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Abstract: Electrogenerated chemiluminescence (also called electrochemiluminescence and 

abbreviated ECL) involves the generation of species at electrode surfaces that then undergo 

electron-transfer reactions to form excited states that emit light. ECL biosensor, combining 

advantages offered by the selectivity of the biological recognition elements and the sensitivity 

of ECL technique, is a powerful device for ultrasensitive biomolecule detection and 

quantification. Nanomaterials are of considerable interest in the biosensor field owing to their 

unique physical and chemical properties, which have led to novel biosensors that have exhibited 

high sensitivity and stability. Nanomaterials including nanoparticles and nanotubes, prepared 

from metals, semiconductor, carbon or polymeric species, have been widely investigated for 

their ability to enhance the efficiencies of ECL biosensors, such as taking as modification 

electrode materials, or as carrier of ECL labels and ECL-emitting species. Particularly useful 

application of nanomaterials in ECL biosensors with emphasis on the years 2004-2008 is 

reviewed. Remarks on application of nanomaterials in ECL biosensors are also surveyed. 

Keywords: Electrogenerated Chemiluminescence, Nanomaterials, Biosensor, Amplification, 

Review. 
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1. Introduction 

 

Electrogenerated chemiluminescence (also called electrochemiluminescence and abbreviated ECL) 

involves the generation of species at electrode surfaces that then undergo electron-transfer reactions to form 

excited states that emit light [1]. Since the first detailed ECL studies by Kuwana, Hercules and Bard et al. in 

the mid-1960s [2-4], the ECL technique has become a very powerful analytical tool and has been widely 

used in the areas of, for example, immunoassay, food and water testing, and biowarfare agent detection. 

ECL detector has also been successfully exploited as a detector in flow injection analysis, high-performance 

liquid chromatography, capillary electrophoresis, and micro total analysis. Some excellent reviews focused 

on mechanism, type and its application of ECL were presented from 2004 to 2008 [1, 5-10].  

Biosensors are defined as analytical devices incorporating a biological material, a biologically derived 

material or a biomimic intimately associated with or integrated within a physicochemical transducer or 

transducing microsystem, which may be optical, electrochemical, thermometric, piezoelectric, magnetic or 

micromechanical detector [11]. The ECL detection technique has many distinct advantages over other 

detection techniques [12]. For example, compared with the fluorescence technique, the ECL technique 

does not involve a light source and, hence, the attendant problems of scattered light and luminescent 

impurities. Moreover, the specificity of the ECL reaction associated with the ECL label and the coreactant 

species decreases problems with side reactions and is characterized by good spatial and temporal 

resolution [1]. Biosensors based on electrogenerated chemiluminescence transducers, combining 

advantages offered by the selectivity of the biological recognition elements and the sensitivity of ECL 

technique, are powerful tool for ultrasensitive biomolecule detection and quantification. 

Nanomaterials including nanoparticles and nanotubes, prepared from metals, semiconductor, carbon or 

polymeric species, are of considerable interest in the biosensor field owing to their unique physical and 

chemical properties, which has led to novel biosensors that have exhibited high sensitivity and stability 

[13-15]. Particularly, nanomaterials have been investigated for their ability to enhance the efficiencies of 

ECL biosensors.  

The aim of the present review is to give the readers a critical overview of nanomaterials applications in 

ECL biosensors. For the sake of clarity, this review will specifically focus on the application of 

nanomaterials in ECL biosensors in view of different functions of nanomaterials on the enhancing ECL 

signal based on taking as modification electrode materials, carrier of ECL labels and ECL-emitting species. 

Particular attention will be given to publications that appeared from 2004 to 2008. The remarkable 

sensitivity of ECL biosensors is achieved by coupling nanomaterial-based amplification units and various 

amplification processes. The use of nanomaterials carriers for designing multi-target ECL protocols will be 

documented in detail. Readers are referred to several excellent references [1, 5-10] and relevant websites 

[16, 17] for further and deeper discussions on certain specific topics. 
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2. Nanomaterials as modification electrode materials  

 

The most important step for building a biosensor is to immobilize the biomolecule on the transducer. A 

successful platform should have special properties for immobilizing or integrating biomolecule stably at a 

transducer surface and efficiently maintain the functionality of the biomolecule, while providing 

accessibility to the target analyte and an intimate contact with the transducer surface. The development of a 

stable and good biocompatible matrix for immobilization of bimolecules is very crucial to improve the 

analytical performance of a biosensor. More and more attention has been paid to ECL biosensors 

functionalized with nanomaterials due to an enormous surface area-to-volume ratio of nanomaterials, and 

highly susceptibility of ECL to surrounding environments. The diversity in compositions (inorganic or 

organic, metals or semiconductors), shapes (particles, rods, wires, tubes, etc.), and the readiness for surface 

functionalization (physical, chemical, or biological) has enabled the fabrication of various functional 

nanostructures for ECL biosensor. In this section, different nanomaterial-modified electrode interfaces in 

ECL biosensors, such as gold nanoparticles, carbon nanotubes and other nanoparticle-modified electrodes, 

are presented. 

