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Abstract: Wireless sensor networks (WSNs) are the core of the Internet of Things and require
cryptographic protection. Cryptographic methods for WSN should be fast and consume low power
as these networks rely on battery-powered devices and microcontrollers. NTRU, the fastest and
secure public key cryptosystem, uses high degree, N, polynomials and is susceptible to the lattice
basis reduction attack (LBRA). Congruential public key cryptosystem (CPKC), proposed by the
NTRU authors, works on integers modulo q and is easily attackable by LBRA since it uses small
numbers for the sake of the correct decryption. Herein, RCPKC, a random congruential public key
cryptosystem working on degree N = 0 polynomials modulo q, is proposed, such that the norm of a
two-dimensional vector formed by its private key is greater than

√
q. RCPKC works as NTRU, and

it is a secure version of insecure CPKC. RCPKC specifies a range from which the random numbers
shall be selected, and it provides correct decryption for valid users and incorrect decryption for an
attacker using LBRA by Gaussian lattice reduction. RCPKC asymmetric encryption padding (RAEP),
similar to its NTRU analog, NAEP, is IND-CCA2 secure. Due to the use of big numbers instead of
high degree polynomials, RCPKC is about 27 times faster in encryption and decryption than NTRU.
Furthermore, RCPKC is more than three times faster than the most effective known NTRU variant,
BQTRU. Compared to NTRU, RCPKC reduces energy consumption at least thirty times, which allows
increasing the life-time of unattended WSNs more than thirty times.
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1. Introduction

Wireless sensor networks (WSNs) play an important role in the development of the Internet
of Things (IoT). WSNs consist of a large number of sensor nodes, battery-supplied devices with
a limited memory and computational power microcontroller. WSNs are used widely, e.g., in
environmental practices, health, industrial control, military [1], multimedia networks [2], and smart
grid networks [3]. WSNs need security and confidentiality since sensitive information is stored,
processed, or transferred by sensor nodes [4]. Therefore, cryptographic schemes efficiently working on
limited WSN microcontrollers are demanded [5]. Furthermore, energy savings is very important for
WSNs [6]. NTRU [7,8] is a public key cryptosystem (PKC) standardized as IEEE P1363.1 and is faster
than RSA and ECC [9], and it is applicable to WSNs [10]. Contrary to RSA and ECC working with big
numbers and homomorphic only in one operation, multiplication and addition, respectively, NTRU
works with high degree, N, polynomial rings and is homomorphic with respect to both multiplication
and addition [11]. These features of NTRU allow its use in various applications, such as authentication
for smart cards [12], encryption of user data in smart monitoring systems [13], securing of SMS [14],
mutual authentication and key agreement for wireless communications [15], embedded systems
including microcontrollers and FPGAs [16], Internet of Things devices [17], and NTRU hardware
implementation [18]. The NTRU model expects that the public key is used for encryption only by a
public user (sender), whereas the private key is used for decryption by the key’s owner (receiver).

NTRU and its known variants [7,8,19–38], shown in Section 2, work with degree N polynomials.
The main problem NTRU faces is that it is susceptible to the lattice basis reduction attack (LBRA) using
the Gaussian lattice reduction (GLR) algorithm for two-dimensional lattices and the LLL algorithm
for higher dimensions [39]. The LBRA using LLL algorithm solves the shortest vector problem (SVP)
with exponential in N running time revealing the secret key because the private keys are selected
as polynomials with small coefficients for the decryption correctness [40]. To overcome the problem
of susceptibility, NTRU uses large N resulting in high computational complexity [11,41]. Therefore,
NTRU variants, shown in Section 2, try minimizing NTRU computational complexity by extending the
coefficients of the polynomials used or using matrices of polynomials that allow preserving the security
level while decreasing the polynomial degree. The extreme case is a polynomial of zero degree, that is
integers modulo q >> 1, as used in the congruential public key cryptosystem (CPKC), but CPKC with
the NTRU encryption/encryption mechanism is insecure against LBRA by GLR (crackable in about
10 iterations) ([26], pp. 373–376, 451). Therefore, the CPKC is considered as a toy model of NTRU
because “it provides the lowest dimensional introduction to the NTRU public key cryptosystem” [26]
(p. 374). The insecurity of CPKC stems from the choice of the private keys used as small numbers to
provide decryption correctness. If CPKC could be made resistant to GLR attack, it would be the best
possible choice for the NTRU modifications. Therefore, we propose a CPKC modification, random
CPKC (RCPKC) [42] (we call it here RCPKC.1).

In this paper, an enhanced RCPKC is proposed by specifying a range from which the random
numbers shall be selected based on short vectors returned by GLR attack on it. It provides correct
decryption for valid users and incorrect decryption for an attacker using GLR. GLR cannot find its
private key because it solves SVP returning the shortest in a lattice vector, whereas our private key is
in the safe region (above Minkowski’s boundary (27)–(30) for the shortest vector norm of a lattice).
On the other hand, the short vectors returned by GLR cannot be used for correct decryption due to our
choice of the random numbers. RCPKC is a cryptosystem more secure than NTRU because LBRA is
currently considered as one of the most effective attacks against NTRU, and also, a number of other
attacks on NTRU are not applicable to RCPKC, whereas RCPKC’s resistance to other known attacks
on NTRU is similar to that of NTRU. RCPKC is about 27 times faster in encryption and decryption
than NTRU. Simplicity, speed, and security make RCPKC a good candidate cryptosystem for WSNs.
The paper’s contribution can be summarized as follows:
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• RCPKC, an NTRU-like cipher variant resistant to lattice based attacks, is proposed with enhanced
security compared to RCPKC.1 [42].

• The hardness of the RCPKC one-way (OW) function is proven.
• RCPKC symmetric encryption padding (RAEP) is IND-CCA2 secure is proven under the

assumption of the hardness of inverting an associated one-way function
• RCPKC’s performance is justified through implementation and comparison with the

state-of-the-art ciphers.
• RCPKC’s better applicability than NTRU to WSNs is proven.

The rest of the paper is organized as follows. In Section 2, known NTRU variants are presented.
In Section 3, an overview of NTRU, NTRU AEP (NAEP), the IND-CCA2 security of NAEP, and CPKC
is given, and formulas for CPU power consumption calculation are introduced. LBRA by GLR on
CPKC is described, and Minkowski’s second theorem is presented in Section 4, used to define a region
where GLR attack against the CPKC private key/message fails. In Section 5, RCPKC is presented. In
Section 6, the RCPKC security comparison versus NTRU is conducted. In Section 7, the RCPKC OW
function and RCPKC asymmetric encryption padding (RAEP) IND-CCA2 security are considered. In
Section 8, the RCPKC performance comparison versus NTRU and its variants is presented, and the
RCPKC versus NTRU power consumption is studied. Section 9 concludes the paper.

2. Review of Known NTRU Variants

Many variants of NTRU have been proposed and studied recently, targeting further decreasing
its computational complexity. All these variants work with polynomials and mainly differ in the
choice of their coefficients, the ring defining polynomial, or the polynomials used as the entries of such
structures as matrices. The NTRU variants’ overview follows.

