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Abstract: This paper proposes a general hierarchical dispatching strategy of mine water, with the
aim of addressing the problems of low reuse rate of coal mine water, and insufficient data analysis.
First of all, water quality and quantity data of the Narim River No. 2 mine were used as the research
object; the maximum reuse rate of mine water and the system operation rate comprised the objective
function; and mine water quality information, mine water standard, and mine water treatment
speed were the constraints. A multi-objective optimization scheduling mathematical model of water
supply system was established. Then, to address the problems of premature convergence and ease
of falling into a local optimum in the iterative process of particle swarm optimization, the basic
particle swarm optimization was improved. Using detailed simulation research, the superiority
of the improved algorithm was verified. Eventually, the mine water grading dispatching strategy
proposed in this paper is compared with the traditional dispatching method. The results show that
the hierarchical dispatching system can significantly improve the mine water reuse rate and system
operating efficiency.

Keywords: mine water dispatching; improved particle swarm optimization algorithm; mine wa-
ter reuse

1. Introduction

Mine water undergoes a series of physical, chemical, and biochemical reactions during
coal mining while in contact with coal strata, and it is influenced by human activities. This
study used the Narim River No. 2 mine as the research location. The mine water treatment
tank is shown in the Figure 1. The mining area is located in Ordos, Inner Mongolia, which
is characterized by special geological conditions. The mine is situated in the basin of the
Wuding River, which is the first tributary of the Yellow River, and has abundant water
inflow. A previous investigation found that a large portion of the mine water is treated
and reused within the area of the mine [1,2]. Furthermore, the treatment process is fixed
and corresponding adjustments cannot be made according to changes in time or space.
As a result, a large quantity of mine water is not treated in a timely manner and reuse
efficiency is low. This not only leads to water resource loss, but also results in significant
quantities of acid and organic pollutants in the mine water, thus causing serious damage
to the mining environment [3–6]. In addition, the required quality of water used in the
mine varies, such as for underground firefighting, grouting, and hydraulic support. The
demand for production water must be met at all times, and the water quality requirements
for domestic use and boiler water are more stringent. In addition, the lack of corresponding
water supply points for different water directions further reduces the reuse efficiency of
mine water. The mine water reuse reservoir is shown in the Figure 2. In summary, the
reuse of mine water has low efficiency due to: (1) the large water inflow of the mine;
(2) inefficiencies of the mine water treatment technology; and (3) the distribution of the
mine water.
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Figure 2. Mine water reuse reservoir.

In view of the above problems, researchers have proposed a variety of solutions, such
as underground water detection, mine water treatment automation, and combinations of
mine water supply and drainage. Ref. [6] proposed calculation of groundwater reserves
and their changes using gravity recovery, climate experiments, and a global hydrological
model. They put forward an important basis for the detection of coal mine water inflow
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and the formulation of pretreatment scheme. Ref. [7] designed a control system using
a fuzzy proportional controller to maintain biogas flow [7]. The controller function was
developed in MATLAB software and embedded in a Nios II processor of FPGA. Ref. [8]
designed a set of automatic monitoring systems for water resource purification [8], which
was mainly aimed at the automatic control of water quality monitoring and chemical
configuration. The sensor collects real-time data, and controls the starting and stopping
of dispensing, sewage, and water pumps according to the control strategy. This system
improves the automation and reuse efficiency of mine water treatment. Ref. [9] proposed an
optimized combined system model to address the issues of the drainage, water supply, and
environmental protection of a coal field using the Phillip multi-objective simplex method
and fuzzy analytic hierarchy process [9]. The scheme improved the scope of the mine water
treatment system and increased the reuse rate of mine water. Ref. [10] proposed a new
optimization allocation tool for mining units of a drainage pipeline, aimed at minimizing
hydrogen sulfide production in view of the rapid increase in water resource pressure in
urbanization [10]. The network was simulated many times by combining the Monte Carlo
method with SWMM. The method was applied to a sewage pipe network in Greece and
ideal results were obtained.

To date, numerous studies on energy scheduling have been published [11,12]. Mine
water is one of the main energy sources for mine production safety. An appropriate
allocation of water resources can not only save water, but also significantly enhance mine
production safety.

2. Scheduling Reuse System Model
2.1. Hierarchical Reuse Strategy

Significant differences exist in mine water treatment processes in different mining
areas. This paper focuses on the treatment process of Narim River No. 2 mine, as shown
in Figure 3a. The reclaimed water in the mining area is mine water following advanced
treatment. This process requires a long period, which delays the reuse speed of mine
water and indirectly affects the production of the mining area. Because the traditional
mine water treatment and reuse system is simple and cannot undertake complex optimal
dispatching for water reuse, this study aimed to improve the mine water treatment system.
To increase the amount of underground mine water reuse, a coagulation sedimentation
device and mechanical filter were added to treat the mine water. This increases the
number of mine water reuse points of the underground clear water pool to meet the water
quality requirements of underground water. Compared with the domestic water in the
mining area, production water has the characteristics of large quantity, low water quality
requirements, and concentrated water consumption points. Therefore, the reuse outlets
in the pre-treatment, secondary treatment, and deep treatment stages were established to
meet the requirements of the different water points in terms of water quality and quantity,
as shown in Figure 3b.

