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Abstract: In healthcare, interoperability is widely adopted in the case of cross-departmental or
specialization cases. As the human body demands multiple specialized and cross-disciplined medical
experiments, interoperability of business entities like different departments, different specializations,
the involvement of legal and government monitoring issues etc. are not sufficient to reduce the
active medical cases. A patient-centric system with high capability to collect, retrieve, store or
exchange data is the demand for present and future times. Such data-centric health processes would
bring automated patient medication, or patient self-driven trusted and high satisfaction capabilities.
However, data-centric processes are having a huge set of challenges such as security, technology,
governance, adoption, deployment, integration etc. This work has explored the feasibility to integrate
resource-constrained devices-based wearable kidney systems in the Industry 4.0 network and
facilitates data collection, liquidity, storage, retrieval and exchange systems. Thereafter, a Healthcare
4.0 processes-based wearable kidney system is proposed that is having the blockchain technology
advantages. Further, game theory-based consensus algorithms are proposed for resource-constrained
devices in the kidney system. The overall system design would bring an example for the transition
from the specialization or departmental-centric approach to data and patient-centric approach that
would bring more transparency, trust and healthy practices in the healthcare sector. Results show a
variation of 0.10 million GH/s to 0.18 million GH/s hash rate for the proposed approach. The chances
of a majority attack in the proposed scheme are statistically proved to be minimum. Further Average
Packet Delivery Rate (ADPR) lies between 95% to 97%, approximately, without the presence of
outliers. In the presence of outliers, network performance decreases below 80% APDR (to a minimum
of 41.3%) and this indicates that there are outliers present in the network. Simulation results show
that the Average Throughput (AT) value lies between 120 Kbps to 250 Kbps.

Keywords: game theory; blockchain; cryptocurrency; lightweightness; gash rate; bit-exchange;
challenge-response; attacks; healthcare
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1. Introduction

Blockchain is a peer-to-peer distributed data-ledger network constructed using consensus among
nodes in a network as shown in Figure 1. Blockchain networks can be permission or permission-less.
Blocks in blockchain network (BN) stores verified transaction records and are connected with relevance
to its predecessor. The header of each block contains a cryptographic challenge and its solution.
Nodes (miners) interested in adding a block to existing BN has to solve this challenge (usually in
10 min) before getting permission to add a block. This cryptographic challenge is generated using
various means that are meaningful in consensus building [1,2] in different applications.There are
various applications of blockchain in different domains. Some of these applications are as follows:
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• Banking: Blockchain technology can replace both commercial and investment banking. Blockchain
technology has solutions to every service of banking like international money transfer, letters
of credit, forex, escrow, custody, initial public offering, mergers and acquisitions, restructuring,
trading etc. In the banking system, people deposit their money and banks give them credits.
Nowadays, banks charge a huge amount of their services. These charges can be minimized and
services can be made faster with the help of a blockchain network. Further, a large part of the
population is not associated with the banking system due to numerous reasons and blockchain can
bring them into mainstream banking which would be a win-win situation for both investor and
economy. Blockchain can control inflation thus it is useful to countries having high inflation rates.
Overall, it is very helpful in almost every national or international money-related transactions.
Batavia [3] is an example of a blockchain-based trade finance platform to tackle inefficient processes
in the business. It is developed using the IBM blockchain platform and consists of five banks (UBS,
Bank of Montreal (BMO), CaixaBank, Commerzbank and Erste Group) and IBM. This platform
aims to remove inefficient cross-border trading barriers. For example, all paper-based activities
(bills, letters of credits etc.) are maintained electronically, money can be paid at different stages,
tracking of goods exchange is much easier etc. Nordea has a blockchain-based platform as well to
ease the trading finance for SMEs in Europe.

• Insurance: Blockchain is peer-to-peer based technology and it is helpful in insurance section by
reducing the uncertainty in business, back-office costs and bureaucracy work is also reduced,
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faster execution of processes as compared to traditional ways, customer relationships and their
satisfaction is improved with the usage of electronic smart contracts and their execution etc.