NTRU variants differing in the choice of their coefficients. In [27], an NTRU variant, ETRU,
was proposed working with polynomials over Eisenstein integer coefficients and was faster than
NTRU in encryption/decryption by 1.45/1.72 times. Karbasi and Atani [28] modified ETRU, called
ILTRU [28], so that it works with irreducible cyclotomic polynomial over Eisenstein integer coefficients.
An NTRU variant, BITRU, working with polynomials over so-called binary numbers, usually known
as complex numbers, was proposed in [20]. An NTRU variant, QTRU, working with polynomials
over hyper-complex four-component numbers, quaternions, was proposed in [30]. Furthermore,
Bagheri and colleagues proposed an NTRU variant, BQTRU, working over quaternions, but with
bivariate polynomials, seven times faster than NTRU in encryption [21]. A variant of NTRU working
with polynomials over eight-component hyper-complex numbers, octonions, called OTRU, was
proposed in [29]. In [34], an NTRU variant, HXDTRU, was proposed working with polynomials over
16-component hyper-complex numbers, hexadecnions, also known as sedenions [19]. Furthermore, a
variant of NTRU working with polynomials over 16-component hyper-complex numbers, sedenions,
was proposed in [31]. A variant of NTRU, called CTRU, working with polynomials, the coefficients of
which are also polynomials in one variable over a binary field, was proposed in [24]. Furthermore, a
variant of NTRU working with polynomials, the coefficients of which are polynomials in one variable
over a rational field, called BTRU, was proposed in [32].

NTRU variants working with different rings. An NTRU variant that works with polynomials
with prime cyclotomic rings was proposed in [35]. A variant of NTRU working with non-invertible
polynomials was proposed in [22].

NTRU variants working with polynomials inside more complicated structures. An NTRU
variant working with square matrices of polynomials was proposed in [23] and was shown to be
2.5 times better than NTRU encryption and decryption time. An NTRU variant, called NNRU, working
with polynomials also being entries of square matrices forming a non-commutative ring, was proposed
in [33]. Apart from the polynomial variants, an NTRU-like cipher over the ring of integers, called ITRU,
was proposed in [25] without referencing CPKC [26]. In ITRU [25], Table 1, p. 34, the NTRU model
specified above was given, but a model for the proposed ITRU was not defined. Its Algorithm 1, [25],
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p. 35, describes the key generation, and hence, it shall be made by the key owner (receiver). On the
other hand, in Section 4. A, Parameter selection, [25], p. 37, the most important parameter, q, was
selected by the sender (which encrypts a message using the public key, h′ = 423,642, and random
value, r′ = 19, in [25], (19), p. 37 with the help of the private keys, f ′, g′, which contradicts the NTRU
model: the secret key is known to only the key owner that uses the private key only for decryption,
whereas the public key is used for encryption by the public user only.

Thus, the NTRU variants try minimizing NTRU’s computational complexity by extending
coefficients of the polynomials used or using matrices of polynomials that allow preserving the security
level while decreasing the polynomial degree because operations with high-degree polynomials are
time-consuming. However, these variants are still susceptible to LBRA using LLL, but with less
complexity than NTRU has. Furthermore, ITRU can be used by the key owner only for encryption and
decryption messages, but cannot be used by a public user knowing the public key only; hence, it is not
compatible with the NTRU model of use.

3. Preliminaries

3.1. Overview of NTRU

NTRU [7,8] uses the rings:

Rq =
Zq[x]

xN − 1
, Rp =

Zp[x]
xN − 1

,

elements of which are polynomials modulo xN − 1 with coefficients in Zq,Zp, respectively, where
p = 2, q > 4d + 1 is prime, N > 3k + 8 is prime, k is the security parameter, and d is the minimal
integer such that (N/2

d/2 )/sqrt(N) > 2k, where (m
n) is the number of combinations of n elements out of m.

Secret polynomials, f and g, are binary polynomials from D f and Dg, with d f = dg = d coefficients
equal to one. Both f and g are invertible modulo q. Public key, h, is defined as:

h = p · Fq · g mod q, (1)

where Fq is the inverse of f modulo q. A binary message, m = Dm ∈ Rp, is encrypted using a random
binary polynomial r from Dr with the dr = bN/2c ones as follows:

e = FNTRU
h,p (m, r) = p · r · h + m mod q. (2)

NTRU decryption consists of two steps:
Step 1: The private key, f , is applied to (2):

a = f · e mod q

= p · r · g + f ·m. (3)

Step 2: The inverse of f modulo p is applied to (3) after the polynomial a is centered using the
center() function. An implementation of center(), called center1(), provided in [43] (p. 4), follows:

1. Calculate m(1) as e(1)− p · r(1) · h(1), reduced to the interval,

N − q
2
≤ m(1) <

N + q
2

. (4)

2. Denote a reduced to the interval [0, q− 1] by a. The underline is intended to indicate the minimal
possible interval.

3. Calculate a(1). This will differ from p · r(1) · h(1) + f (1) ·m(1) by k · q, for some integer, k.
4. Add q to the lowest k entries of a to obtain a reduced into the correct interval.
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NTRU decryption fails if the following condition does not hold,

Width(p · g · r + f ·m) < q. (5)

where Width(p(x)) = max
i=0,··· ,N−1

(pi) − min
i=0,··· ,N−1

(pi). Application of the center() function to the

left-hand side (LHS) of (3) makes the second equality in (3) true under Condition (5). For the conditions
imposed on NTRU parameters described above, in particular, p = 2, q > 4d + 1, the second equality in
(3) holds, and there is no need for centering.

3.2. NTRU Asymmetric Encryption Padding IND-CCA2 Security

NTRU asymmetric encryption padding (NAEP) has been proven IND-CCA2 secure [7]. In
Section 3.2.1, NAEP is introduced, and in Section 3.2.2, its IND-CCA2 security is discussed.

3.2.1. NAEP Description

NAEP uses a function,

compress(p(x)) = p(x) mod q mod 2, (6)

where p(x) is a polynomial. NAEP encryption is introduced in Algorithm 1.

Algorithm 1: NAEP encryption.

input : N = θ(k); N > l = θ(k) is the padding size; G : {0, 1}N−l × {0, 1}l → Dr and
H : {0, 1}N → {0, 1}N are hash functions; m ∈ {0, 1}N−l is the input plaintext
message; h is the public key; q is the modulus value.

output : e ∈ Rq is the ciphertext.
begin

1. Pick µ←R {0, 1}l , where←R means uniform random sampling
2. Let ρ = G(m, µ), r = genr(ρ), s = compress(p · r · h), and ω = (m||µ)⊕ H(s) //genr is

//a function generating correct r; ⊕ denotes XOR;
3. If ω /∈ R̃, goto 1 //R̃ is the space of binary polynomials with the number of ones such

//that the probability of NTRU decryption failure is negligible.
4. e = FNTRU

h,p (ω, r) //according to (2)

end

The compress() binary string result is used in Step 2 of NAEP encryption to hide the padded
message by the XOR operation and hashing. NAEP decryption is introduced in Algorithm 2.
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Algorithm 2: NAEP decryption.

input : N = θ(k); N > l = θ(k) is the padding size; G : {0, 1}N−l × {0, 1}l → Dr and
H : {0, 1}N → {0, 1}N are hash functions; e ∈ Rq is the ciphertext;
Output: m ∈ {0, 1}N−l is the decrypted plaintext message if decrypted correctly, and

Reject otherwise.
output : m ∈ {0, 1}N−l is the decrypted plaintext message if decrypted correctly, and Reject

otherwise.
begin

1. a = center( f · e mod q)
2. ω = Fp · a mod p //according to NTRU Step 2
3. s = compress(e−ω)
4. m||µ = ω⊕ H(s); r = genr(G(m||µ)).
5. if p · r · h = s mod q, then output m; else, output Reject.

end

3.2.2. NAEP IND-CCA2 Security

NAEP has been proven to be IND-CCA2 secure [7].

Definition 1. [7] (p. 3): A time τ algorithm A is a (τ; ε)-chosen ciphertext algorithm, with advantage ε in
attacking a randomized encryption scheme (K, E ,D) if there is a pair of sub-algorithms

A1 : PK → M×M× S,

A2 : C× S→ {0, 1},

such that if (m0, m1, s)← A1(pk), then:

Prob(A2(c∗, s) = b)− 1
2
=

1
2

ε,

where c∗ ← E(m∗, r∗), for some r∗ ∈ RE and m∗ = mb∗ for some b∗ ∈ {0, 1}. This probability is defined over
the choice of r ←R RE , b∗ ∈ {0, 1}, and k ∈ RK, where RE and RK are defined below.

