.95%,
respectively. High accuracy was also achieved on the sub-datasets of the seedling and jointing
stages. The identification and classification accuracy levels of the color images were higher than those
of the gray images. Furthermore, the comparison experiments on the same dataset demonstrated
that DCNN achieved a better performance than the traditional machine learning method (Gradient
Boosting Decision Tree GBDT). Overall, our proposed deep learning-based approach is a very
promising method for field maize drought identification and classification based on digital images.

Keywords: drought identification; drought classification; phenotype; drought stress; maize; deep
convolutional neural network; traditional machine learning

1. Introduction

Maize is one of the main food crops, and drought stress significantly affects its growth and
decreases its yield at all developmental stages [1,2]. Different drought stress levels have different
effects on maize growth and yield [3]. Meanwhile, different drought stress levels of maize require
different amounts of irrigation [4]. Therefore, early detection and accurate drought stress monitoring
is of great significance for maize precision irrigation, water consumption reduction, and to ensure a
high and stable yield of maize [5].

Traditional drought stress severity monitoring is based on soil moisture sensors [6], which have
low efficiency and limited indirect and spatial area [7,8]. Maize plants develop different physiological
mechanisms to mitigate the impact of drought stress, causing a series of phenotypic changes, such
as changes in leaf color and texture [9], leaf rolling, a decreased leaf extension rate, and plant
dwarfing [10,11]. Thus, maize phenotypic variation is a direct manifestation of maize drought stress.
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It is a rapid and non-destructive method to identify and classify maize drought stress based on
phenotypic characteristics.

With the development of computer vision, machine learning and image processing techniques are
widely being used in crop biotic and abiotic stress phenotype research, and traditional machine learning
has proved to be one of the most flexible and powerful crop phenotype analysis techniques [12-14].
An artificial neural network (ANN) and image processing techniques were applied to identify and
classify phalaenopsis seedling diseases. Specifically, the color and texture features of images were
extracted and then used as inputs to the neural network to detect disease [15]. Zakaluk and Sri Ranjan
used digital camera-acquired tomato images under four soil water stress levels and built an artificial
neural network model with RGB images to determine the leaf water potential [16]. Support vector
machine (SVM) and the Gaussian processes classifier (GPC) were applied to automatically detect
regions in spinach canopies with different soil moisture levels based on thermal and digital images [17].
Stress detection based on traditional machine learning mainly includes image segmentation and feature
extraction. Then, the features are input into the machine learning algorithm for stress identification,
classification, quantification, and prediction [12]. Although traditional machine learning has achieved
good results in biotic and abiotic stress recognition, it often requires segmentation of the target image
and manual extraction of image features, and is therefore time-consuming and labor-intensive [18].
Furthermore, manually extracted features are easily affected by aspects of the background and
environment, such as soil, lighting, and wind; therefore, the accuracy of classification is limited [19].

In recent years, deep convolutional neural network integrating image feature extraction with
classification in a single pipeline made great breakthroughs in the image identification field [20,21],
so much so that CNNs have started to become mainstream in biotic and abiotic stress diagnosis and
classification [22]. In contrast to traditional machine learning approaches, CNNs have been shown to
substantially outperform approaches for complex and abstract plant phenotyping tasks [19]. A deep
convolutional network was applied to sort haploid seeds, and it outperformed the traditional machine
learning method based on color and texture [23]. Uzal et al. reported that when the deep learning
model and SVM were used to estimate the number of seeds in soybean pods, the estimation accuracy
of deep learning was significantly higher than that of SVM [24]. In the monitoring and diagnosis
of crop stress, the deep learning method was shown to be more accurate and objective than expert
diagnosis [25]. Deep learning models were developed to detect and diagnose plant diseases based
on leaf images. The detection accuracy of 58 plant diseases was 99.53% [26]. In general, there are
two means to apply the deep learning model. One is “Train from scratch” and the other is “Transfer
learning”. “Train from scratch” refers to changing all the weights and parameters of the model during
training. “Transfer learning” keeps the weight of the model convolution layer fixed, only changing the
weight and parameters of the classification layer. “Transfer learning” only requires a small dataset and
low hardware facilities and achieves better results in smaller datasets. Therefore, it is a good choice to
use a pre-trained model to transfer learning with small datasets [27].