 

2.1 Metal nanomaterials  

 

Gold nanoparticles (Au NPs), which are stable metal nanomaterials, present fascinating aspects, such as 

their assembly into multiple types involving materials science, the behavior of the individual particles, 

size-related electronic, magnetic, and optical properties (quantum size effect), and their applications to 

catalysis and biology [18]. The unique properties of Au NPs modified electrode interfaces that are different 

from conventional electrodes lead to novel ECL biosensors with high sensitivity and good stability in 

immunoassay, DNA assay [19-21]. The enhancement of ECL signals on biosensors with Au NPs modified 

electrode is mainly attributed to the increase of the surface area.  

Dong et al. developed an ECL alcohol dehydrogenase (ADH) biosensor, by self-assembling ADH to 

ruthenium(II) tris(bipyridine) (Ru(bpy)3
2+)-Au NPs aggregates on an indium tin oxide electrode (ITO) 

surface [19]. Positively charged Ru(bpy)3
2+ was stably immobilized on the electrode surface with negatively 

charged Au NPs in the form of aggregate via electrostatic interaction. Au NPs are favorable candidates for 

the immobilization of enzymes because amine groups and cysteine residues in the enzymes are known to 

bind strongly with Au NPs. Such biosensors combine enzymatic selectivity with the sensitivity of ECL 

detection for quantification of enzyme substrates with high sensitivity and selectivity. 

Besides, Au NPs can act as tiny conduction centers to facilitate the transfer of electrons. Wang and 

coworkers [20] developed an ECL biosensor for the determination of biological substances including 

bovine serum albumin and immunoglobulin G (IgG) using 4-(dimethylamino) butyric acid (DMBA) as a 

label on a gold nanoparticles modified gold electrode. As shown in Figure 1, a gold nanoparticle layer was 

first combined into the surface of the 2-mm-diameter gold electrode. Avidin was covalently conjugated to a 

self-assembled monolayer of 3-mercaptopropanoic acid on the gold nanoparticle layer. Biotinylated 

BSA-DMBA was then immobilized on the gold nanoparticle layer of the gold electrode via the avidin-biotin 
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reaction. IgG was tested via a typical sandwich-type immobilization method. Sensitivity enhancements of 

10- and 6-fold were obtained with Au NPs amplification for BAS and IgG over their direct immobilization 

on an electrode, due to the increase of the electrode area, resulting in the increase of immobilization amount 

of recognition bimolecular.  

 

Figure 1. Schematic diagrams of immobilization of BSA (a) and IgG (b) on the gold electrode 

with gold nanoparticle amplification. Reprinted from Ref [20] with permission from The 

American Chemical Society. 

 

 
 

The same idea for DNA hybridization detection was reported by Zhang et al. [21], in which the surface 

density of single stranded DNA on the gold nanoparticle modified gold electrode was 12-fold higher than 

that on the bare gold electrode. Gold nanoparticles were self-assembled on a gold electrode associated with 

a 1,6-hexanedithiol monolayer. A ruthenium complex served as an ECL tag. Hybridization was induced by 

exposure of the target ssDNA gold electrode to the solution of ECL probe consisting of complementary 

ssDNA tagged with ruthenium complex. The detection limit of target ssDNA on a gold nanoparticle 

modified gold electrode (6.7×10-12 M) is much lower than that on a bare gold electrode (1.2×10-10 M). 

Sensitivity enhancements of 18-fold were obtained with Au nanoparticle amplification for DNA over their 

direct immobilization on an electrode.  

Another possible reason for the enhancement of ECL signals on Au NPs modified electrode is the 

catalytic effect of Au NPs on oxidation/reduction of ECL-emitting species. ECL of luminol [22] and 

lucigenin [23] on the surface of Au NPs modified gold electrode via a linkage via thiol-gold bonds, ECL of 

N-(aminobutyl)-N-ethylisoluminol (ABEI) on the surface of Au NPs modified+paraffin-impregnated 

graphite electrode via physical adsorption [24], and ECL of Ru(bpy)3
2+ [25] on the surface of Au NPs 

modified ITO via a linkage via thiol-gold bonds, have been reported. At an Au NPs functionalized electrode 

interface, the sensitivity of ECL signal was much improved compared with conventional electrodes. Up to 

5-fold sensitivity enhancements were obtained with Au NPs amplification for ABEI at Au NPs dropped on 

the surface of a paraffin-impregnated graphite electrode over on a bare electrode [24]. Sensitivity and 

stability enhancement for Ru(bpy)3
2+ was obtained at ITO electrodes modified with Au NPs by reducing the 

large overpotential of tripropylamine (TPA) oxidation and reduce a corrosive effect in the ITO surface at 

high anodic potentials [25]. The size and nature of NPs and the nature of the substrate electrode can also 
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affect the ECL behavior [26]. Besides, other gold nanomaterials, such as gold nanorods, have also been 

investigated as nanostructures for ECL [27]. The intensities of ECL peaks were enhanced about 2-10-fold 

on a gold-nanorod-modified gold electrode in neutral solution than at a gold-nanosphere-modified gold 

electrode.  