The algorithms (A1,A2) have access to a decryption oracle D, which they can call on all but the challenge
ciphertext c∗, but they must make all hash function calls to H1, .., Hn public.

An encryption scheme is IND-CCA2 secure if there exist no polynomial (on security parameter)
time adversary with a non-negligible advantage. Key generation, encryption, and decryption
algorithms are formalized as follows [7]. For a given parameter set P, the encryption scheme is
specified by three algorithms:

K : RK → PK× SK,

E : PK×M× RE → C,

D : SK× C → M,

called the key generation, encryption, and decryption algorithms, respectively. The spaces
RK, PK, SK, M, RE , C are called the key-gen randomness, public key, secret key, message, encryption
randomness, and ciphertext space, respectively.

If (pkk, skk)← K(k), then the algorithms should satisfy:

D(skk, E(pkk, m, r)) = m
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for all k ∈ RK, m ∈ M and r ∈ RE .
NTRU key, encryption, and decryption procedures and respective spaces are defined in Section 3.1

according to [7]. Polynomials used in NAEP [7,8] for keys are invertible. The NTRU one-way problem
is defined as follows:

Definition 2. NTRU-OW problem: For a parameter set, PNTRU , we denote by SuccOW
NTRU(A,PNTRU)

the success probability of a probabilistic polynomial time (PPT) adversary, A, for finding a pre-image of
FNTRU

h,p ,

SuccOW
NTRU(A,PNTRU) = Pr

(
(m′, r′)← A(e, h)

such that FNTRU
h (m′, r′) = e

)
.

Assumption 1. NTRU-OW assumption: For every PPT adversary, A, solving the NTRU-OW problem, there
exists a negligible function, vA(k), such that for sufficiently large k, it holds:

SuccOW
NTRU(A,PNTRU) ≤ vA(k).

NTRU variants [7,40] can fail (see Section 6.5); hence, it was assumed in [7] that the failure
probability is negligible. Under these assumptions, the IND-CCA2 security of NAEP was proven in [7],
Corollary 1.

3.3. Overview of CPKC

Two secret integers, f and g, are defined as follows:

f <
√

q/2,
√

q/4 < g <
√

q/2, (7)

gcd( f , qg) = 1, (8)

where q is a public integer.
The first secret value, f , has inverses modulo g and q, that is Fg and Fq, respectively, by virtue

of (8):
1 = f · Fg mod g, 1 = f · Fq mod q. (9)

A public value, h, is computed using (7) and (9) as follows:

h = Fq · g mod q. (10)

Thus, CPKC has the private (secret) key, SK = ( f , g, q, Fg, Fq), and the public key, PK = (h, q).
The plaintext message, m, meets the following condition:

0 < m <
√

q/4. (11)

A random integer, r, is chosen as follows:

0 < r <
√

q/2. (12)

3.3.1. CPKC Encryption

The ciphertext, e, is computed using (10)–(12) as follows:

e = Fh(m, r) = r · h + m mod q. (13)



Sensors 2020, 20, 4632 8 of 25

3.3.2. CPKC Decryption

Decryption is described by Steps 1 and 2 below:
Step 1: Multiply the ciphertext (13) by f , getting:

a = f · e mod q

= r · f · Fq · g + f ·m mod q. (14)

Note that a = r · g + f ·m if (the remainder is allowed to be negative):

|r · g + f ·m| < q, (15)

where (9), (10) and (13) are used. The CPKC decryption correctness condition (15) holds under
Conditions (7), (11) and (12):

|r · g + f ·m| <
√

q/2
√

q/2 +
√

q/2
√

q/4 < q.

Thus, the parameters, f , g, and r, are selected small compared to q (see (7), (11) and (12)) to meet
the CPKC correctness decryption condition (15) used in Step 2 of the decryption.

Step 2: Multiply (14) by Fg, getting:

m = a · Fg mod g, (16)

where (9) is used and the contributor with the factor g in (14) vanishes due to (15). Numerical
Example S1 of CPKC encryption/decryption is in the Supplementary Materials.

3.4. Formulas for CPU Power Consumption Calculation

Power, P, and energy, E, are measured in watts (W) and joules (J) [44], respectively, and calculated
as follows:

P = V · I, (17)

E = P · T, (18)

where V is the potential difference measured in volts (V), I is the electric current measured in amperes
(A), and T is the running time in seconds. There are three contributors to the CPU power consumption:
dynamic, short-circuit, and power loss due to transistor leakage currents [45]:

Pcpu = Pdyn + Psc + Pleak. (19)

Power consumption is mainly defined by the dynamic and leakage components [46]. Leakage
power, caused by leakage currents, is present in any active circuit independent of clock rates and is
calculated as follows [46]:

Pleak = V · Ileak, (20)

where V is the supply voltage and Ileak is the leakage current. Dynamic power consumption depends
on circuit activity (i.e., transistor switches, changes of values in registers, etc.) and is defined as
follows [45]:

Pdyn = a · C ·V2 · f , (21)

where a is the switching activity factor, C is the capacitance measured in farad (F), and f is the clock
frequency measured in hertz (Hz). Mostly, the activity factor is a = 0.5 [47]. MSP430FR5969, a Texas
Instruments microcontroller with capacitance C = 20 pF [48] (Tables 5–12), active supply voltage from
1.8, ..., 3.6 V [48] (p. 1), clock frequency from 1, ..., 16 MHz [48] (p. 19), Ileak =20 nA [48] (Tables 5–11),
is used for RCPKC power consumption evaluation in Section 8.2.



Sensors 2020, 20, 4632 9 of 25

4. Analysis of LBRA Attack Against CPKC

In this section, LBRA using GLR against the CPKC private key/message is described.
Our implementation of GLR attack is shown (Maple 2016.2 is used throughout the paper).
A demonstration by an example of how the CPKC private key can be attacked using GLR is presented.
Then, a region defined in terms of Minkowski’s second theorem where GLR attack fails is shown.

4.1. Lattice Basis Reduction Attack by GLR on CPKC Private Key/Message

In the following, ||x||, (x · y), bae, and R, denote the Euclidean norm [49] of the vector x,
the dot product of the vectors, x and y, the rounding of the real number, a, and the set of real
numbers, respectively.

Let E(V1, V2) ⊂ R2 be a two-dimensional lattice with basis vectors, V1 and V2:

E(V1, V2) = {a1V1 + a2V2 : a1, a2 ∈ Z}. (22)

The GLR algorithm [26] (p. 437), shown in Code 1, upon termination returns the shortest vector v1 in
E(V1, V2).

Code 1. GLR algorithm pseudocode finding the shortest vector v1 of the lattice E(V1, V2).
Input: basis vectors V1, V2;
Output: the shortest vector v1 in E(V1, V2) ;
v1 = V1; v2 = V2;
Loop

If ||v2|| < ||v1||
swap v1 and v2.

Compute m = b(v1 · v2)/||v1||2e.
If m = 0

return the shortest vector v1 of the basis, {v1, v2}.
Replace v2 with v2-mv1.

End Loop.

