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Abstract: It was demonstrated that conventional resource use efficiency (RUE) estimation methodology
is largely subject to arithmetic weakness. Extensive field research data on aboveground biomass
(AGB), absorbed photosynthetically active radiation (APAR), and crop evapotranspiration (ETc)
in maize, soybean, sorghum, and winter wheat confirmed this methodological bias for light use
efficiency (LUE) and water use efficiency (WUE) estimation. LUE and WUE were derived using
cumulated (data aggregates across samplings) and independent (data increments across samplings)
approaches. Use of cumulated data yielded strong-but-false correlation between AGB and APAR
or ETc, being a statistical artefact. RUE values from an independent approach were substantially
lower than that from a cumulated approach with greater standard errors. Overall, a cumulated
approach tends to oversimplify the complex interactions among carbon and resource coupling in
agroecosystems, which is accurately represented when employing an independent approach instead.

Keywords: light use efficiency; radiation use efficiency; water use efficiency; biomass;
evapotranspiration; photosynthetically active radiation; row crop; cumulative data

1. Introduction

The resource use efficiency (RUE) concept has been extensively used to evaluate agroecosystem
productivity across environments, management regimes, time scales [1–5], and parameterization of
crop models [6–8]. RUE metrics (water use efficiency or WUE and light use efficiency or LUE) are
commonly estimated using measures of dry matter assimilation (photosynthesis, gross/net primary
productivity, aboveground or total biomass) and corresponding resource use (crop evapotranspiration
or ETc for WUE and intercepted/absorbed light or IPAR/APAR for LUE). These quantities are usually
regressed linearly, and the slopes are interpreted as RUE estimates.

However, this methodology has been subject to strong yet limited criticism. Specifically, the
computational aspects of LUE have been originally critiqued by Demetriades-Shah et al. [9]. Among the
criticisms, a major proposition was to reconsider the arithmetic nature of the quantities regressed in LUE
estimation. Specifically, LUE estimates derived from cumulated plant dry matter and light interception
were shown to be erroneous due to error propagation from biased sampling, consequently supported
by Demetriades-Shah et al. [10] and Malet et al. [11]. Despite the critique, scientists have long continued
the use of cumulated data in LUE computation [12–21], although very limited exceptions [22,23] exist
that rely on incremental data to estimate LUE. For identical reasons, the use of cumulated data also
confounds WUE estimates, since both LUE and WUE estimations use the same methodology. WUE
research has also relied on cumulated quantities of dry matter and ETc [16,20,21,24]. While cumulated
WUE estimation has not been directly criticized as for LUE, it is logical and necessary to evaluate its
impacts on WUE estimates and their interpretation. It is critical to evaluate whether methodological
weakness exists in conventional LUE and WUE estimation techniques, due to extensive dependence
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on these metrics to characterize cropping systems around the globe. To this end, field research was
conducted for four major row crops, to observe and record high-frequency aboveground biomass,
APAR, and ETc for two growing seasons, and consequently assess the potential weaknesses in the
estimation of LUE and WUE.

The four crops are maize-short and long season hybrids: S.S. and L.S. maize, respectively
(Zea mays L.), soybean (Glycine max (L.) Merr.), sorghum (Sorghum bicolor (L.) Moench), and winter
wheat (Triticum aestivum L.). The datasets collected in this research provide an excellent opportunity
to revisit this criticism and evaluate potential misrepresentation of RUE estimates from cumulated
data, and consequently present an arithmetically alternate strategy of using independent data. Our
specific objectives are to: (i) detect any differences in LUE and WUE estimates derived from cumulated
data and independent data approaches; (ii) contrast the strength of association among dry matter
accumulation and resource use as interpreted from the two approaches; and (iii) discuss broader
implications resulting from the choice of approaches and recommend that the research community
refrain from the use of weak methods.