However, poor stability has been observed at high potential at Au NPs modified electrode, which is due 

to an oxidation of the thiol layer [21] or the oxidation of gold nanoparticles [20]. Therefore, the first cycle of 

cyclic voltammetry and the corresponding ECL were recorded [20] or low applied potential was employed 

[21] in the ECL detection.  

Colloidal Ag (Ag NPs) is another important nanomaterial, which possesses tremendous specific surface 

area, good biocompatibility, and electrical activity [28]. Much stronger ECL emission was found from Ag 

NPs/Au substrate electrode than that from Au NPs/Au substrate due to its excellent electrical activity [29]. 

In addition to the most frequently used Au NPs and Ag nanoparticles, other metal nanoparticles, such as 
platinum nanoparticles, have also been used in the design of nanoparticles functionalized electrode interface 

for ECL [30]. 

 

2.2 Carbon nanotubes  

 

Carbon nanotubes (CNT), well-ordered, high aspect ratio allotropes of carbon, whose outstanding 

properties have sparked an abundance of research since their discovery in 1991 [31], are one of the more 

popular carbon nanomaterials for ECL biosensors. Single-walled carbon nanotubes (SWNT) are 

constructed of a single sheet of graphite (diameter 0.4–2 nm), while multi-walled carbon nanotubes 

(MWNT) consist of multiple concentric graphite cylinders of increasing diameter (2–100 nm). The two 

main variants, SWNT and MWNT, possess a high tensile strength, are ultra-light weight, and have 

excellent chemical and thermal stability. In combination with their metallic and semi-conductive 

electronic properties, this remarkable array of features has seen a plethora of applications proposed [32]. 

The groups of Wang, Dong, Chen and Lee have done much work on ECL biosensors based on carbon 

nanotube functionalized electrode interfaces. Recent studies demonstrated that CNT can enhance the 

electrochemical reactivity [33-35], accumulate important bimolecules [36, 37], and alleviate surface 

fouling effects [38]. Improvement in sensitivity and stability of ECL biosensors was obtained at the 

carbon nanotube modified electrode surfaces. Dong reported that the electrochemistry and ECL of 

Ru(bpy)3
2+ ion-exchanged in CNT/Nafion composite films with TPA as a coreactant at a glassy carbon 

electrode [35]. It was found that the interfusion of CNT in Nafion resulted in a high peak current of 

Ru(bpy)3
2+ and high ECL intensity, which indicated that the composite film had more open structures and 

a larger surface area allowing faster diffusion of Ru(bpy)3
2+ and that the CNT could adsorb Ru(bpy)3

2+ 

and also acted as conducting pathways to connect Ru(bpy)3
2+ sites to the electrode. Sensitivity 

enhancement of two and three orders on carbon nanotube modified electrodes was obtained with CNT 

amplification for TPA over that at a silica/Nafion composite film-modified electrode and that at obtained 

for pure Nafion films, respectively [35]. To take advantage of these remarkable properties of CNT in ECL 

biosensor applications, CNT usually need to be properly functionalized and immobilized. Treatment with 
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a nitric acid and sulfuric acid mixture (1:3, v/v) led to multiwall carbon nanotubes terminated with 

carboxylic acid groups that were usually used in the functionalized of the carbon nanotubes [39]. 

From the viewpoint of ECL biosensors, effectively immobilizing CNT on the surface of electrode is 

more significant than that just casting it onto the surface of electrode [39-42], which also can extend their 

potential applications. The strategy involves the immobilization of CNT on the surface of electrode with 

Nafion [35, 43-45], Eastman-AQ [34, 46], SiO2 [47] and polystyrene (PSP) [48]. An ECL sensor based on 

PSP with a carbon nanotube composite film was recently developed, in which the PSP was used as an 

immobilization matrix to entrap the ECL reagent Ru(bpy)3
2+ due to the electrostatic interactions between 

sulfonic acid groups and Ru(bpy)3
2+ cations. The introduction of CNT into PSP acted not only as a 

conducting pathway to accelerate the electron transfer but also as a suitable matrix to immobilize 

Ru(bpy)3
2+ on the electrode by hydrophobic interaction. Furthermore, the results indicated the ECL 

intensity produced at this composite film was over 3-fold greater compared with that of the pure PSP film 

due to the electrocatalytic activity of the CNT. Such a sensor was verified by the sensitive determinations 

of 2-(dibutylamino)ethanol and TPA[48]. 

Carbon nanotube paste electrodes, like carbon paste electrodes [49], have been applied in ECL sensing 

for the determination of acephate and dimethoate coupled with capillary electrophoresis (CE) [50]. 