In this study, we used the DCNN method to identify and classify different drought stress levels
(optimum moisture, light drought stress, and moderate drought stress) of maize. Datasets were
collected from the field environment. Two DCNN models were applied to detect maize drought stress.
We also compared the identification accuracy of DCNN and traditional machine learning (GBDT) [9].
The main contributions of this paper are summarized as follows:

1. Inorder to rapidly, accurately, and nondestructively identify different drought stress levels in maize,
we proposed the use of the DCNN method to identify and classify different drought stress levels of
maize. We compared the methods of transfer learning and train from scratch using the Resnet50 and
Resnet152 model to identify maize drought stress. The results show that the identification accuracy
of transfer learning is higher than that of train from scratch, and it saves a lot of time.

2. We set up an image dataset for maize drought stress identification and classification.
Digital cameras were applied to obtain maize drought stress images in the field. Drought stress
was divided into three levels: optimum moisture, light, and moderate drought stress. Maize plant
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images were captured every two hours. The size of the images was 640 x 480 pixels, and a total
of 3461 images were captured in two stages (seedling and jointing stage) and were transformed
into gray images.

3. We compared the accuracy of maize drought identification between the DCNN and traditional
machine learning approach based on manual feature extraction on the same dataset. The results
showed that the accuracy of DCNN was significantly higher than that of the traditional machine
learning method based on color and texture.

2. Materials and Methods

2.1. Field Experiment

The experiment was carried out at the experimental base of the Cotton Research Institute of
Shanxi Academy of Agricultural Sciences in 2014 (35.03°N, 110.58°E). The annual average temperature
of the site is 14.5°C, and the annual illumination is 2139 h. The experiment used a combination of a
large electric movable rain-out shelter and a control pond to control the soil moisture content (Figure 1).
The area of each plot was 2 m? (1 m x 2 m), and each plot was surrounded by cement. The soil type
was loam soil, the soil depth was 1.5 m, the average bulk density of the soil was 1.39 g/cm?, and the
field water capacity was 25.09%. In order to achieve accurate water control, each plot bottom was
covered with polyethylene thick film to partition water exchange with the deep soil layer. The maize
variety used was Zhengdan 958, which is the most popular cultivated variety in China and has
excellent agronomic traits. The growth stage was about 96 days, the plant height was 240 cm, and the
spike height was about 100 cm. Maize was sown in June 18, 2014, with 2 rows and 6 plants per row.
Except for the different irrigation treatments, all other farming activities were the same as those used
in local high yield fields. Figure 1 depicts the test area situation.

Figure 1. The general situation of the test area.

The experiment was divided into two growth stages (seedling and jointing) and three different
water treatments, that is, optimum moisture (OM), light drought stress (LD), and moderate drought
stress (MD). Based on the water requirements at different growth stages of maize, the water contents for
the optimum moisture, light drought, and moderate drought conditions were 65-80% Field capacity
(FC), 50-65% FC, and 30—40% FC, respectively, at the seedling stage and 65-80% FC, 50-60% FC,
and 40-50% FC, respectively, at the jointing stage. Normal soil moisture supply during the early
growth stage ensured that the maize sprouted normally. By July 3, the maize grew to the three-leaf
stage. On July 30, the maize was in the huge bellbottom stage. Drought control at the seedling stage
was conducted from July 3 to July 30, and at the jointing stage from July 31 to August 26. The soil
moisture sensor TDC210I was used to monitor the soil moisture. It was laid before planting, and a
50 cm wide straight ditch was excavated. The sensor was inserted laterally into the channel side
and pushed tightly, then backfilled with soil. During the backfilling process, the soil was backfilled
according to the original level, without changing the original structure of the soil and leaving no
gaps. During drought control, according to the volumetric water content, data measured every five
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minutes by the soil moisture sensor was used to judge whether or not irrigation was needed. When the
measured soil water content was lower than the lower control limit, irrigation was performed to the
upper limit of the control. When watering, a water meter was attached to the head of the water pipe,
and the water was filled according to the calculated amount of irrigation. When watering, the water
head was moved at a uniform speed according to the flow rate of the water, so that the whole area was
filled evenly with water.