2. Materials and Methods

2.1. Research Site Characteristics and Crop and Soil Management

The experiments were conducted at the South-Central Agricultural Laboratory, Nebraska (U.S.A.)
on a subsurface drip-irrigated field for the 2016 and 2017 growing seasons (2016–2017, and 2017–2018 for
winter wheat). The soil at the site is a Hastings silt loam, well-drained upland soil (fine, montmorillonitic,
mesic Udic Argiustoll) with 0.34 m3 m−3 field capacity, 0.14 m3 m−3 permanent wilting point, and
0.53 m3 m−3 saturation point [25]. The total available water holding capacity of the soil profile is
240 mm per 1.2 m. The particle size distribution is 15% sand, 65% silt, and 20% clay, with 2.5% organic
matter content in the topsoil. The long-term average annual rainfall in the area is 680 mm, with
significant annual and growing season variability in both magnitude and timing. To accommodate all
the above mentioned crops within the extent of the experimental field, the field was divided in the
N–S direction into smaller independent plots, each dedicated to a single crop grown in E–W rows. All
four crops were fertilized appropriately and sufficiently, and herbicide, insecticide, and fungicide were
applied uniformly when needed, aimed at optimal growing conditions. Non-water-stressed growth
conditions were ensured by soil water status monitoring, and irrigation was initiated each time soil
water depletion in crop root zone was 40–45%. In addition to nutrients and water, the experiment was
intensively managed to ensure avoidance of any stresses from weeds, insects, and diseases. Additional
details of crop establishment, site characteristics, and management can be gained from Kukal and
Irmak [21,26,27].

2.2. Sampling Aboveground Biomass, Soil Water Flux, and Light Flux

Every 1–1.5 weeks starting <10 days after emergence until harvest, four quadrats of 1 m2 area
were destructively sampled (randomly, avoiding border effects) for aboveground biomass, dried at
60 ◦C until constant weight, and dry matter was recorded for each crop. This will be referred to as
AGB hereon. Kukal and Irmak [26] should be referred for detailed analyses and description of AGB
dynamics across these crops for comparison.

Soil moisture was measured in all crops at multiple depths in the soil profile (0–0.15 m, 0.15–0.25 m,
0.25–0.40 m, 0.40–0.75 m, and 0.75–1.20 m) every 30 min using 4–6 capacitance-based John Deere
(JD) Field Connect (John Deere Water, San Marcos, CA, USA) sensors. Depth-specific calibration
functions [28,29] were used to correct any uncertainties in sensor-reported moisture.

Canopy light (PAR) interactions including incoming PAR at the top of the canopy (PARin),
transmitted PAR through the canopy (PARtr), and reflected PAR from canopy and soil (PARref)
were measured using sensors that were installed in each crop canopy for the entire growing seasons,
sampling light data every minute continuously during the entire growing seasons. Incoming PARin was
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measured using a point quantum sensor (SQ-110-SS: Apogee Instruments Inc., Logan, UT, USA), due
to its spatially static nature, whereas PARtr and PARref PAR fluxes were measured using line quantum
sensors (SQ-316-SS: Apogee Instruments Inc., Logan, UT, USA) due to their spatially nonuniform
nature. Kukal and Irmak [29] describe sensor specification, mounting details, and analysis of the light
balance instrumentation in greater detail.

2.3. Quantification of Light and Water Use

2.3.1. Light Use (Absorbed PAR)

The fate of PARin can take three possible outcomes, depending on the surface characteristics.
When these possible outcomes, described in Equation (1), are summed, they have to be equal to PARin,
similar to a mass or energy balance:

PARin = PARtr + APAR + PARref (1)

where APAR is the quantity of light absorbed by the canopy to be used in photosynthesis. Additional
details of the instrumentation, theory, and methodology are presented in [29].

2.3.2. Water Use (Crop Evapotranspiration)

A general soil–water balance (represented by Equation (2)) was used to compute ETc as a residual
from the closed equation.

ETc = P + I − R − D ± ∆SW (2)

where P is rainfall (mm), I is irrigation water applied (mm), R is surface runoff from the field (mm)
computed using the United States Department of Agriculture (USDA)-Natural Resources Conservation
Service (NRCS) curve number method [30], ∆SW is the change in soil moisture storage in the soil
profile between the beginning and end of the growing season (mm), and D is the deep percolation
(mm) below the crop root zone estimated by the daily soil–water balance approach using the two-step
approach using a computer program that was written in Microsoft Visual Basic [31,32]. Additional
details of the water balance methodology and its components are presented in [21].

2.4. LUE and WUE Estimation Approaches

Approach 1: This extensively used approach utilized cumulated values (across successive
sampling events) of AGB and (1) APAR; and (2) ETc in a linear regression. The slope of this relationship
was interpreted as LUE (LUE1) and WUE (WUE1), respectively.