The reuse rate and efficiency of mine water are the most direct means of reflecting the
state of mine water reuse. Therefore, this study investigated the reuse water and treatment
speed of the Narim River No. 2 mine, established the mathematical relationship among
the participating quantities, and deduced the mathematical model of mine water optimal
dispatching. The mathematical model was analyzed and solved using an improved particle
swarm optimization algorithm, and the optimal allocation scheme of mine water treatment
was calculated.

The mine water dispatching system comprises underground dispatching and ground
dispatching. Based on a survey of underground and ground water consumption, the
monthly water consumption in the Narim River mine in 2015 is shown in Figure 4; January,
February, March, and December constitute the heating season, and May, June, July, and
August constitute the non-heating season. The survey results of water quality and water
quantity at the water use point of the mining area are shown in Table 1. Surface water
consumption accounts for about 73.4% of the water consumption in the mining area,
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including production water used for ground dust removal, firefighting, coal preparation,
heat exchange stations, and cooling, in addition to domestic water used for drinking,
greening, and boilers in the mining area. The water consumption points are divided
according to the water quality conditions. The water supply points are mainly distributed
between the middle, high-level, and reuse tanks. Underground water points include those
for underground firefighting, grouting, hydraulic support, cooling, and underground dust
removal. The water supply point is the underground clean water tank.
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Table 1. Corresponding table of mine water quality.

Variable Hierarchy Water Point
Monthly Water Consumption/m3 Concentration/(mg/L) Preset

Variation
Range (%)

Heating
Season

Non-Heating
Season SS COD Hardness Oils Turbidity

Underground—
clean water

tank

Underground
fire water 2880 2880 ≤30 - - - ≤5 ±10

Grouting water 1840 576 ≤30 - - - ≤5 ±10

Downhole dust
removal water 144 288 ≤30 - - - - ±10

Cooling water 720 720 ≤30 ≤60 ≤450 ≤1 ≤5 ±10
Hydraulic

support water 105.2 105.2 ≤20 ≤60 ≤450 ≤1 ≤5 ±10

Pretreatment—
intermediate

tank

Ground dust
removal water 2304 2592 ≤150 - - - - ±20

Fire water 96 2880 ≤30 ≤50 ≤450 10 ±10

Secondary
treatment—high

tank

Coal preparation
water 1728 1296 ≤400 ≤500 ±20

Heat exchange
station water 864 864 - soft water ±25

Cooling water 720 720 ≤30 ≤80 ≤450 ≤1 ≤5 ±20
Greening water 288 288 - ≤50 ≤450 ≤10 ±40

Other domestic
water 1440 1728 - ≤50 ≤450 ≤5 ±40

Advanced
processing—reuse

tank

Boiler water 1728 288 ≤30 ≤60 ≤450 ≤1 ≤5 ±40

Drinking water 57.6 57.6 Nothing
visible ≤20 ≤450 ≤0.05 ≤1 ±40

The water quality and quantity of the mine water treatment process vary at different
stages. The underground surface water consumption points are matched with the treatment
process reuse pool. On this basis, combined with the priority order of water consumption
points, the variation ranges of the water consumption points are preset. The preset variation
results are shown in Table 1. Based on a field investigation of mine water treatment
capacity and subsequent analysis, the mine water treatment speeds of all levels of the water
consumption points are shown in Table 2. Because the actual treatment process has not
changed, the fastest treatment speed is adopted in the experimental simulation; that is, the
mine water treatment speed during the non-heating season.

Table 2. Treatment rate of mine water reuse points at all levels.

Mine Water Reuse Sites
Processing Speed (h/m3)

Heating Season Non-Heating Season

Downhole—Clear water pool 4.48 × 10−3 4.48 × 10−3

Pretreatment—Intermediate pool 1.36 × 10−3 6.77 × 10−4

Secondary treatment—High-level tank 1.36 × 10−3 6.77 × 10−4

Deep processing—Multiplexed pools 1.36 × 10−3 6.77 × 10−4

2.2. Reuse Strategy Model

The ultimate goal of the mine water optimal dispatching system is to adjust the
operation scheme of the system. Under the conditions of meeting the water quality
and quantity restrictions of the mining area, the mine water after treatment is optimally
distributed, so that the reuse rate of mine water and the working efficiency of the treatment
system are improved. In this study, the lowest reciprocal of the sum of mine water reuse
and its treatment time was taken as the objective function, and the water quality and
quantity of each water consumption point was taken as the constraint condition. For
a certain period of time t, the mathematical model of system optimal scheduling was
established

min f it =
M

∑
i=1

 1

ω1
Ci−Qi
Si−Qi

+ ω2
timax−tic

timax−timin

 (1)
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where Si is the maximum amount of mine water recycling, Ci is the recycling amount
of the ith water consumption point, Qi. is the mine water reuse amount of the ith water
used in the original system, timax is the time used to treat the maximum reuse amount of
mine water, timin is the minimum time used to treat the minimum amount of mine water
recycling, tic is the time used by the ith water point to reuse mine water. ω1, ω2 are the
weight coefficients, which are 0.6 and 0.4, respectively.