The CPKC private key recovery problem can be formulated as the shortest vector problem (SVP)
in the two-dimensional lattice, E(V1, V2). From (10), it can be noticed that for any pair of integers, F
and G, satisfying:

G = Fh mod q, F = O(√q), G = O(√q), (23)

(F, G) is likely to serve as the first two components, f and g, of the private key, SK [26] (p. 376).
Equation (23) can be written as F · h + q · n = G, where n is an integer. Therefore, our task is to find a
pair of comparatively small by absolute value integers, (F, G), such that:

F ·V1 + n ·V2 = (F, G), (24)

where V1 = (1, h) and V2 = (0, q) are basis vectors, at least one of them having the Euclidean norm
of order O(q). Similarly, the CPKC message recovery problem can be formulated as the SVP in the
two-dimensional lattice, E(V1, V2), where V1 and V2 are from (24). It can be also noticed from (13) that
for any pair of integers, (RR, EM), satisfying:

EM = RR · h mod q, RR = O(√q), EM = O(√q), (25)
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(RR, EM) is likely to serve as the vector (r, e−m) since the encryption Equation (13) can be written as
r · h + q · n = e−m, where n is an integer. Therefore, our task is to find a pair of comparatively small
by absolute value integers, (RR, RM), such that:

RR ·V1 + n ·V2 = (RR, EM). (26)

Our aim is to find the shortest vector w from E(V1, V2) using GLR that might disclose (r, e−m) if
e and r are of the order of O(√q). Comparing (24) and (26), it is noticed that they are the same up to
the unknowns’ names used, and hence, finding the shortest vector in E(V1, V2) may reveal either the
private key components, (F, G) = ( f , g), or the message related vector, (RR, EM) = (r, e−m).

Code S1 in the Supplementary Materials presents our Maple [50] implementation of LBRA by
GLR based on Code 1. Example S2 in the Supplementary Materials provides an example of LBRA
attack using GLR against CPKC.

This section concludes that CPKC can be easily attacked using GLR. In order to modify CPKC to
become resistant to GLR attack, first, in Section 4.2, a region where GLR attack fails is shown.

4.2. Region Resistant to GLR Attack on the CPKC Private Key/Message

LBRA by GLR succeeds in finding the CPKC private key, since it, by using the settings (7), is likely
the shortest vector in the lattice. Minkowski’s second theorem [51] (p. 35) sets an upper bound for the
norm of the shortest nonzero vector, λ, in a two-dimensional lattice:

λ ≤
√

λ2Vol(L)1/2, (27)

where λ2=2/
√

3 ≈ 1.154 is Hermite’s constant [51] (p. 41) and Vol(L) is the volume of the lattice, which
is equal to q for the lattice L = E(V1, V2) where V1 and V2 are defined in (24). Therefore, (27) can be
written as follows:

λ ≤ α
√

q, (28)

where α =
√

λ2 ≈ 1.07. From (28), one gets for the relative norm,

λ′ =
λ
√

q
, (29)

the following inequality (30):
λ′ ≤ α. (30)

GLR fails in attacking the CPKC private key/message when (30) is not satisfied for the secret
vector relative norm ( f , g), i.e., if:

||( f , g)||/√q > α (31)

holds, GLR fails to find the CPKC private key/message.
CPKC selects small values for private key ( f , g) in (7) to satisfy the decryption correctness

condition (15). Hence, our goal is to propose in Section 5 a modification for CPKC, that is RCPKC,
where ( f , g) satisfies (31) and provides correct decryption for valid users and incorrect decryption for
an attacker using GLR.

5. The Proposed RCPKC

In this section, random CPKC (RCPKC), an adjustment of CPKC described in Section 3.3, so that
it becomes resistant to GLR attack, is proposed.

5.1. RCPKC’s Main Ideas

The main two ideas of RCPKC are:
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• Contrary to the settings (7) of CPKC, which uses secret key ( f , g) with a small norm not exceeding
√

q so that ( f , g) may be found as a shortest vector (SV) in the lattice E(V1, V2) defined by (24),
RCPKC [42] (we call it in this section RCPKC.1) was originally proposed having private key ( f , g)
with a large norm meeting (31) so that it cannot be returned by LBRA using GLR as the SV, but
( f , g) also meets (15) due to the skew in its components.

• However, as mentioned in Section 4.1, for any pair of integers, F and G, satisfying (23), (F, G)

is likely to serve as the first two components, f , g, of the private key. That means, in spite
of the large norm of ( f , g), the SV = (F, G), obtained in the result of LBRA using GLR, may
meet the decryption correctness condition (15) and, thus, may be used for the correct plaintext
message disclosure (Example S4 shows the LBRA attack using GLR against RCPKC.1; see the
Supplementary Materials). That is why RCPKC.1, Section 5.2, before encrypting by (13) (contrary
to CPKC using a random number from the predefined range (12)), defines a range for the random
number selection using the SV, (F, G) (returned by GLR attack on the lattice E(V1, V2) defined
by (24)), so that the decryption correctness condition (15) holds for ( f , g), but does not hold for
(F, G), which leads to the failure of LBRA using GLR on RCPKC.1. Such an interval defined
in (40)–(42) for RCPKC.1 is found to be vulnerable to the GLR attack. Therefore, an enhanced
RCPKC proposed herein (we call it in this section RCPKC.2) with a tighter interval for r is defined
in (46), (50) and (51), so that such an attack is inactive.

Thus, RCPKC.2 assumes that the private key owner selects a range for a random value, r (used
in encryption (13)), based on the secret key, ( f , g), and respective SV, (F, G), in the lattice, E(V1, V2),
defined by (24), guaranteeing correct decryption for a valid user and incorrect decryption for an
attacker using GLR. Because of the special choice of the random value range, the proposed algorithm
is called random CPKC (RCPKC). The problem for RCPKC is that the range of random numbers as
so defined may be rather narrow, and thus, the security of RCPKC may suffer. However, as will be
shown, the range is rather large and may significantly exceed the range for a secret message.

In Section 5.2, CPKC is modified to RCPKC.1 [42] so that the secret key, ( f , g), meets (15) and (31).
In Section 5.3, RCPKC.1 is further modified to RCPKC.2, so that it becomes immune to the LBRA attack.

5.2. RCPKC.1 Description

To meet (31), it is required that:
f , r ≥ α · √q. (32)

The LBRA by GLR failure condition (31) holds if (32) is true since:

||( f , g)||
√

q
=

√
f 2 + g2
√

q
=

√
α2 · q + g2
√

q
> α,

||(r, e−m)||
√

q
=

√
r2 + (e−m)2
√

q
=

√
α2 · q + (e−m)2

√
q

> α,

for g, e− m 6= 0. Condition (32), in RCPKC.1, substitutes the conditions (7) and (12) on f and r in
CPKC. The message, m, and the private key, g, instead of (11) and (7), used in CPKC, are redefined in
RCPKC.1 as follows:

2mgLen > g ≥ 2mgLen−1 > m ≥ 0, (33)

where mgLen represents the length of m and g in bits.
For RCPKC.1, the correctness decryption condition (15) shall hold, which is true (see (39)) when

the f and r values in addition to (32) meet (34):

q
2 · 2mgLen > f , r. (34)
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Since:
q = 2qLen, (35)

then (32) and (34) can be rewritten:

2qLen−mgLen−1 > f , r ≥ α · 2qLen/2. (36)

To have a non-empty range for f and r, of a width of at least α · 2qLen/2, from (36), the following
condition is obtained:

2qLen/2

2 · α > 2mgLen+1. (37)

By defining β = log2 1/(2 · α) ≈ −1.103, (37) shows that:

2β · 2qLen/2 > 2mgLen+1,

qLen + 2 · β > 2 · (mgLen + 1),

qLen > 2 · (mgLen + 1− β). (38)

Let us show that the decryption correctness condition (15) holds when (33), (36) and (38) hold:

r · g + f ·m < 2qLen−mgLen−1 · 2mgLen + 2qLen−mgLen−1 · 2mgLen−1

< 2qLen−1 + 2qLen−1 = 2qLen = q. (39)

Thus, for RCPKC.1, the norm of ( f , g) meets (31), and the decryption correctness condition (39)
holds. We need additionally that decryption correctness condition (39) to be violated for (F, G), that is
the SV obtained in the result of the GLR attack on the lattice E(V1, V2) defined by (24). Hence, it cannot
be used as a private key for the plaintext message’s correct decryption.