• Healthcare: This is an important sector where the necessity of blockchain is highly required.
This sector demands accurate, immutable and easily accessible patient’s historical and present
medical records. In healthcare, industry 4.0 processes are required alongside blockchain technology.
Industry 4.0 will be the communication backbone of the healthcare system, whereas, blockchain
technology builds trust in the data-related system (collection, exchange, retrieval storage etc.).
In healthcare, blockchaincan be used starting from patient records, drug supply system, staff’s
records, medical insurances, medical trials, equipment usage and supply system, medical board
approval system, government monitoring system etc.

• Intellectual Property Rights (IPRs): It is an important area where the importance of blockchain
technology is realized in recent times. Using blockchain, IPR’s ownership, copyright protection,
and smart IP rights management are managed efficiently. This is possible through distributed
ledger technology in the blockchain. For example, IP rights are managed from the moment of their
inception rather than the time of patent or publication. This protects the invention and false claims.
IPRs using blockchainare helpful in various domains like software, music, films, research, business
etc. For example, payments can be made instantaneously for the usage of anything (watching a
mobile, listening to music etc.) and it is possible for even a microsecond. As blockchain is a P2P
system using smart contracts thus it is efficient, secure, faster and economical.

• Food Supply Chain: There are many departments associated with the food supply business as
well. For example production, processing, distribution, marketing, and consumption. In real
scenarios, present supply chain management is not trustworthy because of various incidents like
illegal practices, frauds, improper food storage systems, laborious and error-prone data records,
for example.

Likewise, there are many other areas such as supply management system, transportation sector,
smart city, industrial networks, etc., where blockchain technology can bring a great revolution through
data transparency, immutability, security, availability etc. As the blockchain technology is widely
accepted in several domains, the challenges in adopting this technology in a systematic, secure and
trustworthy way are also very large. Various important challenges in blockchain network-based
applications are briefly explained as follows:

• Scalability: In blockchain networks, every node has to communicate transaction information
to every other node in the network. With the increase in the number of nodes in a network,
the number of transactions increases exponentially. In a blockchain network, every node does not
have the same resources/configuration. This restricts the feasibility of extending the Blockchain
network beyond a certain size.

• Restricted Blockchain Users: One major application of blockchain is to bring those people in the
banking domain who live in rural areas or do not have any banking solutions. However, the limited
blockchain network’s scalability restricts these users to become part of the blockchain-based
banking system. As the world population is increasing day-by-day, requirements for a large scale
blockchain-based applications are increasing proportionately. Otherwise, it would restrict the
usage of applications to certain people only.

• Resource limitations: Various concepts in the blockchain network consumes large resources.
For example, an electricity-based PoW consensus algorithm permits nodes to add several blocks
proportionate to electricity consumed or produced. In both cases, the chances of building a
large blockchain network reduces. Other popular cryptocurrencies are based on a platform that
uses a proof-of-stake (PoS) consensus algorithm. Although various attempts have been made
in implementing PoW and PoS integrated consensus solutions, no pure PoS-based blockchain
solution has been implemented yet in a real application.
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In healthcare, various challenges include scalability and performance, usability, interoperability,
and adoption. These challenges are briefly explained as follows:

• A large amount of data is generated from medical records including electronic health records or
electronic medical records [4–7]. Blockchain features makes the data to be stored at every node
with hash values. This will increase the storage demands and requirements.

• Patient data should be easy to access as and when required. Manual or partial automated data
access does not solve the problem. A complete medical record with required statistics is mandatory
for a doctor before treatment. Similar importance is required to all form of data exchanged in the
healthcare domain whether it is for drugs, suppliers, producers, suppliers, government policies etc.

• Interoperability is another major challenge. In the present scenario, healthcare organizations
are targeting cross-discipline or specialization interoperability for patient treatment rather than
patient-centric approaches. A patient-centric approach is more transparent, useful and secure.