2.2. Image Data Acquisition

Image acquisition was undertaken using a 720 p outdoor network dome camera WV-SW396AH,
produced by Panasonic. The camera was equipped with a 1.3 million pixel dual speed MOS sensor,
and the tilt table was able to rotate 360 degrees. The camera was fixed at 4.5 m above the ground.
Each treatment had three repetitions, namely A, B and C; each repetition had a different camera
shooting angle to increase the diversity of image data. During the maize growth process, the shooting
parameters needed to be adjusted to maintain the quality of the collected images. Shooting time
was from 6:00 a.m. to 18:00 p.m. at the seedling stage, and from 6:00 a.m. to 19:00 p.m. at the
jointing stage. Maize plant images were captured every two hours and the image resolution was
640 x 480 in JPG storage format. Due to the uneven distribution of soil moisture and the influence
of external environmental factors, a small number of image samples had different drought stress
maize plants and different phenotypic characteristics in a single image. The label of this kind of image
is determined by the drought stress level of most maize plants in the image sample. Label criteria
refer to the Agricultural Industry Standard of the People’s Republic of China “Technical Specification
for Field Investigation and Classification of Maize Disasters” [28] (Optimum moisture: plants grow
normally. Light drought stress: some leaves are rolled during the day and return to normal at night.
Moderate drought stress: most of the leaves are rolled during the day, a few of them are withered,
and some of them return to normal at night.). As a result of field management and irrigation treatment,
images for some of the time stages were not acquired. The numbers of maize images from the different
fields are shown in Table 1. After data acquisition, the RGB images were transformed into gray images
(Figure 2).

Table 1. The number of maize images.

Repeat
Stage Treatment Total
A B C

Seedling Opt%mum moisture 197 187 188 572
(! =1710) Light drought 196 187 186 569
Moderate drought 195 188 186 569

Jointing Optimum moisture 195 194 194 583
(! =1751) Light drought 198 195 196 589
Moderate drought 195 190 194 579

1 n represent the total number of maize images.
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Figure 2. Examples of the two stages (seedling and jointing) of maize drought under the three
treatments. (a—c) are the optimum moisture, light drought, and moderate drought maize color samples
in the seedling stage, respectively; (d—f) are the corresponding gray images; (g-i) are the optimum
moisture, light drought, and moderate drought maize color samples at the jointing stage, respectively;
(j-1) are the corresponding gray images.

2.3. DCNN Model

In this study, two different DCNN models were applied to identify and classify drought stress in
maize, namely ResNet50 and ResNet152. The numbers 50 and 152 represent the layers of the model.
The ResNet network mainly consists of 3 x 3 convolution layers [29]. The key problem solved by
ResNet is the “degradation problem” of the model. After the model layer is deepened, ResNet adds a
residual structure between layers to solve the problem of vanishing/exploding gradients when the
model is deeper. This type of DCNN can be very deep and achieve a high identification accuracy [30].

2.4. Training Process

In the experiment, we used the transfer learning and train from scratch methods to train the model.
Model training consisted of three parts: the total dataset, the seedling sub-dataset, and the jointing
sub-dataset. The training and test set were randomly divided, of which 80% was the training set and
20% was the test set. All images were converted to the tf.record format (data format in tensorflow).
During training, all model hyperparameters were consistent and we set these empirically: the learning
rate was 0.01, the type of learning decay was exponential, the batch size was 32, and the optimizer
was SGD. The convergence of the model was judged by the value of the loss function. After model
training, we tested the drought recognition accuracy of the model. Figure 3 shows the flowchart of
the experiment.

In comparison experiments with traditional machine learning, we used the same dataset as in
a previous study [9]. The dataset is a sub-dataset of the seedling stage and contained 656 images
including 219 optimum moisture images, 218 light drought stress images, and 219 moderate drought
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stress images. The difference was that manual feature extraction was used, including color and texture
features and then training with the traditional machine learning method (GBDT) and 6-fold cross
validation were applied. In our method, we used the DCNN model ResNet50 to extract the image
features directly and then identified and classified the maize drought stress. Due to the small amount
of data, we only trained 100 epochs and 100 images for testing.