2.3. Reuse System Constraints

(1) The balance of water supply and demand in the mining area. During any period of
time, the mine water inflow into the mine water treatment system should be equal to the
sum of water consumption and discharge of each water point. Because evaporation and
loss of water in the treatment process are inevitable, they are ignored in this model.

S =
M

∑
i=1

Ci + D (2)

where S is the total water inflow, Ci is the water consumption of each water point, and D is
the mine water discharged after treatment.

(2) Water supply capacity of mine water treatment at all levels. At each stage of
the treatment system, the amount of water to be used in the treatment tank is limited.
During the operation of the mine water treatment system, it is necessary to establish
multiple reuse tanks at each treatment level to satisfy the water resource utilization of
the mining area without delaying the normal operation of the treatment system. Due to
space constraints, the size of the reservoir needs to be limited according to the site of the
mining area. Therefore, in the process of scheduling and reuse, it should be first determined
whether the water quantity in the reuse tank can meet the demand of water consumption,
and whether to continue scheduling.

Bmin ≤ Bi ≤ Bmax (3)

where Bi is the water supply of the I treatment stage, Bmin is the minimum water supply in
stage I, Bmax is the maximum water supply in stage i.

(3) The water quality condition of equipment in the mining area. There is an upper
limit for each level of water treatment. Because the mine water contains a variety of
minerals and is characterized by an acid–base imbalance, a variety of chemicals are required
for treatment, and each level of water quality treatment is subject to a different water
quality standard.

Zimin < Zi < Zimax (4)

where Zi is the water quality of treatment stage i, Zimin is the minimum standard of water
quality in stage i, Zimax represents the highest water quality standard of stage i treatment.

(4) Mine water treatment speed. Although mine water treatment operates continu-
ously, in practice the size of the water reuse tank is limited, and a certain amount of time is
required for storage, particularly for the process of dosing sedimentation, which takes a
long time.

Vimin < Vi < Vimax (5)

where Vi is the purification rate of mine water in stage i. Vimax represents the fastest
treatment speed of the ith treatment stage, Vimin is the minimum treatment speed of stage i.

Based on the above conclusions, this study derived four constraints for the mine water
optimal operation model, namely, one equality constraint and three nonlinear constraints.
Therefore, the optimal scheduling model proposed in this paper is an optimization problem
with nonlinear constraints. For this kind of problem, by introducing penalty function, the
optimal scheduling problem can be transformed into an unconstrained optimization prob-
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lem and then solved. In general, the above constraints are converted into the calculation of
penalty function. For the calculation of penalty value, refer to the formula

ϕ =
N

∑
n=1

(
max

{
0,−un(

→
x )
})2

+
H

∑
h=1

(∣∣∣zh(
→
x )
∣∣∣2) (6)

where ϕ indicates the penalty value, N is the number of inequality constraints in the optimal
scheduling problem, H is the number of equality constraints, un

(→
x
)

is the result of the

transformation of the nth inequality constraint, zh

(→
x
)

is the result of the transformation of
H equality constraints

un(
→
x ) ≥ 0 (7)

For h equality constraints in the optimization problem, zh

(→
x
)

is the converted form,
and the conversion method is

zh(
→
x ) = 0 (8)

Regarding the calculation of the penalty value, Equations (7) and (8) show that if
the variable exceeds the limit given by the inequality constraints, the penalty value is∣∣∣−un

(→
x
)∣∣∣2, otherwise it is 0. If a variable exceeds the limit given by the equality constraint,

the penalty value is
∣∣∣zh

(→
x
)∣∣∣2; otherwise, it is 0. Thus, a large positive integer δ can

be multiplied with the penalty value, which is then included in the objective function
proposed in this paper. Because the aim of the optimal objective function is to find its
minimum value, a penalty value can be added to form an augmented function relative to
the original objective function

f in( f ) = f + δϕ (9)

where f in( f ) indicates the final objective function, f is the objective function, δ is a positive
integer with a value of 106, ϕ indicates the penalty value.

As can be seen from the above formula, due to the magnitude of the value of δ, when
the variables exceed the constraints proposed in this paper, the result of the objective
function becomes very large. Thus, the objective can be quickly determined as a non-
optimal solution.