• Adoption is another major challenge in healthcare. Many sub-systems in healthcare are used
for unethical and economic gains. This would bring down the importance of healthcare. Thus,
there is a need to design more transparent and efficient mechanisms.

• Performance is another major issue. In populated countries or pandemic situations, a large
number of patient approach hospitals. Thus, an exponentially large amount of data is processed
which lower down the overall system, processes.

After understanding the importance of blockchain-technology, healthcare systems, and Industry
4.0 processes, this work considers a wearable kidney-based system for data collection, sharing,
processing, and analysis. Wearable kidneys have many electronic and sensor components and these
components can be controlled remotely through advanced processes for medication and handling
during emergency cases. Here, blockchain technology can be integrated to obtain records of kidney
functionalities in the form of transactions. Here, the individual component is generating the block and
they are integrated to construct the blockchain. The successful construction of blockchain ensures that
kidney record is successfully recorded.The exchange of information to a remote location is ensured
through Industry 4 processes. These processes allow data analysis, interpretation, secure exchange,
and provide timely information to patients and doctors as well. Such records are helpful for analysis
later and subsequent medications. While keeping all importances of blockchain into consideration,
the objectives designed for this work are briefly explained as follows:

• To integrate Healthcare 4.0 processes with a patient-centric healthcare system. Healthcare 4.0
includes Industry 4.0 processes (Internet of Things (IoT), Industrial IoT (IIoT), cognitive computing,
machine learning, AI, etc.) integrated with the healthcare system. Healthcare 4.0 processes are
capable to handle a large amount of data efficiently. The major aim of this integrate is to design a
large scale patient-centric healthcare system and test the performance.

• To consider a wearable kidney patient system and simulate it with Healthcare 4.0 processes.
A wearable kidney consists of electronic, medical, fluid, and other systems. The integration of all
of these components with an automated consensus algorithm ensures smooth functionality. Thus,
a lightweight consensus algorithm is integrated. Further, Healthcare 4.0 processes ensure faster
data accessibility and statistical results.

• To proposed lightweight and new challenges-based consensus algorithms and integrated with
the wearable-kidney patient system and determines the performance. As a consensus algorithm
is part of the blockchain network, a blockchain-based consensus algorithm with game theory is
proposed for healthcare. The proposed algorithm is variable in bits-based challenge generation
and verification. The performance of the blockchain network with a lightweight consensus
algorithm is required to be determined as well.

• To consider different patients with kidney diseases and simulate it with a change in the amount of
data required to treat them. Further, the performance of these cases is required to be determined
for analyzing the proposed framework efficiency.
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In this work, the healthcare domain (specifically the kidneys) are selected for sensor-integrated
information network construction. This work has started with the design and analysis of normal kidney
operations, its parts, and the possibilities of diseases. Thereafter, a model is designed and analyzed for
a wearable kidney system. This wearable system design is integrated into a novel IoT, IIoT, cloud and
cognitive computing-based model. This system is designed to monitor (doctor and self-monitor by a
patient) the working of medical and electronic equipment based wearable kidney system. Further,
the proposed system is integrated with Industry 4.0 processes and to have Healthcare 4.0 processes
for managing patients on a large scale. To integrate blockchain technology-based advantages in the
proposed system, the PoG-based consensus algorithm is proposed for resource-constrained wearable
kidney devices and applicable to both permission and the permissionless blockchain networks. Here,
three PoG-based consensus algorithms are proposed: Single-Player Single-Bit (SPSB), Multi-Player
Single-Bit (MPSB) and Multi-Player Multi-Bits (MPMB). Thereafter, these algorithms are integrated
into the wearable kidney-based Industry 4.0 network. Finally, the performance of these consensus
algorithms is evaluated and compared to identify the best algorithm for resource-constrained devices.

The rest of the paper is organized as follows: Section 2 explores the state-of-the-art survey related
to the consensus algorithms and healthcare systems. Section 3 presents the normal and wearable
kidney systems. This section also shows the proposed integration of kidney systems with Industry 4.0
processes. Further, proof-of-game (PoG) algorithms are proposed in this section that is used in overall
kidney based information networks to have blockchain technology advantages. Section 4 shows the
simulation of the proposed system, results and analysis. Finally, Section 5 concludes the work.