Inequality (36) defines a range for r so that f , g, r, m meet (15). Now, we define constant on r,

r ≥ rmin ≥ (q + g|F|)/|G| (40)

such that F, G, r, m violate (15). Using (40) and (33):

|G · r + F ·m| ≥ |G| · |r| − |F| ·m ≥ |G|(q + g|F|)
|G| − |F| ·m

≥ q + g|F| −m|F| > q.
(41)

Thus, Inequality (36) is used for f , but for r, from (40) and (36), we have:

2qLen−mgLen−1 > r ≥ max(α · 2qLen/2, rmin). (42)

For RCPKC security, the range defined by (42) shall be rather large, max(α · 2qLen/2, rmin); hence:

2qLen−mgLen−1 ≥ 2 ·max(α · 2qLen/2, rmin). (43)

Thus, RCPKC.1 is defined as follows.
RCPKC.1 definition:
The private key components, ( f , g), meet (8), (9), (33) and (34), where qLen, mgLen meet (38)

and (43), where (F, G) is an SV obtained in the result of the GLR attack on the lattice E(V1, V2) defined
by (24). The public key component, h, is defined by (10). Message, m, meets (33), and random integer, r,
is selected from the range defined in (40) and (42). Encryption and decryption follow (13) and (14), (16),
respectively (see Sections 3.3.1 and 3.3.2). The decryption correctness condition (15) is proven for
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RCPKC.1 in (39). Examples S3 and S4 in the Supplementary Materials present an example of RCPKC.1
encryption/decryption and the LBRA attack using the GLR attack against RCPKC.1, respectively.

In the following section, RCPKC.1 is modified to RCPKC.2, so that it becomes immune against
the LBRA attack.

5.3. RCPKC.2 Proposal

In order to resist the GLR attack against RCPKC.1, as shown in Example S3, the definition of the
region from which r is selected should consider all SVs with a norm less than a threshold µ||( f , g)||
as follows.

The random interval defined in (40), (42) and (43) using only the SV obtained by the GLR attack
on the lattice E(V1, V2) defined by (24) must be modified to include all the SVs with a norm less than
the norm of the secret key, by threshold µ||( f , g)|. Hence, all vectors (Fi, Gi) obtained in the course of
GLR reduction that have norms:

||(Fi, Gi)|| < µ||( f , g)||, i = 1, .., N, (44)

where N is the number of (F, G) pairs satisfying (44), µ is a threshold, e.g., µ = 10, and then, it must be
checked that:

(∀i = 1, .., N)((Fi, Gi) 6= ( f , g)). (45)

If (45) is violated, i.e., one of the vectors in the list is our vector ( f , g), then another ( f , g) is used.
Inequality (36) defines a range for r so that f , g, r, m meet (15). Now, the constraint on r is defined

as follows:
q/g− f ≥ rmax ≥ r ≥ rmin ≥ (q + g · max

i=1,..,N
|Fi|)/ min

i=1,..,N
|Gi|, (46)

such that Fj, Gj, r, m violate (15) for any j = 1, ..., N. We require also that:

h · rmin > q. (47)

Using (33) and (46), it is noticed that actually, the decryption correctness condition (15) for any
j = 1, ..., N, is violated:

|Gj · r + Fj ·m| ≥ |Gj · r| − |Fj ·m| ≥ |Gj| ·
q + g ·maxi=1,..,N |Fi|

mini=1,..,N |Gi|
− |Fj ·m|

≥ q + g · max
i=1,..,N

|Fi| − |Fj ·m| > q. (48)

From (33) and (46), it is also perceived that the decryption correctness condition (15) holds for the
original ( f , g):

g · rmax + f ·m ≤ g(q/g− f ) + f ·m = q− f · g + f ·m < q (49)

Thus, Inequality (36) is used for f , but for r from (36) and (46):

rmax > r ≥ max(α · 2qlen/2, rmin). (50)

For RCPKC.2’s security, the range defined by (50) shall be rather large, such as, e.g., max(α ·
2qlen/2, rmin); hence, it is desirable to have:

rmax ≥ 2 ·max(α · 2qlen/2, rmin). (51)

In order to provide CCA indistinguishability (see Definition 2 and Section 7), it is required to have:

gcd(g, q) > 1. (52)
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Thus, the RCPKC.2 proposal follows.
RCPKC.2 proposal:
The private key components, ( f , g), meet (8), (9), (33), (34) and (52), where qLen, mgLen meet (38)

and (43) The public key component, h, is defined by (10). Message, m, meets (33), and random integer, r,
is selected from the range defined in (46), (47) and (50). Encryption and decryption follow (13), (14) and
(16), respectively (see Sections 3.3.1 and 3.3.2). The decryption correctness condition (15) is proven for
RCPKC in (49). Example S5 in the Supplementary Materials presents an example of finding RCPKC.2’s
random interval and LBRA by GLR failure.

RCPKC.2 is more secure than RCPKC.1 because intermediate GLR outputs are also used for the
random parameter range selection. However, their computational complexity is the same, since both
employ GLR and follow the same encryption/decryption procedures.

RCPKC.2 is also resistant to various attacks, as shown in the security analysis presented in the
next section. Note that hereafter, RCPKC.2 is again denoted as RCPKC.

6. RCPKC Security Analysis

In this section, attacks on NTRU are considered (brute force (on the key and message),
meet-in-the-middle (MITM) in Section 6.1, lattice basis reduction in Section 6.4, hybrid lattice basis
reduction and MITM [52] in Section 6.2, multiple transmission (MTA) [11] in Section 6.3, and also,
the most recent, chosen ciphertext [53–56], in Section 6.5), and we try applying them to RCPKC. Herein,
the NTRU parameters used, EES401EP1 [41], of the security level, k = 112 bits:

N = 401, p = 3, q = 2048, d f1 = d f2 = 8,

d f3 = 6, dg = 133, dr1 = dr2 = 8, dr3 = 6. (53)

In order to meet the same security level, the RCPKC settings satisfying (38) are:

qLen = 473, mgLen = 225. (54)

The key space cardinality (defined in Section 6.1 for the parameters (53) and (54)) is greater than
or equal to 22·k for k =112 to avoid the MITM attack explained in Section 6.1.

6.1. Brute Force and MITM Attacks

An attacker can recover the NTRU private key by trying all possible values of g and testing
whether f · h mod q has small coefficients (the product corresponds to g according to (10)). On the
other hand, an attacker can try all possible values of g and test whether h−1 · g mod q (corresponding
to f by virtue of (10)) has small coefficients. Equations (55) and (56) show the search space cardinalities
for g and f for the security level, k = 112 (taking into account the MITM attack explained later in this
section). The search space cardinality for f is computed as follows (see [53] (Section 7)):

CNTRU( f , k) =

(
N

d f1

)(
N − d f1

d f1

)(
N

d f2

)(
N − d f2

d f2

)(
N

d f3

)(
N − d f3

d f3

)
=

(
401

8

)(
393
8

)(
401
8

)(
393
8

)(
401
6

)(
395
6

)
(55)

= 1.16× 1090 ≥ 22·k = 2224.

Similarly, for g:

CNTRU(g, k) =
(

N
dg

)(
N − dg

dg

)
=

(
401
133

)(
268
133

)
= 4.34× 10188 ≥ 22·k = 2224. (56)
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it is perceived the search space cardinality for f is less than that for g, so the best strategy for an
attacker is to search for f values.