3. Design and Optimization of Mine Water Dispatching Method Based on Particle
Swarm Optimization

The particle swarm algorithm simulates the feeding process of birds by setting each
bird involved in the feeding behavior as a particle with no mass and volume [13–15]. In the
basic particle swarm algorithm, each particle is treated as a massless, volume-free particle
in the search space. Suppose the dimension of the search space is D and the number of the
target population is n. The ith particle in the population space can be represented as a posi-
tion in the D-dimensional space, expressed as Xid = [xi1, xi2, xi3 . . . xiD],(d = 1, 2, 3 . . . D).
If Xi is substituted into the objective function, its fitness value can be obtained, and the
superiority or inferiority of the obtained result can then be judged by comparing the mag-
nitude of its fitness value. Another important parameter in the iteration of the algorithm
is the flight speed of the particle Vid = [vi1, vi2, vi3 . . . viD](d = 1, 2, 3 . . . D), which denotes
the flight speed of the i(i = 1, 2, 3 . . . n)th dimension of the first particle. In the search space
range, assuming that the current best position found by the ith particle is Pbestid = (p1d,
p2d, p3d, ......, pnd,), the best position identified by the population in the search space range
can be expressed as Gbestgd(G1d, G2d, G3d, ......, Ggd).

The formula of each update iteration is

Vk+1
id = ωVk+1

id + C1ε
(

Pk
best − xk

id

)
+ C2µ

(
Gk

best − xk
id

)
(10)
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Xk+1
id = Xk

id + Vk+1
id . . . d = 1, 2, 3 . . . D (11)

C1 represents the weight coefficient of the optimal value searched in the historical
search, which is the recognition of the particle itself. C2 represents the weight coefficient of
the optimal value identified by the particle swarm in the search. This is the recognition of
the population in the cluster, which is usually 2. Variables ε and µ are random numbers
distributed in the interval [0, 1]. The individual extreme pbest and the global extreme
Gbest are expressed by Equations (12) and (13), respectively.

Pbest i(k) = argmin{ f it(Xi(1)), f it (Xi(2)), f it(Xi(3)), . . . , f it(Xi(k))} (12)

Gbest(k) = argmin{Pbest1(k), Pbest 2(k), Pbest 3(k), . . . , Pbest 4(k)} (13)

ω represents the weight coefficient of the particle [16–18], also known as the inertia
factor, which is a linearly decreasing variation parameter. The specific formula is

ωk = ωmax −
(

ωmax −ωmin
Kmax

k
)

(14)

Here, ωmax = 0.9, ωmin = 0.4, Kmax is the maximum number of iterations, and k is the
current number of iterations.

With an increase in the iteration number k, the velocity and position of particles in
the population are constantly changing. In addition, Pk

best − xk
id is called self cognition and

Gk
best − xk

id is called social cognition [19–23].
Particle swarm optimization has been widely used in many basic science and appli-

cation fields. In the field of artificial intelligence, it is most often used in the training of
neural network models in artificial intelligence; in electrical engineering, it can be used to
control product or power costs. In this study, particle swarm optimization (PSO) was used
to address the problem of mine water optimal scheduling.

According to the characteristics of particle swarm optimization, each particle is com-
posed of multidimensional space. In the iterative process, the parameters in each bit space
are moving to the optimal position, which is the process of particle optimization, as shown
in Figure 5.
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The aim of the mine water optimal scheduling model established in this paper is to
optimize the total scheduling amount of multiple objective reuse tanks. The objective of
optimization is to ensure the water in each reuse tank is fully utilized under the premise
of meeting the constraints, and to obtain the optimal solution of the objective function
established in this paper.

According to the characteristics of the particle swarm optimization algorithm and the
goal of mine water optimal scheduling and reuse, this paper combines each scheduling
tank with the spatial dimension of particles. The optimization process of particles in the
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spatial dimension corresponds to the scheduling and optimization process of the mine
water reuse system. The common goal is to make the objective function f (x) obtain the
optimal value.

Figure 6 shows that mine water dispatching is mainly used in the clean water, in-
termediate, high water, and reuse tanks. The iterative optimization of particle swarm
optimization is carried out in the multi-dimensional space of particles. Therefore, the spa-
tial dimension of particles is set to four-dimensional, and different scheduling schemes are
found in each iteration calculation. The particle swarm optimization algorithm calculates
the target function according to the scheme until the termination condition of iteration is
reached or the particle finds the best advantage; that is, when the objective function obtains
the minimum value, the algorithm stops iterating and outputs the calculation results. Thus,
the mine water scheduling scheme can be obtained.
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4. Inertia Weight Strategy Analysis
4.1. Inertia Weight Decreasing Strategy

Inertia weight is one of the main factors that affect the effect of particle swarm op-
timization. The larger the inertia weight, the stronger the ability of global space search.
When the inertia weight factor ω is small, the local search ability of the particle will be
enhanced, and it will be close to the optimal value. The disadvantage is that lower weight
will reduce the optimization speed of particles.

In the standard case, the inertia weight is a linear decreasing function. The linear
decrement formula is shown in Equation (14). The formula is shown in Figure 7.