Ru(bpy)3
2+-immobilized carbon nanotube paste electrode was fabricated by mixing the MWNT powder, 

Ru(bpy)3
2+ and mineral oil and was electrically heated. This CE–ECL system coupled with heated 

modified-electrode provides high sensitivity, wide linear range, satisfying linear relationship and excellent 

reproducibility for the separation and detection of acephate and dimethoate. Recently, room temperature 

ionic liquids have attracted intensive interest in electrochemistry because of their unique chemical and 

physical properties such as high chemical and thermal stabilities, a relatively wide potential window and 

high ionic conductivity [51-53]. Chen [52] developed a composite paste electrode consisting of MWNT 

and room temperature ionic liquids for fabrication of ECL sensors. These ECL sensors exhibited 

extraordinary stability during long-term potential cycling and have been developed for determination of 

methamphetamine hydrochloride.  

 

2.3 Other nanomaterials  

 

Other nanomaterials, such as SiO2 [54], clay [55], Fe3O4 [56], and Zeolite Y sieves [57], are also used 

as electrode modification materials to construct functionalized electrode interfaces for ECL biosensors. 

These materials have a high chemical inertness and provide a wide range of anode working potentials with 

low electrical resistivity. For example, an ECL sensor was fabricated by preparing {SiO2/ Ru(bpy)3
2+}n 

multilayer films, in which positively charged Ru(bpy)3
2+ and negatively charged SiO2 nanoparticles were 

assembled on ITO electrodes by a layer-by-layer method. Electrochemical and ECL behaviors of the 

SiO2/Ru(bpy)3
2+n multilayer film-modified electrodes were studied and used for the ECL determination 

of TPA. The sensitivity was one order of magnitude higher than that observed for previous reported 

immobilization methods for the determination of TPA [54]. Another ECL sensor obtained by 

immobilizing Ru(bpy)3
2+ in {clay/Ru(bpy)3

2+}n multilayer films by layer-by-layer assembly was 
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investigated by the same group. The stable multilayer films of clay and Ru(bpy)3
2+ were assembled from 

their aqueous dispersions by alternate adsorption of negatively charged clay platelets and positively 

charged Ru(bpy)3
2+. The multilayer film modified electrode was used for the ECL detection of TPA and 

oxalate. The proposed novel immobilized method exhibited good stability, reproducibility and high 

sensitivity for the determination of TPA and oxalate, which mainly resulted from the contribution of clay 

nanoparticles with appreciable surface area, special structural features and unusual intercalation properties. 

The detection limits were 20 nM TPA and 100 nM oxalate, respectively [55]. The ECL sensor was 

fabricated based on the multilayer films of Nafion-stabilized magnetic nanoparticles (Nafion/Fe3O4) 

formed on a platinum electrode surface by means of an external magnet. The ECL sensor based on the 

Nafion/ Fe3O4 multilayer films is more sensitive than that based on pure Nafion films, which is maybe due 

to the fast mass transport in the Nafion/Fe3O4 multilayer films [56].  

 

3. Nanomaterials as carrier of ECL probes 

 

In ECL biosensors, great efforts have been made to improve the sensitivity of ECL biosensor by using 

multiple ECL labels loaded on metal nanoparticles, carbon nanotubes, microsized polystyrene 

microspheres and silica NPs externally or internally. That is to say, nanomaterials are used as ECL probe 

carriers. A large number of ECL labels are encapsulated inside or doped onto single nanoparticles, which 

produces a strong ECL signal and results in sensitive ECL biosensors.  

 

3.1 Metal nanoparticles 

 

 Metal nanoparticles were also used as ECL carriers in ECL probes for the fabrication of highly 

sensitive ECL biosensors [58-60]. Zhang, et. al. reported an ECL DNA biosensor based on ruthenium 

bis(2,2’-bipyridine)(2,2’-bipyridine-4,4’-dicarboxylic acid)-N-hydroxysuccinimide ester (Ru(bpy)2(dcbpy) 

NHS) used as a ECL label and gold nanoparticles as a carrier [58]. As shown in Figure 2, probe ss-DNA 

was self-assembled at the 3’-terminal with a thiol group to the surface of gold nanoparticle and covalently 

labeled at the 5’-terminal of a phosphate group with Ru(bpy)2(dcbpy)NHS and the resulting conjugate, 

(Ru(bpy)2(dcbpy)NHS)-ss-DNA-Au, was taken as a ECL probe. When the target analyte ss-DNA was 

immobilized on a gold electrode by a self-assembled monolayer technique and then hybridized with the 

ECL probe to form a double-stranded DNA, a strong ECL response was electrochemically generated. The 

ECL probe of Ru(bpy)2(dcbpy)NHS)-ss-DNA-Au employing multiple reporters per hybridization event 

enhances the ECL detection sensitivity due to its offering a remarkable amplification of hybridization 

events. A detection limit of 5.0×10−12 M for target ss-DNA was achieved with the gold nanoparticle 

amplification. 