An attacker can reduce the search space cardinality from 2k to 2k/2 [57] using MITM by splitting
the private key f (which is a polynomial of degree N − 1) into two polynomials, f = f1 + f2, where f1

is a polynomial of degree at most N/2− 1 and polynomial f2 contains terms of degree between N/2
and N − 1, and then trying matches: f1 · h mod q = (g− f2 · h) mod q. Hence, in order to meet the k
= 112 security level, the NTRU parameters must be chosen to meet the k = 224 security level, as it is
already made in (53). For RCPKC, the secret value, g, is selected from the interval [2mgLen−1, 2mgLen)

(see (33)); hence, the search space cardinality for g to meet the 2 · k-bit security level against the brute
force attack shall satisfy:

CRCPKC(g, k) = 2mgLen−1 ≥ 22·k. (57)

The secret value, f , is selected from the interval [α · 2qLen/2, 2qLen−mgLen−1) (see (36)); hence,
the search space cardinality for f to meet the 2 · k-bit security level against the brute force attack
shall satisfy:

CRCPKC( f , k) = 2qLen−mgLen−1 − α · 2qLen/2 ≥ 22·k. (58)

For the parameters (54), CRCPKC(g, k) = 2224, while CRCPKC( f , k) ≈ 2247. In order to provide the
security level for k = 112, the parameters (54) are chosen to meet the twice greater security level of
2 · k = 224 to counter the MITM attack, considered below, which reduces the brute force attack effort
by the square root. Since CRCPKC(g, k) < CRCPKC( f , k), the best strategy for an attacker is to search for
g values. Similar to NTRU, the MITM attack can be applied to the RCPKC private key component,
g. Since mgLen is the bit length of g, then g = g1 + 2(mgLen−1)/2g2, and then, g1 and g2, each of a
bit length equal to (mgLen − 1)/2, can be enumerated with the resulting search space cardinality
O(2(mgLen−1)/2) trying to find matching:

( f · h− g1) mod q = 2(mgLen−1)/2g2 mod q.

Thus, the RCPKC parameters (54) provide the security level k = 112 against the brute force attack
with MITM. Now, let us consider the brute force attack on the message.

An attacker can compromise an NTRU message by trying all possible values of r and testing
whether e− r · h mod q has small coefficients. Similarly, the attacker can compromise the RCPKC
message by trying all possible values of r and testing if e− r · h mod q ∈ [0, 2mgLen−1) by virtue of (33).

The RCPKC message search space is defined by the interval [0, 2mgLen−1) (see (33)); hence,
the search space cardinality for m to meet the 2 · k-bit security level against the brute force attack
shall satisfy:

CRCPKC(m, k) = 2mgLen−1 ≥ 22·k, (59)

while the search space of r is defined by (46), (50) and (51). Hence, the search space cardinality for r to
meet the 2 · k-bit security level against the brute force attack shall satisfy:

CRCPKC(r, k) = rmax−max(α · 2qLen/2, rmin) ≥ 22·k. (60)

Table 1 shows the mgLen and qLen values to meet different 2 · k-bit security levels’ condition (60)
(see Rows 1 and 2) and the width of the range for r (Row 7) with f and g specified in Rows 3 and 4,
respectively. It proves that the method can be practically used.
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Table 1. Width of the range for the r value for different security levels (Row 7); the
parameters of the random congruential public key cryptosystem (RCPKC) affecting the width
(mgLen, qLen, f , g, rmax, max(α · 2qLen/2, rmin)) are specified in Rows 1–6.

# RCPKC Parameter 2 × k

224 336 448

1 mgLen 225 337 450
2 qLen 473 743 909
3 f = 2qLen−mgLen−1 − 1 2.26× 1074 8.26× 10121 7.44× 10137

4 g 2mgLen − 1 = 2mgLen − 5 = 2mgLen − 11 =
5.39× 1067 2.79× 10101 2.90× 10135

5 rmax 2.26× 1074 8.26× 10121 7.44× 10137

6 max(α · 2qLen/2, rmin) 7.41× 1072 1.62× 10119 1.10× 10137

7 CRCPKC(r, k) 2.1× 1074 8.24× 10121 6.34× 10137

6.2. A Hybrid Lattice Basis Reduction and MITM Attack

The attack [52] on the NTRU secret key combines the LBRA and MITM strategies. The hybrid
attack, first, splits the original lattice of order 2N, N > 1, into three subparts, only one of which is
further reduced, whereas the vectors from the other parts are just enumerated, thus combining the
concepts of the LBRA and MITM attacks. The hybrid attack is not applicable to RCPKC since:

- The RCPKC lattice is two-dimensional and cannot be split into the three subparts;
- RCPKC uses a large norm secret ( f , g) vector (see (33) and (36)) that cannot be found by LBRA

looking for an SV, and the SV cannot be used for correct decryption (see (48)).

6.3. Multiple Transmission Attack

MTA reveals a large part of an NTRU message by sending n times one and the same message,
m, using the same public key, h, but different random values, ri. For NTRU encryption (13)
(see Section 3.1):

ei = ri · h + m mod q

for i = 1, 2, ..., n. An adversary computes:

(ei − e1) · h−1 mod q,

thereby recovering ri − r1 mod q, i = 1, ..., n, and from these relations, many coefficients of r1 may
be revealed. Knowledge of r1 allows disclosing the message, m. RCPKC is not susceptible to MTA
because no special structure is assumed for r1 contrary to the case of NTRU.

6.4. Lattice Basis Reduction Attacks

The NTRU lattice basis, LNTRU
h , associated with public key h defined in (1) is:
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LNTRU
h =



1 0 . . . 0 h0 h1 . . . hN−1

0 1 . . . 0 hN−1 h0 . . . hN−2
...

...
. . .

...
...

...
. . .

...

0 0 . . . 1 h1 h2 . . . h0

0 0 . . . 0 q 0 . . . 0

0 0 . . . 0 0 q . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . 0 0 0 . . . q



,

where h0, ..., hN−1 are the coefficients of the polynomial h. For convenience, matrix LNTRU
h is

abbreviated as:

LNTRU
h =

(
I h
0 qI

)
.

The NTRU private key recovery problem can be formulated as the SVP in 2N-dimensional lattice,
LNTRU

h . Actually, if a polynomial, b, of degree N − 1 with integer coefficients satisfying:

f · h + q · b = g

exists, then:

( f , b) · LNTRU
h = ( f , g).

Therefore, the vector ( f , g) is in the lattice LNTRU
h . Vector ( f , g) or its rotation (rotation of a

polynomial, f , by i steps is xi · f ∈ Rq for an integer i) can be found if it is the shortest vector in
LNTRU

h . The lattice reduction algorithm LLL [51] finds the shortest vector in LNTRU
h in time exponential

in N. According to [40], LLL takes 1.05×1031 MIPS (million instructions per second)-years to find
the shortest vector or its rotation for N = 400 (as in (53)) that most likely is the NTRU private key
part, ( f , g).

Contrary to NTRU, RCPKC is resistant to LBRA since the GLR attack fails for it (see Section 5).
LBRA is one of the most used and effective techniques in attacking an NTRU private key (e.g., it is
used in the hybrid lattice attack, the most efficient on practical NTRU parameters [58]; see Section 6.2),
but it is not applicable to RCPKC.

6.5. Chosen Ciphertext Attack

Three chosen ciphertext attacks (CCA) on NTRU are known. The first key recovering CCA
described in [54] uses a ciphertext of a special shape, which can be countered by message padding [53].
Standardized parameters [53] allow decryption failure, i.e., a ciphertext could fail to be decrypted
correctly by NTRU. In [55], a CCA was presented where an attacker collects a large number of
decryption failures; see the NTRU correction decryption condition (5) in Section 3.1. Another CCA was
presented in [56], which is more efficient than [55], but still depends on decryption failures. RCPKC
works on non-structured integers, and the parameters, set in Section 5, guarantee correct decryption.
Thus, neither of the CCAs described above are applicable to RCPKC.