Figure 7 shows that inertia weight is a linear function of the number of iterations.
When the initial iteration starts, the inertia weight ω is relatively large. we can see that
the particle velocity is relatively large in the initial iteration from formula 10, which has
a good global search ability, but the local search ability is weak. With the accumulation
of the number of iterations, the value of ω is smaller and smaller, and the search speed of
particles is smaller and smaller. However, the search is more detailed, which can find the
best point in the local range. However, if the best point is not met at the beginning, the
subsequent iterative optimization will be affected by the deviation.
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There is also a differential decreasing inertia weight, and the specific calculation
formula is

ω = ωmax −
ωmax −ωmin

Tmax2 t2 (15)

In the formula ωmax is the maximum and initial value of inertia factor, ωmin is the
minimum and the final value, tmax is the maximum number of iterations, t is the current
number of iterations.
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Figure 7. Linear decreasing function.

Figure 8 shows that, the inertia weightω is also negatively correlated to the number
of iterations, and inertia weight is a quadratic function of the number of iterations. This
function is an exponential declining function. In the initial state, particle swarm optimiza-
tion algorithm will search for more optimal values in global space. With the iteration, the
possibility of finding a global optimal will be greatly increased.
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4.2. Improvement Strategy of Inertia Weight

The difference between adaptive particle swarm optimization and basic particle swarm
optimization in solving mine water scheduling problem is the improvement of inertia
weight. For example, the influence of inertia weight proposed in the improved scheme
on the convergence of PSO is that the global search ability is strong when the inertia
weight is large, and the local search ability is strong when the inertia weight is small [24].
According to the goal of optimal operation of mine water, combined with the convergence
characteristics of particle swarm optimization, the inertia weight ω is calculated. The
improvements shown in Figure 9 are made.
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Figure 9 shows that, in the initial state, the inertia weight of the particle swarm
optimization algorithm is the maximum state and, at this time, the scheduling quantity of
each tank in the schedulable scheme is in a random state, which corresponds to the large
Euclidean space distance between the particle dimensions. Therefore, this paper relates
the inertia weight, which affects the convergence state of the algorithm, to the Euclidean
space distance of the particle dimension in the particle swarm optimization algorithm.
The improved scheme of inertia weight proposed in this paper was examined. Under
continuous iteration, the scheduling gap between each dimension decreases, and the value
of the inertia weight also decreased, which enhances the local search ability of the PSO.

The improvement of the particle swarm optimization algorithm proposed in this
paper not only gradually decreases the weight with the iterative optimization process, and
adapts to the change of state, but also limits the size of the inertia weight in terms of spatial
distance. Thus, the inertia weight changes adaptively within the specified range, meeting
the needs of the particle swarm optimization algorithm for mine water optimal scheduling.

In the basic particle swarm optimization, the linear inertia weight change causes the
iteration of the algorithm to fall into a local optimum too early, which leads to an imbalance
in local and global search ability. Therefore, this paper dynamically adjusts the inertia
weight in the iterative process through the position of all particles in the population; with
the increase in the number of iterations, all particles move towards the optimal value, and
the inertia weight should be appropriately reduced, so as to improve the local search [25,26]
and reduce the number of iterations. In each iteration, the Euclidean distance between
particles in each dimension can be calculated as

sk =
N

∑
i=1

N

∑
j=i

√√√√ D

∑
k=1

(
xk

i − xk
j

)2
(16)



Sensors 2021, 21, 4114 12 of 22

where k is the dimension, D is the maximum spatial dimension, n is the number of examples,
sk is the sum of the distances of the particles in the kth dimension, xk

i is the position of the
ith particle in the kth dimension.

By comparison, the sum of the distances between the particles of each dimension is
obtained, and the maximum, minimum, and average of the distances are obtained.

save =
1

N − 1

D

∑
K=1

sk (17)

According to the calculated distance between particles, the evolution factor F is calcu-
lated

fi =
Save − Smin
Smax − Smin

∈ [0, 1] . . . i = 1, 2, 3 . . . N (18)

where fi is the evolutionary factor, smax, smin,save represents the maximum, minimum, and
average distance, respectively, between particles in each dimension.

ω does not simply decrease over time, but should change with the evolution state.Previous
research has found that, if the PSO is in a reasonable operation state, ωd∈[0.4, 0.95]. This
article selects the same change range. Because the change range of f is 0–1, the evolution
factors should have the relationship

ωd =
1

1 + 1.5e−3.35 f i ∈ [0.4, 0.95] (19)

where ωd is the inertia weight and the initialization setting is 0.95. In the initial stage of the
algorithm, f and ω are larger. In contrast, in the late convergence state, f andω are smaller.
It is more advantageous for the local search to reduce the search time.

Therefore, the new formula for each iteration is

ωd =
1

1 + 1.5e−3.35 f i (20)

Xk+1
id = Xk

id + Vk+1
id . . . d = 1, 2, 3 . . . D (21)

Vk+1
id = ωdVk+1

id + C1ε
(

Pk
best − xk

id

)
+ C2µ

(
Gk

best − xk
id

)
(22)

where ωd is the weight coefficient of the improved algorithm, X is the position of the
particle, V is the velocity of the particle, k is the iteration number, C1 and C2 are cognitive
coefficients, and the value is 2. ε,µ are random numbers between 0 and 1.