Dong et al. synthesized Ru(bpy)3
2+-gold nanoparticle aggregates (Ru−AuNPs) via electrostatic 

interactions by mixing citrate-capped AuNPs and Ru(bpy)3Cl2 in aqueous medium and following attached 

the as-formed Ru-AuNPs on a sulfhydryl-derivated ITO electrode surface via Au-S interaction. The 

Ru−AuNP-modified ITO electrode is quite stable, exhibits excellent ECL behavior, and hence holds great 
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promise for solid-state ECL detection in capillary electrophoresisor a CE microchip [59]. Fang, et.al. 

fabricated a controllable solid-state Ru(bpy)3
2+-ECL film by immobilization of a Ru(bpy)3

2+-Au 

nanoparticle composite on a cysteamine - derivatized Au electrode, self-assembled ferrocene-labeled 

DNA molecular beacon on the resultant electrode via Au-S interaction [60]. Inducement of conformation 

change of the Fc-MB by hybridization was used as reagentless DNA ECL biosensors to recognize or to 

detect sequence-specific DNA. 

 

Figure 2. Schematic diagram of the ECL detection for DNA hybridization. Reprinted from Ref 

[58] with permission from Elsevier. 

 

 

 

3.2 Carbon nanotubes  

 

Carbon nanotubes were also used as ECL carriers in ECL probes for the fabrication of highly sensitive 

ECL biosensors. SWNT loaded with large of tris(2,2’-bipyridyl) ruthenium derivative tags was 

synthesized and exhibited excellent ECL signaling ability [61]. Zhang et al. developed an ultrasensitive 

ECL detection method for DNA hybridization based on SWNT carrying a large number of ruthenium 

complex tags. The probe single ss-DNA and ruthenium complex were loaded at SWNT, which was used 

as an ECL probe. When the captured ss-DNA with a thiol group was self-assembled onto the surface of 

gold electrode, and then hybridized with target ss-DNA and further hybridized with the ECL probe to 

form DNA sandwich conjugate, a strong ECL response was electrochemically generated. SWNT loaded 

with large of tris(2,2’-bipyridyl) ruthenium derivative tags exhibits excellent ECL signaling ability in the 

presence of a trace amount of DNA target and the developed ECL method based on the multiple reporters 

per hybridization event offers a high sensitivity for the detection of DNA hybridization. The ECL intensity 

was linearly related to the concentration of perfect-matched target ss-DNA in the range from 2.4×10-14 to 

1.7×10-12 M with a detection limit of 9.0×10-15 M [61].  
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3.3 Polymeric microbeads 

 

Polystyrene microspheres/beads (PSB) have been synthesized as the carrier of a large number of 

hydrophobic ECL labels [1], namely, tris(2,2-bipyridyl)ruthenium(II) tetrakis(pentafluorophenyl)borate 

(Ru(bpy)3 [B(C6F5)4]2), and demonstrated for an ultrasensitive DNA hybridization detection and CRP 

immunoassay by Miao [62, 63]. As shown in Figure 3, probe single-stranded DNA (p-ssDNA) was 

attached to the surface of magnetic beads and hybridized with target-ssDNA (t-ssDNA) with immobilized 

PSB containing a large number of water insoluble Ru(bpy)3[B(C6F5)4]2 species (7.5x109 molecules/bead) 

to form a [(probe ssDNA-MB)/(target ssDNA-PSB)] aggregate. Finally, this aggregate is magnetically 

separated from the reaction mixture and transferred into a MeCN solution, in which the PSBs dissolve and 

the ECL label is released. Light emission from the released ECL labels is subsequently measured in 

MeCN in the presence of TPA at a Pt electrode. A similar approach based on a sandwich type 

immunoassay can be used for the detection of an antigen (e.g., anti-C-reactive protein, CRP), as displayed 

in Figure 4. With the above PSB-based “high amplification” technique, a detection limit of 1.0 fM (1.0 × 
10-15M) for a t-ssDNA was achieved, along with a ∼100-fold improvement in the sensitivity in CRP 

determination compared to a previously reported surface-immobilized ECL method [12]. The sensitive 

detection of DNA hybridization was attributed to the attachment of a large number of ECL markers 

(Ru(bpy)3[B(C6F5)4]2) per DNA duplex formed. While this technique shows enormous signal amplification 

compared to the conventional, widely used ECL immunoassay with one label per antibody, it requires the 

use of an organic solvent, acetonitrile, to release the Ru(bpy)3
2+ and generate ECL. This approach is not 

generally compatible with current commercial ECL instrumentation. Liposomes (100-nm diameter) 

containing Ru(bpy)3
2+(bpy)2,2-bipyridine) were prepared as an electrogenerated chemiluminescent tag for 

a sandwich-type immunoassay of human C-reactive protein, which is based on a similar idea of holding 

multiple labels in a larger container, allows the assay to be carried out in aqueous solution and has the 

potential to generate multiple labels after release [64], resulting in a sensitive ECL immunoassay for CRP. 