2. Background and Related Work

This section has explored the state-of-the-art consensus algorithms, and existing blockchain-based
systems or applications in healthcare. Various cryptographic challenge generation approaches are as
follows [1,2]:

• Proof-of-Work (PoW): Nodes in BN put forward a challenge and a miner solves the challenge for
verification. Resource consumption in generating a solution to a challenge could be one parameter
selected for PoW.

• Proof-of-Authority (PoA): In PoA, those nodes are given permissions to generate a new block that
has proven their authority through preliminary authentication.

• Proof-of-Elapsed Time (PoET): This concept is similar to PoW but concentrates more on-time
consumption rather than resource utilization.

• Proof-of-Stake (PoS): In this concept, the node’s stake is cross-checked before considering it for
validation. The amount of stake spend in BN is another possible scenario for considering it for the
validation process. This encourages more and more spending to become a validator.

• Delegated Proof of Stake (DPoS): This concept is similar to PoS but give more chance for voting and
selecting a validator which is having comparatively more stake than any other node.

• Leased Proof of Stake (LPoS): In this concept, nodes are having the flexibility to customize tokens to
enhance the security.

• Proof of Importance (PoI): In PoI, the importance of node increases with its transactional activities
which include net amount transfer, amount to which node is closely associated, network
transactional activities etc. As each transaction record is immutable in the blockchainnetwork
thus PoI overcomes the loopholes of PoS or PoW in which dishonest behavior can increase or
decrease the node’s importance and chances to add a block.

• Proof of Capacity (PoC): In PoC, a node’s available hard drive space is used to decide the right
to add a block rather than its computing power. Computing a power-based PoW consensus
algorithm is not useful because every device can have different computing power or device usage
at a different time which can result in a different outcome, whereas, PoC counts the availability
of space. A larger space means more memory is available to write the problem and its solution.
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Aim of this consensus algorithm is that if more memory is available to write all possible solutions
to a problem then chances of success increase. Thus, PoC is a better solution as compared to PoW.
This approach enforces the node to efficiently utilize the memory space.

• Proof of Burn (PoB): Stewart invented PoB analogous to PoW without energy waste. In PoB,
nodes burn or destroy the virtual currency tokens for getting the right to add a block proportionate
to coins burnt. In other words, nodes burnt coins to buy a virtual mining rig for getting the power
to add blocks. An increase in the number of burnt coins increases the chances to buy mining rig
which in-turns increase the chance to add a block.

• Proof of Weight (PoWeight): Like PoS, PoWeight assigns ‘weight’ to nodes based on how much
cryptocurrency is held on the network. Unlike PoS, weights can be assigned based on different
values. For example, a higher node’s weight value indicates a proportionally large amount of
stored data. Large weights for thins indicates another consensus system like proof-of-reputation
(PoR). In the PoWeight, the Algorand consensus model is the preferred consensus algorithm that
constructs a secure and decentralized public ledger based on pure proof of stake rather than proof
of work [2].

Additionally, various other challenge generation or consensus algorithms are possible such as
Practical Byzantine Fault Tolerance (PBFT), Simplified Byzantine Fault Tolerance (SBFT), Delegated
Byzantine Fault Tolerance (DBFT), Directed Acyclic Graph (DAG), etc. The major challenge in
these consensus algorithms is to generate a new challenge every time because the old challenge is
disclosed and it can be considered secure for a blockchain network. Further, the applicability of these
cryptographically based challenge generation approaches varies from application to application.

The algorithms, systems, and applications are explained as follows:
Mingxiao et al. [8] reviewed the principles and characteristics of the consensus algorithms,

measured the performance, and identify the application areas/domains. In this work, a technical
sequence of steps is derived to guide the selection of a consensus algorithm in a specific domain.
Further, limitations and future directions are presented for the consensus algorithm in the blockchain
technology. This systematic review explores the core blockchain-technology and research aspects.
However, detailed research aspects need to be explored further in detail.