When solving the problem, the water demand of the mining area is taken as the input
of the model, and the scheduling strategy of mine water is taken as the output of the model:

(1) The state, population size, spatial dimension, iteration times, and parameters of each
water supply node are initialized.

(2) The fitness value pi, individual extreme value pibest and global extreme value Gbest of
each particle are calculated. If pi < pibest is satisfied, then pibest = pi; if pi < Gbest, then
Gbest = pi.

(3) The inertia weight of the improved algorithm is updated.
(4) The position and velocity of each iteration particle is updated.
(5) Judge whether the particle reaches the termination condition. If it meets the condition,

terminate the search. If not, return to the second step and continue.

To more clearly reflect the operation principle of the improved particle swarm opti-
mization algorithm in the mine water optimal scheduling system, a flow chart of mine
water optimal scheduling based on the improved particle swarm optimization algorithm,
which illustrates the above process, is shown in Figure 10.
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4.3. Test Results and Analysis

To verify the convergence accuracy and speed of the improved algorithm, this study
simulated the improved adaptive weight particle swarm optimization algorithm, using
four classic test functions, as shown in Table 3. The particle swarm optimization (PSO)
with linear weight-decreasing (LDIW-PSO), exponential weight-decreasing (EDIW-PSO),
and adaptive weight-decreasing (ADIW-PSO) inertia weight strategies were simulated
respectively; the optimal values [27–29] were calculated and the performance of the three
optimization algorithms was compared.

Table 3. Test functions.

Test Function Function Expression Dimension Search Scope Meaning

Sphere f (x) =
D
∑

i=1
x2

i
30 [–10, 10] Global search

capability

Rastrigin f (x) =
D
∑

i=1

(
x2

i − 10 cos(2πxi) + 10
) 30 [−10, 10] Practicality

Rosenbrock f (x) =
D−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

30 [−10, 10] Local search capability

Griewank f (x) = 1
4000

D
∑

i=1
x2

i −
D
∏
i=1

cos
(

xi√
i

)
+ 1 30 [−10, 10] Beyond local

restrictions

Unified selection of experiments ωmax = 0.95, ωmin = 0.4, C1 = C2 = 2.

To improve the convergence speed and accuracy [30–33] of the algorithm, the number
of particle swarm optimizations was 50 and the maximum number of iterations was 100.
The test functions are presented in Table 3.

To more clearly and intuitively present the improved PSO face thinning effect, the
convergence of the four test functions was analyzed by comparing three different particle
swarm optimization algorithms, namely LDIW-PSO, EDIW-PSO, and ADIW-PSO. The
convergence results are shown in Table 4.
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Table 4. Test results.

Function Pattern LDIW-PSO EDIW-PSO ADIW-PSO

Sphere Optimal value 6.665 × 10−3 9.88 × 10−2 4.336 × 10−12

Average value 3.048 × 10−1 8.27 × 10−1 5.211 × 10−9

Rastrigin Optimal value 3.095 × 10−1 2.668 × 10−1 5.819 × 10+0

Average value 6.720 × 10−1 5.466 × 10−1 2.608 × 10−1

Rosenbrock
Optimal value 1.918 × 10+0 3.342 × 10+0 1.897 × 10+0

Average value 7.933 × 10+0 7.745 × 10+0 6.934 × 10+0

Griewank
Optimal value 2.252 × 10−7 9.299 × 10−5 1.623 × 10−5

Average value 4.798 × 10−4 4.064 × 10−4 2.797 × 10−4

In sphere function, Figure 11 show that, the convergence accuracy of three algorithms
is close. ADIW-PSO achieves the optimal value about 10 iterations. LDIW-PSO and EDIW-
PSO need about 22 iterations to achieve the optimal value. which shows that ADIW-PSO is
faster in global search. For the Rastrigin function, Figure 12 show that ADIW-PSO is better
than the other two algorithms in convergence accuracy. Which shows that ADIW-PSO is
more practical. For Rosenbrock function, Figure 13 show that the convergence accuracy
and speed of the three algorithms are close. These indicating that there is little difference in
local search ability. In the Griewank function, Figure 14 shows that ADIW-PSO is obviously
better than the other two algorithms in search speed. Which indicates that it can quickly
jump out of the local search limit. In summary, the results show that the adaptive weight-
decreasing particle swarm algorithm proposed in this paper can effectively improve the
optimization accuracy and speed of the algorithm.
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5. Simulation Examples and Experiments
5.1. Example of Results Validation

The scheduling direction of the mine water scheduling system has two major com-
ponents: underground scheduling and surface scheduling. Based on an investigation of
the water consumption of underground and surface water, the monthly water surges in
the Narim River mine area in 2015 are shown in Figure 4, in which January, February,
March, and December constitute the heating season, and May, June, July, and August
constitute the non-heating season. The water quantity survey results of the water points
in the mine area are shown in Table 5. Surface water consumption accounts for about
73.4% of the water consumption in the mine area, including production water for ground
dust removal water, firefighting, coal preparation, heat exchange stations, and cooling;
domestic water is used for drinking, greening, and boilers in the mine area. The water
points are divided according to the water quality conditions, and the water supply points
are mainly distributed in the intermediate and high ponds. The water supply points are
mainly located in the intermediate, high level, and reuse tanks; the underground water
supply points include water for underground firefighting, grouting, hydraulic support,
cooling, and underground dust removal. The water supply point is the underground clear
water tank. According to the different water quality requirements of the water points in
the mine area, the scheduling method of grading and dividing the quality of mine water
supply is adopted to achieve reasonable distribution of mine water, to maximize the mine
water resources and make the mine water treatment process more efficient.
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Table 5. Water quantity of water consumption points in the mining area.