Sensors 2020, 20, 4632 18 of 25

7. RCPKC Asymmetric Encryption Padding and its IND-CCA2 Security

In this section, we prove the security of the RCPKC one-way function based on the discussions
of the security of the NTRU one-way function in [8], define RCPKC asymmetric encryption
padding (RAEP), and prove its IND-CCA2 security as a particular case of NAEP. According to
Sections 5.2 and 5.3, RCPKC defines the following four sets:

• D f = [α · 2qLen/2, 2qLen−mgLen−1): private key space, an interval from which a private key, f ,
is selected;

• Dg = [2mgLen−1, 2mgLen): private key space, an interval from which a private key, g, is selected;
• Dm = [0, 2mgLen−1): RCPKC plaintext space, an interval from which a plaintext, m, is selected;
• Dr = [max(α · 2qLen/2, rmin), rmax]: RCPKC random value space.

The RCPKC encryption primitive is specified by the parameter set, P = (q,D f ,Dg,Dm,Dr).
The one-way function underlying RCPKC is:

Fh : Dm ×Dr → Zq,

Fh(m, r) = r · h + m mod q.

Definition 3. RCPKC-OW problem: For a parameter set, P , we denote by SuccOW
RCPKC(A,P) the success

probability of a PPT adversary, A, for finding a pre-image of Fh,

SuccOW
RCPKC(A,P) = Pr

(
(m′, r′)← A(e, h)

s.t.(∃r′ ∈ Dr) (Fh(m′, r′) = e)

)
.

Assumption 2. RCPKC-OW assumption: For every PPT adversary, A, solving the RCPKC-OW problem,
there exists a negligible function, vA(k), such that for sufficiently large k, we have:

SuccOW
RCPKC(A,P) ≤ vA(k).

An adversary A1 can compromise (m, r) by picking r′ ∈ Dr, substituting it in (e− r′ · h) mod q,
and checking, if the result is in Dm. Thus, SuccOW

RCPKC(A1,P) is:

SuccOW
RCPKC(A1,P) = 2mgLen

2qLen .

Since qLen > mgLen by definition (38), SuccOW
RCPKC(A1,P) decreases exponentially in qLen, and

Assumption 1 holds. Similarly, the attacker can try the following methods with an exponentially
decreasing success probability:

1. The adversary, A2, chooses randomly a pair (r′ ∈ Dr, m′ ∈ Dm) and checks if r′ · h + m′ mod q =

e.
2. The adversary, A3, picks f ′ ∈ D f , substitutes it in f ′ · h mod q, and checks whether the result is

in Dg.
3. The adversary, A4, chooses randomly a pair ( f ′ ∈ D f , g′ ∈ Dg), if possible, calculates h′, decrypts

e to (r′, m′), and checks if r′ · h′ + m′ mod q = e.
4. Furthermore, the adversary can apply the GLR attack to get ( f , g). However, by construction,

RCPKC is immune to that attack, and hence, the success probability is zero.
Therefore, Assumption 1 is true for all the above attacks.

RCPKC encryption (13) differs from NTRU encryption (2) just by setting N = p = 1.
The conclusion of [7] on NAEP IND-CCA2 security is also true for asymmetric encryption padding,
RAEP. However, NAEP cannot be used as is for N = p = 1 because it utilizes specific true polynomial
functions center() and compress(). Since the decryption correctness condition (15) holds for RCPKC
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due to the parameter choice, the center() function is not used in RCPKC and RAEP. The function
compress() as in NAEP shall map its input, p · r · h, to a binary string, bs, of the padded message size.
In NAEP, it is done in two steps: s = compress(p · r · hmodq); bs = H(s). In RAEP, both transforms are
done by one hash function, H : Zq → {0, 1}mgLen. Algorithms 3 and 4 show RAEP encryption and
decryption, respectively.

Algorithm 3: RAEP encryption.

input : N = mgLen = θ(k) is the length of the RCPKC encrypted message; N > l = θ(k) is the
padding size; G : {0, 1}N−l × {0, 1}l → Dr and H : Zq→ {0, 1}N are hash functions;
Dr is defined by (45), (49) and (50); m ∈ {0, 1}N−l is the input plaintext message.

output : e ∈ Zq is the ciphertext.
begin

1. Pick µ←R {0, 1}l

2. Let ρ = G(m, µ), r = genr(ρ), s = r · h mod q, and ω = (m||µ)⊕ H(s) //genr is a
//function generating correct r according to (46), (47), (50) and (51)

3. Let e = Fh(m, r)//according to (13)

end

Algorithm 4: RAEP decryption.

input : N = θ(k) is the length of the RCPKC encrypted message; N > l = θ(k) is the padding
size; G : {0, 1}N−l × {0, 1}l → Dr and H : {0, 1}N → {0, 1}N are hash functions; Dr is
the space for r; e ∈ Zq is the ciphertext.

output : m ∈ {0, 1}N−l is the decrypted plaintext message if decrypted correctly, and Reject,
otherwise.

begin
1. a = f · e mod q //according to (14),
2. ω = Fg · a mod g //according to (16)
3. s = e−ω mod q
4. m||µ = ω⊕ H(s); r = genr(G(m||µ)).
5. if r · h = s mod q, then output m, else, output Reject.

end

8. RCPKC Performance and Power Consumption Evaluation

8.1. RCPKC Performance Evaluation

Experiments were conducted using the NTRU code [59] and RCPKC implementation in the C99
language similar to [59] with the NTL library [60] on a PC equipped with 1.6 GHz Intel Core i5-8250U,
8 GB RAM, and Windows 10 (see Tables S1 and S2 of the Supplementary Material for the RCPKC
performance experiments’ results and the NTRU performance experiments’ results, respectively; the
RCPKC source code is available in [61]). Both the NTRU code [59] and the proposed RCPKC were
implemented in Visual Studio 2017. The NTRU parameters (53) and the RCPKC parameters (54) were
used. The CPU encryption and decryption time of RCPKC and NTRU was measured for 103, 104, and
105 runs. In each run, a distinct 128 bit message was encrypted/decrypted with both cryptosystems.
The NTL function RandomLen() was used to pseudo-randomly generate the messages. RandomLen()
was seeded with the output of the function clock(). The generated messages were stored in a separate
file and used to test RCPKC and NTRU. The CPU time was measured via QueryPerformanceCounter()
with ns accuracy. Table 2 shows the sample mean, x, standard deviation, σ, and confidence interval
with the confidence level C ∈ {0.95, 0.99, .0.999} for the number of runs n ∈ {103, 104, 105}, respectively
for RCPKC and NTRU. The confidence interval, [l, u], is calculated using [62] (p. 358):
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[l, u] = [x− z∗
σ√
n

, x + z∗
σ√
n
], (61)

where x = ∑n
i=1 xi

n , σ =

√
∑n

i=1(xi−x)2

n−1 , xi, and n are the sample mean, sample standard deviation, value
of the run, and number of runs, respectively; z∗ is the critical value required for the specific confidence
level; see Table C in [62] (p. 746). For example, in Table 2 for RCPKC encryption with C = 95%,
n = 103, x = 6.19× 10−6, σ = 3.966× 10−6, z∗ = 1.960, the confidence interval is calculated as follows:
[l, u] = (6.190× 10−6 − 1.960(3.966× 10−6)/

√
1000, 6.190× 10−6 + 1.960(3.966× 10−6)/

√
1000) =

(6.112× 10−6, 6.267× 10−6).
Figure 1 shows the NTRU/RCPKC encryption and decryption average CPU time ratio for 103, 104,

and 105 runs. From Figure 1, it is observed that RCPKC is 27.08± 3.75 times faster than NTRU in
encryption and 26.9± 5.09 times faster in decryption, respectively. Table 3 compares NTRU versus
RCPKC and several NTRU variants presented in Section 1. It is observed that RCPKC is faster than the
fastest most recently published NTRU variant, BQTRU, more than four times in encryption.