Smith et al. [9] identified the features of a sequence mining platform that includes a machine, storage
medium, and sequence manager. Here, a sequence manager is programmed to use processing resources
in determining the sequence of nucleobases in nucleic acid. In the storage manager, data is collected from
one or more transactions using proof of work. Secondly, some of the data is inserted in the new block of a
transaction. To have proof of work for the newly created block, a sequence mining module is required
that determines the sequence of nucleobases. In all of these transactions, a rewarding system is integrated
that takes care of the transaction and sequencing point rewards. Overall, it is observed in this work that
proof of work is an ideal way of establishing the consensus among blockchain nodes.

Azbeg et al. [10] presented an IoT and blockchain-based approach for monitoring diabetes,
its follow-ups, patient self-management approach, patient data collection procedure, healthcare data,
security in data privacy etc. This work realizes the importance of sharing real-time data with health
entities in the smart healthcare system. The proposed system collects the data and shares it with
concerned entities. Further, it quantitatively and qualitatively measured the importance of sharing the
data in this work. In the proposed system, it is realized that proof of authority is the best approach for
consensus establishment because it is faster and economical in terms of saving time and energy. It is
also realized that proof of concept can give similar results. However, the experimentation with this
consensus approach is not yet implemented and tested. There are equally likely chances of amelioration
of two consensus algorithms to achieve similar results.

Kalogeropoulos [11] presented a system that can be used in multiple areas. For example, the proposed
system can be used in detecting chronic kidney symptoms with the help of machine learning algorithms
and medical records. This approach can be applied over a secure container that can securely receive
the health condition predictions by ensuring a privacy-preserving strategy. Other applications of the
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proposed approach include forecasting the power generation of photovoltaic cells, household energy
consumptions, off-chain resource-intensive computations that can monitor or control on-chain values.
In chronic kidney disease prediction scenarios, various stakeholders considered are laboratory, container
provider, and research institute. A laboratory has the role to prepare patients’ health databases, keep this
information secure and private, use application software to store in on-chain network values, take the
support of selected containers, perform computations as per the payments and give accurate, appropriate
and timely results. On the other hand, the research institute deals mainly with the dataset through
software and store the required details. The container contains the sample data and usage fees and the
container provider stakeholder receive the fee for storing the required details in containers.

Swan [12] proposed a disease causality in global health care equivalency as a theoretical model
using data science concepts. The idea of proposing a smart health network in this work is to design a
framework having secure and automated advanced medical and healthcare technologies like medical
nanorobots. Medical nanorobots are nanodevices that can be used for maintaining and protecting the
human body parts against pathogens. In this work, blockchain technology is used to have immutable
and transparent medical records collected through medical nanorobots. Here, bio-crypto-economy
and personal biological directed activities (bioDAC) terms are coined. Bio-crypto-economy is used to
have crypto-economic principles and issues discussed and applied in biological domains. Whereas,
the personal bioDAC is the complete set of programs necessary to understand the purpose-directed
biological activities.

Table 1 shows the comparative analysis of other blockchain-based approaches in healthcare
systems. In recent work that uses blockchain technology in the healthcare domain has various concerns
such as [8–11,13–20]: (i) there is no system being proposed who take care of artificial medical equipment
through a decentralized, secure and efficient way, (ii) the majority of the blockchain-based healthcare
systems are theoretical frameworks or limited to detailed designs. However, very few examples
are available who have taken care of the verification and validation of proposed processes through
statistical or implementation approaches, (iii) most of the consensus algorithms suggest proof-of-work
as a leading consensus algorithm in blockchain-based healthcare applications. However, proof-of-work
is found to have various implementation challenges, especially for resource-constrained devices.
The medical wearable devices (e.g., kidney) required quick responses to have better control thus
lightweight and efficient approaches are required to build consensus with improved performance,
(iv) applicability of game-theory based challenge in consensus building is not explored much and
it can provide a dynamic challenge-based environment to have a better and timely control system,
(v) Industry 4.0 processes are adding security features to enhance the scalability and accessibility in
industrial processes. Thus, Industry 4.0 processes and blockchain technology-based healthcare system
is required to be proposed for improved results, (vi) the existing approaches are not sufficient to have a
detailed output result in metric analytics-based verification and validation model. Thus, there is a
strong need to build a statistical or implementation based model to measure the real-time performances
and QoS, and (vii) the application of deep learning and neural network with blockchain technology
are found in the literature. This approach can give more automates patient’s feature matching results.
Thus, this area needs to be researched in a systematic and detailed manner.