Mine Water Reuse Grade Mine Water Reuse Point Heating Season Non-Heating Season

Underground treatment clear
water tank

Underground fire fighting 65,735.22073 85,125.85209
Grouting water 39,833.105 17,084.23175

Underground watering and
dust removal 3916.148483 8607.025781

Cooling water 16,007.81491 20,629.249
Hydraulic support 2321.444076 3084.392126

Pretreatment middle tank
Ground dust removal 85,951.97709 77,688.64651

Fire water 106,881.3539 77,298.12662

Secondary treatment—high
level tank

Coal treatment water 48,634.14471 36,839.152
Heat exchange station water 14,866.30572 21,469.65259

Cooling water 19,027.62374 20,063.64865
Greening water 11,815.05183 8218.430315
Other water use 34,813.89783 47,655.63901

Deep treatment reuse tank Boiler water 80,165.00478 8252.076366
Life Drinking 2076.096765 1727.431289

To improve the convergence speed and accuracy of the PSO, combined with the actual
variable conditions of the mine water, this paper set ion beam to 100, dimension to 4, and
maximum number of update iterations to 100. Equations (1)–(9) were applied to the mine
water in the 2015 heating and non-heating seasons for the water influx to determine the
best calculation. Python simulation software was used for comparison, and simulation
results are as follows.

Figures 15–18 show that the traditional mine water dispatching approach is simpler,
with no middle or high-level tanks, and dispatched water is zero. Under different optimiza-
tion systems, the dispatch of mine water is redistributed, with the high and middle tanks
sharing most of the surface mine water dispatching tasks. In addition, the reuse tanks have
stricter water quality for a longer number of reuse time periods, and have relatively small
reuse volumes.
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By optimizing the statistical analysis of the reuse volume of mine water at each reuse
point, a comparison of the volume under the traditional mine water reuse mode and
the optimized scheduling system mode was undertaken, which also includes the specific
allocation volume for the heating and non-heating seasons. The results are shown in
Table 6.

Table 6. Reuse amount of mine water at reuse points.

Water Reuse Points at All
Levels of the Mine (N)

Recycling Volume in Traditional Mode
m3/Month

Optimized Scheduling System Reuse
m3/Month

Heating Season Non-Heating Season Heating Season Non-Heating
Season

Clear water tank (1) 160,770 160,770 12,7813.73 134,530.75
Middle tank (2) 0 0 192,833.33 154,986.77

High level tank (3) 0 0 129,157.02 134,246.52
Reuse tank (4) 51,840 58,875 82,241.10 9979.51

After optimizing the calculation of water consumption for the Narim River No. 2 mine,
it can be seen by comparison that the reuse amount during the heating season under the
traditional model is mainly reused by the clear water and reuse ponds, and the reuse
amount is limited. Using the PSO and the improved system for deployment, the reuse
amount of the system increased significantly and was mainly concentrated in the middle
and high tanks. To verify the practicality of the algorithm for mine water scheduling and
to compare the effectiveness of the improved adaptive PSO more clearly, the reuse rate and
reuse time were compared, as follows.

Mine water reuse ratio. In the case in which only the reuse of mine influx water is
considered, the ratio of the reuse amount of mine influx water is

µ1 =

N
∑

i=1
Ci

S
(23)

where N indicates the mine water reuse point at all levels, Ci indicates the mine water reuse
amount at all levels of reuse points, and S indicates the mine water surge volume. Here it is
assumed that the mine water in the treatment has no other reuse than the flows in and out.
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Mine water reuse treatment time. The treatment rate of each level of the investigated
mine water treatment system was used to calculate the overall system treatment reuse
operation time

tn =
Ci
Vi
· · · i = 1, 2 . . . N (24)

where tn indicates the treatment time of mine reuse water at the nth reuse level, Ci indicates
the amount of mine water reused at each reuse point, and Vi indicates the treatment rate
of mine reuse water at each reuse point. Mine water reuse treatment time is taken as the
maximum value calculated at each level.

Mine water reuse rate. That is, the amount of mine water reuse during the same time
period, under different treatment reuse processes or different algorithm calculations

v =

N
∑

i=1
Ci

tnmax
(25)

where v indicates the reuse rate of mine water, N indicates the reuse points of mine water
at all levels, Ci indicates the reuse amount of mine water at all levels, and tnmax indicates
the maximum treatment time of mine reuse water.