ST T .
i Offline training ) \
1 I

Transfer |
learning ]

Train from
scratch

Optimum moisture;

Light drought

Moderate drough

Figure 3. Schematic of the proposed method.

The digital image processing and training model were done with the Python 3.6 software and all
of the above experiments were conducted on the Tensorflow platform, which is a fast, open source
framework for deep learning. The software was run on a PC with Xeon W-2145, 3.7 GHz CPU (Central
processing unit), and 64 GB RAM with a GPU (Graphic Processor Unit): NVIDIA GeForce GTX
1080Ti 11G.

Referring to previous work by our team [9], two accuracy measures were proposed to evaluate
the effectiveness of the detection model: the accuracy of drought stress identification (DI) and the
accuracy of drought stress classification (DC). These were defined as

Drm
DI = —————— x 100% 1
NL 4+ Ny @)

Dtrue
DC= ——————— x 100% 2
No + N, + Ny @

where Np, Ni, and Nj, are the number of optimum moisture, light drought, and moderate drought
test samples, respectively; Dy is the number of light drought and moderate drought stressed samples
detected correctly to be under water stress; and Dy, is the correct identification number of all of
the samples.

3. Results

3.1. Comparison of Accuracy and Training Time of Different Models

The training loss functions of different image types during the two stages are shown in Figure 4.
With an increase in training epochs, the model gradually converged. However, in the total dataset,
the number of convergence epochs of the model was relatively large. In this experiment, the training
epochs are set to 7000 on the total dataset and 5000 epochs at the seedling and jointing stages.
The accuracy and training time of the model’s transfer learning and train from scratch were compared
by the specific epochs (Table 2). The time consumption of transfer learning was significantly less
(by about 2-3 times) than that of train from scratch. ResNet50 required less training time than
ResNet152. In the seedling and jointing sub-datasets, ResNet50 took the least time for transfer
learning—only about eight minutes—whereas it took about sixteen minutes to train from scratch.
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ResNet152 transfer learning took about nineteen minutes, while train from scratch took about forty-one
minutes. The accuracy of transfer learning in the two models was higher than that of train from
scratch in all datasets. At the same time, both models achieved high accuracy, and the difference in
accuracy between ResNet50 and ResNet152 is not significant. Considering the time consumption,
we chose ResNet50 as our model for the next analysis, and we trained the model with the transfer
learning method.

(a) —— ResNet50 (b) —— ResNet50 (c) —— ResNet50
161 st RERNEETS |t i b e i - ResNet152 —— ResNet152
4
& 0.84
—
0.04 NDYVAPNN VA AA—
0 5000 10,000 15000 20000 O 5000 10,000 15000 20,000 5000 10,000 15000 20,000
Epochs Epochs Epochs

Figure 4. Changes in cross entropy of color images: (a) total dataset; (b) seedling stage dataset; (c)
jointing stage dataset.

Table 2. Comparison of the accuracy and training times of the different models.

ResNet50 ResNet152
Stage Image Type Training Mode
Time (m) Accuracy (%) Time (m) Accuracy (%)
TL! 7.59 98.23 + 0.03 19.48 98.17 + 0.14
Seedling Color TFS 2 16.35 95.67 + 0.52 41.47 96.00 + 0.25
Gray TL 7.58 96.58 + 0.38 20.32 96.50 + 0.43
TFS 16.54 91.33 + 1.38 4215 93.67 + 0.14
TL 7.58 97.58 + 0.14 19.09 97.75 4+ 0.25
Jointing Color TFS 16.16 95.67 + 1.01 43.48 95.08 + 0.63
Gray TL 7.40 96.58 + 0.14 19.50 96.58 + 0.29
TFS 16.16 93.25 4 1.39 41.20 94.00 + 0.66
TL 11.28 96.00 + 0.50 27.10 95.09 + 0.30
Color TFS 23.55 95.99 + 1.00 48.48 94.85 + 1.31
Total G TL 10.42 94.95 + 0.17 30.10 93.42 + 0.25
ray TFS 23.35 91.33 + 0.50 57.18 92.04 + 1.46