 

Figure 3. Schematic diagram of DNA hybridization on a polystyrene bead as the ECL label 

carrier and a magnetic bead for the separation of analyte-contained ECL label/polystyrene 

beads. Reprinted from Ref [62] with permission from The American Chemical Society. 
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Figure 4. Schematic diagram showing the formation of a sandwich-type aggregate between an 

antibody-coated MB and an antibody-coated PSB containing entrapped ECL labels in the 

presence of the antigen species, and the separation of the newly formed aggregate with a 

magnet as well as the subsequent dissolution and ECL detection in MeCN using TPA as the 

coreactant. Reprinted from Ref [63] with permission from The American Chemical Society. 

 

 

 

3.4 Silica nanoparticles 

 

Recently, silica nanoparticles (silica NPs) have shown their unique properties and been adapted to 

different applications in the bioanalysis field. Syntheses of dye-doped micrometer-sized silica particles by 

reverse microemulsion method [65, 66] and the Stober method [67-72] have been reported. Tan’s group 

reported that incorporation of dye molecules inside the silica matrix on the basis of a reverse 

microemulsion method protects them from the surrounding environment, increases photostability, and 

provides signal enhancement due to the increase in the number of dye molecules doped per nanoparticle 

[65, 66]. The Shibata group reported the feasibility of incorporating both hydrophobic and hydrophilic 

dyes by the Stober method [67]. Different ECL silica NPs carriers for ECL probes with similar 

composition and functionalization have emerged as a particularly fascinating carrier of ECL probe and 

attracted widespread interest in biology and medicine. The variety of chemical and physical modifications 

possible with silica increases its versatility, and its biocompatibility makes it a relatively benign material. 

Furthermore, the silica NP probe is highly hydrophilic and easy to centrifuge for separation, surface 

modification, and labeling procedures. The silica NPs exhibit enhanced and controllable mechanical and 

chemical stability and their porosity can also be easily tailored in terms of pore size and organization. 

Thus, they are superior to polystyrene latex NP probes, which have significant drawbacks. For instance, 

the hydrophobic property of polystyrene results in easy agglomeration of NPs in aqueous media, and its 

density (1.05 g/cm3) leads to difficulties in separation from solution after the surface modification and 

labeling processes [70].  

Among various ECL systems, Ru(bpy)3
2+-based ECL biosensors have gained more importance due to 

its superior properties, including high sensitivity and good stability under moderate conditions in aqueous 
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solution [71]. Recently, various ECL biosensors using Ru(bpy)3
2+doped silica nanoparticles (RuDS 

nanoparticles) were described for genomic [72], proteomic analysis [73-75], and medical assay [76-78].  

Fang et al. reported a ECL DNA biosensor with a nanoparticle-amplified response using silica 

nanoparticles as carriers for Ru(bpy)3
2+ probe [72]. As shown in Figure 5, RuDS nanoparticles were used 

for DNA labeling with trimethoxysilylpropydiethylenetriamine and glutaraldehyde as linking agents. The 

RuDS nanoparticle labeled DNA probe was hybridized with target DNA immobilized on the surface of 

polypyrrole modified Pt electrode. The hybridization events were evaluated by ECL measurements and 

only the complementary sequence could form a double-stranded DNA with DNA probe and give strong 

ECL signals. Due to the large number of Ru(bpy)3
2+ molecules inside silica nanoparticle, the assay allows 

detection at levels as low as 1.0×10−13 M of the target DNA.  

 

Figure 5. Schematic representation of preparation Ru(bpy)3
2+-doped silica nanoparticles 

oligonucleotides probes (A) and the electrogenerated chemiluminescence detection of DNA 

hybridization based on the Ru(bpy)3
2+-doped silica nanoparticles labeled oligonucleotides 

probes (B). Reprinted from Ref [72] with permission from Elsevier. 

 

 

 

ECL biosensors with RuDS nanoparticle modified electrode prepared by different methods serving as 

TPA or polyamine sensors have received much attention [79, 80]. An ECL sensor was developed by 

coimmobilization of the RuDS nanoparticles and carbon nanotubes on a glassy carbon electrode through 

hydrophobic interactions [79]. With such a unique immobilization method, a great deal of Ru(bpy)3
2+ was 

immobilized three-dimensionally on the electrode, which could greatly enhance the ECL response and 

result in the observed increased sensitivity. On the other hand, CNT played dual roles as matrix to 

immobilize RuDS nanoparticles and promoter to accelerate the electron transfer between Ru(bpy)3
2+ and 

the electrode. The as-prepared ECL sensor displayed good sensitivity and stability for the determination of 

TPA. This sensor shows a detection limit of 2.8 nM for TPA, which is three orders of magnitude lower 
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than that observed at a Nafion-based ECL sensor [82]. However, Ru(bpy)3
2+-doped silica nanoparticles in 

the above-mentioned films are in random order.  