Approach 2: This limitedly used approach relied on independent values (incremental gain in
productivity and resource use between sampling intervals) of AGB and (1) APAR; and (2) ETc in a linear
regression. The slope of this relationship was interpreted as LUE (LUE2) and WUE (WUE2), respectively.

3. Results and Discussion

3.1. Nature of Correlation among Dry Matter and Resource Use

Under Approach 1, AGB and cumulated APAR were strongly correlated (R2 > 0.93; left panel
of Figure 1). However, when a gain in AGB and APAR corresponding to the gain were regressed
under Approach 2 (right panel of Figure 1), the correlation was considerably lower. This was also
true for WUE estimated using Approaches 1 and 2 (Figure 2), although the R2 values were lower
by a greater degree under Approach 2 when estimating WUE. This decreased level of association
under Approach 2 has been previously reported in the literature, although only in the context of LUE.
Demetriades-Shaw et al. [9] found low correlations (R2 < 0.32) among crop growth rates (CGR) and light
interception rate in sugar beets, tall-grass prairie, sorghum, sunflower, and soybean, which otherwise
were highly correlated under Approach 1, and hence stated that the use of cumulated data has logical
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and arithmetical weaknesses. Mitchell et al. [23] and Lindquist et al. [22] found similar inconsistencies
when quantifying rice and maize LUE, respectively, using cumulated and independent data. Thus, past
research as well as evidence reported in this research establish that the perceived excessive emphasis
placed on the strong correlation among AGB and APAR (or IPAR)/ETc is oversimplistic and results
from biased analysis procedures (such as Approach 1). Subseasonal environmental variability and
plant physiological factors highly impact LUE and WUE, and Approach 1 veils such impacts and
oversimplifies the challenging task of quantifying sensitivity of carbon assimilation to resource use.
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Figure 1. Light use efficiency (LUE) in S.S. maize, L.S. maize, soybean, sorghum, and winter wheat
obtained using Approach 1 (left panel) and Approach 2 (right panel). The slopes (m) of these
relationships represent LUE estimates derived using Approach 1 (red trendline) and Approach 2 (blue
trendline), respectively. The number of observations were 20, 12, 23, 25, and 23 for S.S. maize, L.S.
maize, soybean, sorghum, and winter wheat, respectively.
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Figure 2. Water use efficiency (WUE) in S.S. maize, L.S. maize, soybean, sorghum, and winter
wheat obtained using Approach 1 (left panel) and Approach 2 (right panel). The slopes (m) of these
relationships represent WUE estimates derived using Approach 1 (red trendline) and Approach 2 (blue
trendline), respectively. The number of observations were 20, 12, 23, 25, and 23 for S.S. maize, L.S.
maize, soybean, sorghum, and winter wheat, respectively.

The correlations among AGB versus APAR, and AGB versus ETc found under Approach 2,
although lower than that under Approach 1, imply that APAR and ETc are responsible for explaining
appropriate and realistic portions of the variability in AGB, which vary from low (0.04–0.29) to moderate
(0.53–0.76) magnitudes. This is in contrast to Approach 1, where both APAR and ETc show a near-perfect
explanation of variability in AGB, which is a theoretical fallacy, as two resources simultaneously
cannot explain the entire variance in AGB. This interpretation can be misleading, as it confounds
the true relative importance of APAR and ETc as drivers of AGB, and thus due to dangers of flawed
interpretation, use of Approach 1 should ideally be terminated in biological–environmental research.
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We find that, overall, APAR was a larger driver of AGB gain than ETc, as, on average, R2 from AGB
gain versus APAR analysis was 706% greater than that from AGB gain versus ETc analysis. Specifically,
this relatively greater importance of APAR than ETc was the highest in S.S. maize (1575%), followed by
L.S. maize (1167%), sorghum (430%), soybean (288%), and winter wheat (71%). This might be due to
three primary reasons. Firstly, since crop productivity was not limited by any inputs, crop performance
was near full potential, and hence, governed largely by light absorption. Secondly, resolving soil–water
balance is certainly more challenging than light balance, given the uncertainties associated with
quantification of surface runoff, deep percolation, and soil-water storage, thus confounding ETc. Third,
our representation of crop water use term considers ETc, which, due to inclusion of the nonbeneficial
evaporation component, does not result in proportional carbon assimilation. The relative importance
of APAR and ETc cannot be discerned under Approach 1, and hence, brings out the sophistication and
value of Approach 2.