1 TL means transfer learning; 2 TFS means train from scratch; m stands for minutes.

3.2. Identification and Classification of Drought Stress in Maize by DCNN

The classification confusion matrix is shown in Figure 5. The classification confusion matrix
revealed that most maize images were classified correctly. Despite erroneous classification taking
place among the three drought stress treatments, two linked moisture treatments were more prone
to misclassification. Optimum moisture was easily misclassified as light drought; light drought
was easily misclassified as optimum moisture and moderate drought; and moderate drought was
easily misclassified as light drought. Based on the confusion matrix, the accuracy levels of maize
drought identification and classification were calculated to be over 95% (Figure 6). Across the total
dataset, no significant differences were observed between the color and gray image accuracy in maize
drought stress identification, and the identification accuracy was 98.14%. However, regarding the
classification accuracy of maize drought stress, the color images were more accurate than the gray
images. These accuracy levels were slightly lower than those of the seedling and jointing sub-datasets.
At the seedling stage, the identification and classification accuracy levels of the model were 98.92%
and 98.33%, respectively, for the wheat color images and 98.08% and 96.50%, respectively, for the gray
images. At the jointing stage, the identification and classification accuracy levels of the color images
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were higher than those of the gray images—99.00% and 97.58%, respectively, for the color images and
97.83% and 96.58%, respectively, for the gray images.

color_image 140 color_image color_image

120 120

100 100

True label
True label
True label

" N W«
Predicted label Predicted label Predicted label
gray_image gray_image gray_image

True label
True label
True label

W
Predicted label Predicted label Predicted label

()

Figure 5. Confusion matrix ResNet50. (a—c) are the color images of the total, seedling, and jointing
stage datasets; (d—f) are the gray images of the total, seedling stage, and jointing datasets.
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Figure 6. The accuracy of drought identification (DI) and drought classification (DC): (a) total dataset;
(b) seedling stage dataset; (c) jointing stage dataset.

3.3. A Comparison between DCNN and Traditional Machine Learning

We compared DCNN with the traditional machine learning method (GBDT) previously published
by our team using the same dataset as them [9]. The test confusion matrix is shown in Table 3. Most of
the data were correctly classified, with only a small part misclassified. The accuracy comparison
between ResNet50 and GBDT, as seen in Table 4, demonstrated that ResNet50 can achieve a high
accuracy level that is significantly greater than that of GBDT. The color image accuracy levels of
drought stress identification (DI) and drought stress classification (DC) reached up to 98% and 91%,
higher than those of GBDT—7.61% and 10.05%, respectively. Gray images also achieved better
accuracy. The accuracy levels of drought stress identification (DI) and drought stress classification
(DC) reached up to 93% and 88%, respectively, which was obviously higher than those of the GBDT
model. Meanwhile, from the point of view of time, it was also time-saving to use ResNet50 transfer
learning to identify and classify maize drought. When training 100 epochs, the color images and gray
images only took about six seconds to complete this process.



Symmetry 2019, 11, 256 9of 14

Table 3. Confusion matrix of the two types of image. OM: optimum moisture, LD: light drought stress,
and MD: moderate drought stress.

Color Image Gray Image
Treatment
oM LD MD OM LD MD
OM 30 1 2 30 1 0
LD 1 29 0 5 25 0
MD 0 7 32 1 5 33

Table 4. Comparison between the DCNN model ResNet50 and the traditional machine learning model
(Gradient Boosting Decision Tree GBDT).

ResNet50
Model GBDT
Color Image Gray Image
DI (%) 90.39 98.00 93.00
DC (%) 80.95 91.00 88.00
Time (s) - 6 6