Another strategy for the immobilization of RuDS nanoparticles has been reported by Yang, in which 

Ru(bpy)3
2+-doped silica nanoparticles were first modified with gold colloids and then immobilized on a 

3-mercaptopropyltrimethoxysilane-modified indium tin oxide electrode surface by Au–S interaction [66]. 

While with such method only one layer of Ru(bpy)3
2+-doped silica nanoparticles could be immobilized, 

which limits the amount of Ru(bpy)3
2+ effectively involved in ECL reaction., Dong reported an alternative 

technique for immobilization of RuDS nanoparticles, in which an ECL sensor was fabricated by composing 

RuDS nanoparticles and Au nanoparticles through layer-by-layer assembly by electrostatic interaction 

between RuDS nanoparticles and Au nanoparticles [80].  

The diameters of most silica coated magnetic nanoparticles and dye-encapsulated silica nanoparticles 

prepared and studied are larger than 50 nm, and there has been a growing interest in the synthesis of 

smaller-sized functional magnetic nanoparticles as this would facilitate their applications in biomedical 

sciences because of their higher surface area and the possibility of larger dye loading. The synthesis and 

investigation of multifunctional core-shell magnetic silica nanocomposites, with the Fe3O4 core coated 

with a silica shell, to which luminescent ruthenium(II) complexes were covalently attached and further 

encapsulated with an additional layer of silica shell, was reported [82, 83]. These multifunctional 

nanocomposites were shown to exhibit superparamagnetic behavior, high emission intensity, and 

electrochemiluminescence. An intense low oxidation potential ECL signal was observed by attachment of 

these functional nanoparticles onto a fluorosurfactant-modified gold (Aum) electrode via application of an 

external magnetic field [83].  

Luminol serving as ECL signal in luminol doped silica nanoparticles was also reported [84-86] for the 

fabrication of ECL biosensors. However, the application of these ECL biosensors is limited by the 

consumption of the luminol reagent on the electrode surface.  

 

4. Nanomaterials as ECL-emitting species 

 

The sensitivity of ECL biosensor is mainly based on the ECL-emitting species. In the past several years, 

a number of new ECL-emitting species were synthesized and their ECL properties were investigated. The 

driving forces behnd these kinds of studies include: (a) finding new luminophores with higher ECL 

efficiencies and (b) modifying a moiety of the emitter so that it can be used for labeling of bimolecular 

[1]. Numerous organic and inorganic compounds have been shown to be capable of producing ECL. 

ECL-emitting species are usually classified into three categories: (a) inorganic systems, which mainly 

contain organometallic complexes; (b) irganic systems, which cover polycyclic aromatic hydrocarbons 

and (c), nanomaterial systems. ECL-emitting species discussed in this following section are focused on 

nanomaterials as ECL-emitting species reported from 2004 to 2008.  
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4.1 Semiconductor nanomaterials 

 

In ECL-emitting species, semiconductor nanocrystals (quantum dots) opened a promising field for the 

development of a new generation of ECL-emitting species. Quantum dots (QDs, also known as 

nanocrystals, semiconductor nanoparticles or colloidal semiconductor nanocrystals), are roughly spherical 

and typically have unique optical, electronic and photophysical properties that make them appealing in 

promising applications in biological labeling, imaging, and detection and as efficient fluorescence 

resonance energy transfer donors [87]. Since first reported by Bard [88], both elemental semiconductors 

(e.g., Si and Ge), and many compound semiconductors (e.g., CdS, ZnS, CdSe, and CdTe) were 

synthesized and found to produce ECL. A number of reviews on the fabrication, properties, and 

applications of QDs have been reported recently [89-90]. The ECL mechanism of semiconductor NPs 

follows the general annihilation and coreactant ECL reaction pathways as detailed discussed in Ref [1]. 

ECL analytical techniques coupled with QDs developed rapidly and were extensively studied in both 

organic [91-95] and aqueous media [96-103]. Recently, more reports have been focused on ECL of QDs 

in aqueous solution, which avoids using toxic organic solutions and has potential applications in 

biological analysis. Zhang et al. observed a band gap ECL of ZnS nanoparticles in alkaline aqueous 

solution at a platinum electrode during the potential applied between -2.0 V (versus Ag/AgCl, saturated 

KCl) and +0.86 V[100]. It was found that the surface passivation effect and the core/shell structure of 

ZnS/Zn(OH)2 played a significant role in the ECL process and that the similarity of the ECL and PL spectra 

of semiconductor NPs was dependent on the extent of the surface passivation (schematic representations of 

the PL and ECL process of nanoparticles in the core and on the surface are shown in Figure 6). The ECL 

intensity of ZnS NPs in alkaline aqueous solution was greatly enhanced by an addition of K2S2O8 and the 

ECL intensity linearly increased along with the concentration of ZnS NPs in the range from 1.2×10-4 to 

1.0×10-3 M, which suggests that ZnS NPs in 0.10 M NaOH containing 0.010 M K2S2O8 has potential 

applications in analytical chemistry. It is noted that the efficiency of the NPs should be improved.  