The differences in relative importance of APAR and ETc across the four crops stem from contrasting
crop characteristics responsible for varying levels of water and light use during crop growth stages.
Specifically, these underlying crop characteristics are photosynthetic pathway mechanisms (C3, C4),
phylogenetic affinity (monocots, dicots), canopy architecture and geometry (spherical, heliotropic), leaf
angle distribution (erectophile, planophile), ground cover fraction, and leaf morphology.

3.2. Confounding Estimates of RUE

Mean seasonal LUE and WUE estimates from both Approaches 1 and 2 (Figures 1 and 2) and
are referred to as LUE1 and LUE2, and WUE1 and WUE2, respectively. Approach 1 yielded greater
LUE and WUE estimates than Approach 2 for all crops. LUE1 was 1.5%, 16.9%, 18.9%, 0.3%, and 85%
greater than LUE2 for S.S. maize, L.S. maize, soybean, sorghum, and winter wheat, respectively. WUE
showed more pronounced differences, with WUE1 being 416%, 401%, 76%, 156%, and 79% greater than
WUE2 for S.S. maize, L.S. maize, soybean, sorghum, and winter wheat, respectively. This is evidence
that choice of the estimation approach yields significantly different LUE and WUE. Ideally, the slope
of the regression analyses of AGB and APAR/ETc should convey the sensitivity of AGB to light and
water consumption, i.e., the amount of AGB produced per unit MJ of APAR, and per unit mm of ETc,
respectively. LUE1 and WUE1 fail to convey these quantities as the cumulation process renders the
data unfit for such a quantification by ignoring or deflating the intersampling variability recorded in
AGB and APAR/ETc. The framework of Approach 2 avoids this issue by preserving the intersampling
variability in data sampling, and hence, LUE2 and WUE2 are accurate measures of AGB sensitivity
to APAR/ETc.

As a result of preserving intersampling variability in data under Approach 2, LUE2 and WUE2

showed 488% and 375% greater standard errors (SE) relative to LUE1 and WUE1, respectively.
Lindquist et al. (2005) showed 163% greater SE for maize LUE when using independent data relative
to cumulated data, but both approaches produced the same LUE estimates, similar to our findings for
sorghum. Overall, we established that the cumulated Approach 1 results in RUE overestimation as
well as low-but-false uncertainties (SE). Moreover, Approach 1 is vulnerable to error propagation into
successive data due to cumulation process, even if one sampling event is biased, negatively impacting
accurate RUE estimation.

For four crop species, we confirm that the usage of cumulated data for dry matter and resource use
was misleading, and the high correlation perceived is a statistical artefact. It has been shown that any
cumulated quantity yielded equally high correlations, even when no physical relationship existed with
crop biomass, or simply were random numbers [9]. This discrepancy has been further mathematically
highlighted using a theorem, and verified using a case study of greenhouse-grown tomatoes [11],
concluding that cumulated variables should be avoided in bioenvironmental relationships. There has
been significant consensus on this issue [9,33,34], although research practice has not paid heed.
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4. Conclusions

We found that: (a) a cumulated approach leads to perceived strong correlation among dry matter
and resource use, which is inaccurate and misleading; and (b) cumulated and independent approaches
result in largely dissimilar LUE and WUE estimates, with the former yielding overestimates. Use of
cumulated data, which has continued despite strong evidence dating back at least 25 years, leads to false
confidence in RUE estimates and can significantly hinder accurate assessments of crop resource use.
Empirical estimates of LUE and WUE are extensively used in “growth-engines” of crop models [35–40]
to predict crop performance and resource use, that are consequently used in practical applications
and policy development. Thus, error propagation from flawed LUE and WUE estimates into crop
modeling-based assessments needs to be evaluated in the future. Via this research, we underscore the
importance of independent approaches in bioenvironmental research by demonstrating their success
in the context of LUE and WUE in four major US row crops for broad visibility and impact. Overall,
we aim to redirect the attention of the scientific community to deter from using arithmetically weak
LUE and WUE estimation methods.
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