4. Discussion

4.1. Extraction of the Phenotypic Characteristics of Maize by DCNN

Maize crops are sensitive to drought stress. Plants have developed several physiological
mechanisms to mitigate the impact of drought stress and display a series of drought phenotypes [11,31].
The identification of maize drought by phenotypic characteristics occurs in real-time and is accurate,
and rapid. Generally, traditional machine learning and deep learning are common methods for crop
stress identification [12,22,32]. The difference between them is the use of the feature extraction method.
Traditional machine learning needs to segment the target image and extract features manually, while
DCNN automatically extracts image features by convolution layers [19]. In this study, we used
the transfer learning method of DCNN to identify and classify maize drought stress. The results
showed that DCNN had a good effect on the identification and classification of maize drought
stress. In the dataset as a whole, the identification and classification accuracy levels of the model
for wheat color images were 98.14% and 95.95%, respectively. High accuracy was also achieved
on the sub-datasets of the seedling and jointing stages and the accuracy levels of identification and
classification were significantly higher than those of the traditional machine learning method (GBDT)
on the same dataset [9]. These results are in agreement with those previously reported by other stress
studies based on deep learning [26,33,34], likely because traditional machine learning extracts maize
phenotypic features manually, and only extracts color and texture features, leading to incomplete
extraction of phenotypic features. The phenotypic characteristics of maize under drought stress are
complex. In addition to color and texture, morphological characteristics, such as leaf rolling and
plant height, play an important role in drought stress identification [10]. DCNN can extract more
effective information through the use of many convolution layers. Thus, DCNN obtained a high
level of accuracy in identifying and classifying maize drought stress—significantly higher than that
of traditional machine learning. In recent years, there has been an increasing number of studies on
biotic and abiotic stress recognition by deep learning [22]. Juncheng et al. reported four cucumber leaf
diseases that were identified by DCNN and indicated that DCNN achieves high recognition accuracy
that was significantly higher than that obtained by the random forest and support vector machine
methods [35]. Balaji et al. also revealed that the recognition accuracy of the deep learning method was
higher than that of traditional machine learning based on color, texture, and morphology [23]. In our
study, maize images were captured from fields. The background of the maize images was complex and
included features such as soil, weeds, and other sundries, which were also influenced by the wind, light,
and shadows [36]. Thus, accurate segmentation of the field maize images was difficult. Under drought
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stress, there were some abstract phenotypic characteristics such as leaf rolling and leaf inclination [10],
which are important phenotypic characteristics of drought stress in maize; however, the effective
and complete segmentation and extraction of this information manually remains a challenge [19,37].
DCNN extracts image features through continuous convolution layers and therefore can extract the
phenotypic characteristics of the images comprehensively [38]. In general, the color, texture, and edge
characteristic information of images is mainly extracted from the convolution layer in the shallow
layers, and the more abstract phenotypic information is extracted from the deeper convolution layer,
which is more intelligent [39]. In our maize drought recognition model, the shallow convolution layer
extracts color, edge and morphology information of maize, while the deep convolution layer extracts
texture features and more abstract phenotypic features. Although deep abstract phenotypic features
are difficult to understand by human beings, they play an important role in the maize drought stress
identification (Figure 7b). Meanwhile, it is time-saving to use deep learning. On the total dataset,
transfer learning of resnet50 and Resnet152 only took about ten and thirty minutes, respectively.
Thus, when the amount of data is sufficient, the identification and classification accuracy of the DCNN
method is generally better than that of traditional machine learning. It can not only achieve better
results, but also saves time during the image segmentation and data screen steps and reduces the
running time of the model.

(b)

Figure 7. Visualization of the feature map in the initial layers of the deep learning model. (a) is the

original image; (b) is the visualization image, where the first row is part of feature maps of the first
convolutional layer, the second row is part of feature maps of the second convolutional layer, and the
third row is part of feature maps of the third convolutional layer.

4.2. Comparison of the Accuracy of Color and Gray Images of Maize at Different Stages

In this study, we compared the accuracy levels of drought stress identification and classification of
maize color and gray images. In the whole datasets, the drought stress identification and classification
accuracy levels were higher in the color images than in the gray images. This is most likely because color
information is one of the important characteristics of drought stress [40,41]. After graying, the color
information of the image is lost, which makes the model more likely to be confused. Mohanty et
al. also found that the accuracy of the color image was higher than that of the gray image in all of
the experiments during biotic stress identification [42]. For drought stress, color information is an
important indicator. Under optimum moisture conditions, the phenotypic characteristics of maize
leaves did not change, so the leaf color was always green. However, under drought stress, the color
and morphology of maize leaves changed. Under light drought stress, the growth of maize was
relatively slow, the color of maize leaves lost luster at noon, and the leaves were slightly rolled; under
moderate drought stress, the plants grew slowly and dwarfed, and the maize lost its luster and leaves
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rolled; however, it was basically restored to normal in the evening. For different levels of drought
stress, the recovery time of the leaves differed during the day [10]. When the color image of maize
was transformed into a gray image, the color information was lost; thus, the accuracy of gray image
identification and classification was lower than that of color images.