 

Figure 6. Schematic representations of PL and ECL process of nanoparticle in the core and on 

the surface. Reprinted from Ref [100] with permission from The American Chemical Society. 

 

 

 



Sensors 2009, 9  

 

687

In addition to the solution phase NPs ECL, ECL of NPs films on the surface of electrodes has also 

received much attention because NPs may find applications in optoelectronic systems or as components in 

future nanoelectronic devices. Besides, semiconductor NP thin films may also offer better electrochemical 

and ECL signals, because the solution phase NPs often suffer from low solubility, low concentration, and 

small diffusion coefficient [1]. Ju et al. reported an ECL sensor for the determination of H2O2 on a CdSe 

nanocrystal-modified paraffin-impregnated graphite electrode (PIGEs )[97]. The CdSe nanocrystal thin 

film exhibited two ECL peaks at -1.20 (ECL-1) and -1.50 V (ECL-2) in pH 9.3, 0.1 M PBS during the 

cyclic sweep between 0 and -1.8 V at 20 mV s-1. ECL-1 showed higher sensitivity to the concentration of 

oxidant coreactants than ECL-2 and thus was used for ECL detection of the coreactant, H2O2. A linear 

response of ECL-1 to H2O2 was observed in the concentration range of 2.5×10-7-6×10-5 M with a detection 

limit of 1.0×10-7 M. The fabrication of 10 CdSe nanocrystal thin film modified PIGEs displayed an 

acceptable reproducibility with a RSD of 1.18% obtained at H2O2 level of 10 μM.  

Zhu et al. recently developed a label-free ECL immunosensor for the sensitive detection of human IgG 

(HIgG) [101]. As shown in Figure 7, an ECL modified electrode was firstly fabricated by covered CdSe 

nanocrystals, carbon nanotube-chitosan, and 3-aminopropyltriethoxysilane colloidal solution on the Au 

electrode surface, which showed high ECL intensity and good biocompatibility. The modified electrode 

was used as an ECL immunosensor for the detection of HIgG after antibody was bound to the 

functionalized film via glutaric dialdehyde. The specific immunoreaction between HIgG and antibody 

resulted in the decrease in ECL intensity. The ECL intensity decreased linearly with HIgG concentration 

in the range of 0.02-200 ng mL-1, and the detection limit was 0.001 ng mL-1. The immunosensor has the 

advantages of high sensitivity, speed, specificity, and stability and could become a promising technique 

for protein detection. It has been suggested that these QDs ECL markers are better labeling agents than 

commonly used organic dyes. 

 

Figure 7. Fabricating Steps of the ECL Immunosensor. Reprinted from Ref [101] with 

permission from The American Chemical Society.  
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While ECL research on NPs has focused on the properties of particle ensembles, the exploration of 

ECL at the single particle level reported allows for the investigation of effects due to particle heterogeneity, 

which are masked in bulk ECL and EC studies of NPs [104]. For a deep discussion of the electrochemical 

and ECL behaviors of semiconductor NPs in solutions and in films, readers are referred to very recent 

comprehensive reviews of this field [1, 105].  

 

4.2 Ionic nanomaterials  

 

While most research has focused on inorganic compounds, polymers, or low-molecular weight organic 

compounds, Recently, a study has been performed on ionic compounds such as 

[Ru(bpy)2(4,4′-(CH3(CH2)14COO)2-bpy)](ClO4)2, the water-insoluble derivative of tris(bipyridine) 

Ru(II)[106]. The Bard group fabricated nanoscale nanobelts from such an ionic compound by using a 

simple reprecipitation method. Strong photoluminescence and ECL can be obtained from these in aqueous 

solution. This is the first report of ECL of a single ionic nanoparticle. These can be useful in the study of 

the electrochemistry of nanoparticles, as well as the basis of highly sensitive electroanalytical methods, 

with a small amount of material concentrated on an electrode surface. 

 

5. Concluding Remarks  

 

We here have described a variety of ECL biosensors employing nanomaterials as modification 

electrode materials, carriers of ECL labels and ECL-emitting species. Nanomaterials offer elegant ways 

for the enhancement of ECL signal and the improvement of sensitivity of ECL biosensors. Such coupling 

of high sensitivity and stability capabilities permits ECL biosensors to rival the most advanced 

electrochemical and optical protocols in bioassays. Although completely nanomaterial-based ECL 

biosensors showed improved ECL characteristics, new materials and immobilization methods are still 

needed in order to improve the sensitivity and the long-term stability of ECL biosensors.  

The combination of the ECL technique with other techniques could lead to the development of new 

instruments and provide valuable insights into molecular structures and intracellular components of 

biorelated species [1]. In particular, the integration of nanotechnology, microfabrication techniques and 

miniaturized devices with novel biochemical detection methodologies should lead to very sensitive and fast 

assays. With further understanding of ECL mechanisms, new highly efficient and tunable ECL systems, 

both emitters and coreactants, will be developed for further improving the analytical performance of ECL 

biosensors. 
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