Table 2. RCPKC and NTRU CPU encryption/decryption time sample mean, standard deviation, and
confidence interval for 103, 104, and 105 runs.

Algorithm Measured Value Run number, n

103 104 105

C 0.95 0.99 0.999
z∗ 1.960 2.576 3.291

RCPKC (Encryption)

Sample Mean, x 6.190× 10−6 5.492× 10−6 4.708× 10−6

Sample Standard
deviation, σ 3.966× 10−6 2.076× 10−6 2.923× 10−6

Confidence (6.112× 10−6, (5.475× 10−6, (4.677× 10−6,
Interval, [l, u] 6.267× 10−6) 5.508× 10−6) 4.738× 10−6)

NTRU (Encryption)

Sample Mean, x 1.444× 10−4 1.964× 10−4 1.440× 10−4

Sample Standard
deviation, σ 6.878× 10−5 1.123× 10−5 6.437× 10−5

Confidence (1.430× 10−4, (1.430× 10−4, (1.430× 10−4,
Interval, [l, u] 1.457× 10−4) 1.973× 10−4) 1.447× 10−4)

RCPKC (Decryption)

Sample Mean, x 9.506× 10−6 8.812× 10−6 7.493× 10−6

Sample Standard
deviation, σ 2.781× 10−6 2.370× 10−6 2.795× 10−6

Confidence (9.451× 10−6, (8.792× 10−6, (7.464× 10−6,
Interval, [l, u] 9.560× 10−6) 8.831× 10−6) 7.522× 10−6)

NTRU (Decryption)

Sample Mean, x 2.079× 10−4 2.826× 10−4 2.088× 10−4

Sample Standard
deviation, σ 9.700× 10−5 1.594× 10−4 8.633× 10−5

Confidence (2.060× 10−4, (2.813× 10−4, (2.079× 10−4,
Interval, [l, u] 2.098× 10−4) 2.839× 10−4) 2.097× 10−4)

Table 3. Ratios of encryption and decryption times, γA =
TENC

NTRU
TENC

A
, δA =

TDEC
NTRU

TDEC
A

, of NTRU and the

algorithms A ∈ {RCPKC, BQTRU, MaTRU, ETRU}.

Algorithm, A Encryption Times Ratio, γA Decryption Times Ratio, δA

Proposed RCPKC 27 27
BQTRU [21] 7 No data
MaTRU [23] 2.5 2.5
ETRU [27] 1.45 1.72
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Figure 1. NTRU/RCPKC encryption and decryption average CPU time ratio for 103, 104, and 105 runs.

8.2. RCPKC Power Consumption Evaluation

In this section, RCPKC’s power consumption is compared to NTRU in two cases: applying both
algorithms using the same or different frequencies.

Same frequencies: Let the RCPKC and NTRU execution time be TRCPKC and TNTRU , respectively.
Then, from (18), the consumed energy by NTRU and RCPKC ENTRU and ERCPKC is:

ENTRU = P · TNTRU ,

ERCPKC = P · TRCPKC. (62)

Since TNTRU is greater than TRCPKC by more than 27 times, then from (62):

ENTRU
ERCPKC

=
TNTRU
TRCPKC

≥ 27. (63)

From (63), RCPKC consumes twenty seven times less energy than NTRU using the same frequency.
Different frequencies: Since RCPKC is 27 times faster than NTRU, the former takes

approximately the same run time on a 27 times lower clock frequency CPU than that of the latter.
Dynamic and leakage power consumption, calculated for frequencies from [48] (p. 19) according to (21),
are shown in Table 4.

Table 4. MSP430FR5969 microcontroller dynamic and leakage power consumption, Pdyn and Pleak, for
frequencies from [48] (p. 19) at active supply voltages of 3 and 2.2 V.

2.2 V 3 V

Frequency (MHz) Pdyn (µW) Pleak (nW) Pdyn (µW) Pleak (nW)

1 48.4 44 90 6016 774.4 1440

It follows from Table 4 that Pleak � Pdyn, and it can be neglected. From Table 4, it follows that
reducing the clock frequency from 16 to 1 MHz leads to a 16 times power consumption reduction
from 1440 to 90 µW. Note that MSP430FR5969, at a lower frequency, operates at a lower voltage:
operating on a 1 MHz frequency at 2.2 V [48] (p. 19) results in 48.4 µW of dynamic power consumption.
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Hence, the total power reduction is 1440
48.4 ≈ 30 times. Therefore, RCPKC, compared to NTRU, is better

applicable to WSNs with power constrained devices.

9. Conclusions

In this paper, RCPKC is proposed, a secure and effective congruential, modulo q, public-key
cryptosystem using big numbers. It uses the same encryption/decryption mechanism as NTRU does,
but works with numbers. Contrary to NTRU, RCPKC is resistant to LBRA because its private key
components, f and g, are chosen big with respect to

√
q to form a two-component vector with the norm

exceeding Minkowski’s boundary (27)–(30) for the shortest vector in a two-dimensional lattice and
meeting (31). Hence, LBRA by the GLR algorithm returning the shortest vector in a two-dimensional
lattice fails at finding the large norm private key vector, ( f , g).

In spite of the big numbers, f and r, meeting (36) used in RCPKC, it guarantees that the decryption
correctness condition (15) holds (see (39)) due to the use of Conditions (33), (36), (38), (46) and (50)
instead of Conditions (7), (11), and (12), used in the original insecure CPKC (see Sections 3.3–3.3.2)
considered in [26]. It was found that the insecurity of the original CPKC stems from the use of
Conditions (7), (11) and (12), defining smaller than

√
q numbers f , g, m, r meeting Minkowski’s

boundary (27) and the decryption correctness condition (15). RCPKC is resistant to the LBRA by GLR
attack due to the special choice of the range for the random value, r, used in the encryption (13) that
guarantees correctness condition (15) violation for the short vectors returned by GLR, but holding for
the original private key, ( f , g). Section 6 shows also that the security of RCPKC with respect to other
known attacks on NTRU is not less than that of NTRU, which allows us to conclude that RCPKC is
more secure than NTRU. Section 7 proves the IND-CCA2 security of RCPKC asymmetric encryption
padding (RAEP).

RCPKC uses numbers, i.e., minimal possible, degree zero, polynomials, which makes it about
27 times more effective in encryption and decryption than NTRU and more than three times more
effective in encryption with respect to the fastest most recently published NTRU variant, BQTRU [21],
as the experiments show (see Table 3). Compared to NTRU, RCPKC reduces the energy consumption
at least 27 times, which allows increasing the life-time of unattended WSNs by more than 27 times.

As a future work, the proposed RCPKC will be applied to telemedicine to secure the data collected
by medical sensors and cameras.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/16/4632/
s1: Code S1: Maple code of LBRA by GLR, Table S1: RCPKC performance experiments’ results, Table S2: NTRU
performance experiments’ results, Example S1: Example of CPKC encryption/decryption, Example S2: LBRA
attack using GLR against CPKC, Example S3: Example of RCPKC.1 encryption/decryption, Example S4: LBRA
attack using GLR against RCPKC.1, Example S5: Example of finding RCPKC.2’s random interval and LBRA by
GLR failure.
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