4.3. Misclassified Image Analysis

In this study, we analyzed the misclassification images and a portion of the misclassified
samples is shown in Figure 8. Figure 8a—c are seedling maize samples, where Figure 8a shows
the optimum moisture misclassified as light drought stress samples, Figure 8b shows light drought
stress misclassified as optimum moisture samples, and Figure 8c shows the moderate drought stress
misclassified as light drought stress samples. Figure 8d—f show the jointing stage maize samples,
where Figure 8d is the optimum moisture misclassified as light drought stress samples, and Figure 8e,f
show the moderate drought stress misclassified as light drought stress. Analysis of the misclassified
images showed that although each maize image sample had a defined drought stress level label, there
were different drought stress maize plants and different phenotypic characteristics in a single image.
For example, in the same image, some leaves were rolled and others were not. This led to incorrect
classification of the samples, likely due to the uneven distribution of soil moisture, although the
drought level of each plot was the same for each 2 m? plot with a total of 12 maize plants. Soil moisture
distribution in the same plot was uneven due to the inaccuracy of water supply and the different
evaporation capacity at different locations. Maize plants are sensitive to drought stress, and the
drought degree of maize plants in different locations in the same plot may be different, leading to
different phenotypic characteristics in terms of leaf color, texture, and morphology, which can result in
incorrect model classification. In addition, as a maize plant has many leaves, under light drought stress,
the new leaves of maize are prone to rolling, while the old leaves remain stretched. Therefore, obtaining
only part of the corn image may also lead to model identification and classification errors.

Figure 8. Misclassified samples: (a) optimum moisture misclassified as light drought stress samples,
(b) light drought stress misclassified as optimum moisture samples, (c¢) moderate drought stress
misclassified as light drought stress samples. (d—f) jointing stage maize samples. (d) optimum moisture
misclassified as a light drought stress sample, (e,f) moderate drought stress misclassified as a light
drought stress sample.

We acknowledge that the amount of data we acquired was relatively small for the deep learning
model, and we did not design and train our own models. However, this did not affect the identification
and classification accuracy of drought stress in maize by DCNN. In general, when datasets were small,
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the transfer learning method not only achieved good results, but also saved time and was effective
in the field of image classification. Transfer learning is not very strict in terms of data volume and
hardware requirements and has good applicability. In addition, although a few maize images were
misclassified due to the uneven distribution of soil moisture, this had little effect on maize drought
identification and classification.

5. Conclusions

We proposed a novel end-to-end automated pipeline for drought stress classification in maize
based on digital images. DCNN had a good effect on the identification and classification of maize
drought stress, and it is feasible to identify drought stress by transfer learning in the case of small
datasets and a field environment. Our method does not require segmentation, regardless of the
background, so it saves a lot of time. In the dataset as a whole, the accuracy levels of identification
and classification of drought stress were 98.14% and 95.95%, respectively. High accuracy was also
achieved on the sub-datasets of the seedling and jointing stages. When the datasets are limited in the
research of maize drought identification, transfer learning is a good choice. Through a comparison of
the tests between DCNN and traditional machine learning on the same dataset, we concluded that
the DCNN method is significantly better than the traditional machine learning method. Through the
comparison of different types of images, the accuracy levels of the identification and classification
of maize color images were higher than those of the gray images, as color information is one of the
important phenotypic characteristics of drought stress.

It is suggested that the DCNN method not only saves time, but also obtains high accuracy in
maize drought identification and classification. Based on digital images, the detection of crop water
stress using the DCNN method could be applied to a complex field environment. Future research will
focus on more degrees of drought classification assessment, which is an intensified process on the soil
water content and is more accurate when identifying and classifying maize drought stress according to
the degree of rolling and the time of leaf rolling and stretching. Furthermore, a trained model based on
digital image, developed into an app, installed on mobile devices (unmanned aerial vehicles, smart
phones, etc.), is proposed to provide real-time, accurate and wide-ranging monitoring and warning of
maize drought stress.
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