According to the reuse rate of mine water in Table 6 and the Equations (23)–(25), the
data after optimization of the algorithm were compared with the system before optimiza-
tion; the calculation results are shown in Table 7.

Table 7. Analysis of data before and after system optimization in the heating season.

Mode Mine Water Reuse Rate
(Month)

Mine Water Reuse
Time (Month) Reuse Speed (m3/h)

Traditional Scheduling 30.75% 720 h 295.29
ADIW-PSO 76.95% 572.41 h 929.48
LDIW-PSO 76.95% 620.18 h 857.89
EWIW-PSO 76.95% 615.21 h 864.82

As can be seen from Table 7, during the heating season, due to the multi-target reuse
in the mine, the optimized system improved the reuse rate by 46.2%, which is significantly
higher than that of the traditional mine water reuse method. The reuse time was reduced by
147.59, 99.82, and 104.79 h, respectively, compared with the traditional scheduling method,
and the reuse rate was improved by 634.19, 562.6, and 569.53 m/h, respectively. In the same
scheduling test, the adaptive weight particle swarm algorithm had a lower scheduling
time compared with the linear weight and nonlinear weight particle swarm algorithms.
Furthermore, the reuse operation of the system was faster, which verifies the practicality of
the algorithm in the process of mine water scheduling.

As can be seen in Table 8, the mine water reuse rate of mine water increased by 17.5%
in the non-heating season, which is relatively small, due to the high influx of water from
the Narim River No. 2 mine and the limited water use at the mine site. The treatment
reuse time of mine water was reduced by 117.51, 53.51, and 61.18 h, and the reuse rate was
reduced by 414.86, 345.73, and 353.32 m/h, respectively, which verified the feasibility and
practicality of the system and the algorithm.

Table 8. Data analysis before and after system optimization in the non-heating season.

Mode Mine Water Reuse Rate
(Month)

Mine Water Reuse
Time (Month) Reuse Speed (m3/h)

Traditional Scheduling 17.95% 720 h 305.06
ADIW-PSO 35.45% 602.49 h 719.92
LDIW-PSO 35.45% 666.49 h 650.79
EDIW-PSO 35.45% 658.82 h 658.38
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Table 8 shows that the reuse rate significantly improved, indicating that the overall
operating efficiency of the system increased. Thus, more mine water is able to be treated at
one time, effectively reducing the risk caused by the high water consumption of mine water.
Therefore, the results of the real data analysis of the Narim River show that the scheduling
model and the improved algorithm method proposed in this paper can effectively address
the problem commonly faced in mines. Based on the analysis of the original data of the
Narim River, the effectiveness and feasibility of the scheduling model and the improved
algorithm proposed in this paper are therefore proven.

5.2. Discussion

The control system of the intelligent optimal dispatch of mine water is the core of a
mine water treatment system. This system has the ability to analyze, process, and predict
the state of the large quantity of data collected by the sensing system [34]. Furthermore,
the system can perceive the reuse environment and status of mine water using a variety
of sensors, and obtain processing information at all levels of the mine water treatment
system. Combined with the above-mentioned particle swarm algorithm, the optimized
scheduling model mentioned in this article can be integrated into the control system to
make predictions regarding the quantity and quality of water resources in the mining
area. The system rationally allocates the underground–surface mine water to co-ordinate
its scheduling.

(1) Mine water reuse environment sensing. Based on the perception of big data multi-data
fusion, big data causality, and data mining and other advanced analysis technologies,
this sensor continuously receives information related to water quality and water
quantity, the status of open and closed valves, and the water demand of the mine
area during the mine water treatment process. The sensor detects the underground–
surface mine water treatment environment and the system operation status. The
specific sensor is shown in Figure 19.
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(2) Sensor data fusion analysis. Advanced analysis techniques, such as multiple data
fusion [35,36], big data causality, and data mining, are applied to the sensed data to
scientifically analyze various heterogeneous datasets based on their attributes and
categories, providing information that can be utilized as a basis for intelligent and
accurate judgment.
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(3) Construction of mine water dispatch and reuse model. This is a mine water reuse
model in the control system. Based on the fusion analysis of sensor data, this mathe-
matical model can reflect actual information relating to the quantity and quality of
mine water. In addition, the state of underground–surface water use is determined
to intelligently allocate water resources in the mining area to achieve efficient and
coordinated dispatch of underground water resources.

6. Conclusions

This paper presents and verifies a comprehensive design scheme of hierarchical
allocation to improve the reuse rate of mine water. First, based on the mine water reuse
system, a novel reuse scheduling strategy is proposed, a mathematical model of mine water
optimal scheduling is established, and an improved particle swarm optimization algorithm
is used to derive the model. The results show that the algorithm can optimize the water
quality data collected by the sensor. In the heating and non-heating seasons, respectively,
the reuse rate increased by 46.2% and 17.5%, the treatment time decreased by 147.59 and
117.51 h/month, and the reuse rate increased by 634.19 and 86 m3/h. In addition, the system
has good adaptability to mine water reuse in different mining areas, ensuring excellent
performance in water resource system deployment and water environment protection.
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