Table 1. Comparative state-of-the-art survey of consensus algorithms in various blockchain-based
healthcare applications.

Author Year Consensus Algorithm & Salient Features

Proof-of-Work, Proof-of-Stake, Proof-of-Trust, Proof-of-Concept

Witchey [21] 2015

This work has mainly discussed the proof-of-work consensus algorithm for healthcare
transactions. The healthcare data is provided to one or more validation devices. Thus,
the consensus of these devices is maintained through the proof-of-work concept.
This work has explored the various other consensus approaches discussed and
developed in blockchain technology. However, proof-of-the work is mainly suggested
for healthcare applications.
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Table 1. Cont.

Author Year Consensus Algorithm & Salient Features

Proof-of-Concept, Proof-of-Stake, Proof-of-Insurance

Nichol et al. [22] 2016

This work has mainly discussed proof-of-concept importance in building the trust of
the healthcare system with associated applications. These applications are mainly in
the healthcare field that requires interoperability.
This work has discussed the blockchain healthcare ecosystem suitable for patient or
data-centric approach underlying theoretical framework and conceptualized
proposition. This need is added to have patient satisfaction, trust in the healthcare
domain, removing frauds, security risks reductions etc.

Proof-of-Work, Proof-of-Interoperability

Peterson et al. [2] 2016

This work has proposed proof of structural and semantic interoperability and mainly
used proof-of-work in sharing healthcare data. This work has concentrated over
applying consensus algorithms in institutions interoperability rather than
concentration over the patient or data-centric issues.
This work has mainly concentrated over sharing the patient’s and healthcare-related
data with interested and trusted parties while keeping data quality and utility intact.
Further, patients and the institution’s concerns are discussed to have an aggregated
blockchain with machine learning capabilities.

Zhang et al. [23] 2016

This work added the cryptography mechanisms to blockchain creation in healthcare.
Elliptic curve cryptography and its variations are used for ensuring security. Further,
a formal verification model is created to analyze the proposed approach. Results show
that the proposed approach is protected from various types of attacks.
Variations in elliptic curves show that the average runtime of the proposed approach
increases with an increase in complexity. Here, a blockchain network is constructed
with the help of wearable sensor devices. These devices exchange information through
mobile gateways which further records the transactions in the blockchain network.
Each transmitter/receiver is made available to every blockchain node that collected the
data through wireless wearable sensors.

Alhadhrami et al. [13] 2017

This work has integrated blockchain with the healthcare system and proposed a model
to share medical and healthcare records among patients, doctors, hospitals, nurses etc.
The aim of sharing this information is to increase interoperability among various
sub-systems.
Here, a framework is only proposed to have the blockchain integrated functionalities
and advanced security levels with verifications from every stakeholder in the network.
In another observation, the chances of blockchain failure with quantum computers are
discussed theoretically in addition to chances of attacks (such as double proof,
blackhole, Sybil attack).

Zhang et al. [24] 2017

This work has mainly addressed the proof-of-interoperability and its importance in the
healthcare domain. This is a theoretical constitution to address, explore and analyze
the present and future need of blockchain-based healthcare systems. Here, a DApp for
Smart Health (DSH) framework is proposed as well to maintain the evolvability with
minimum integration complexity.
This work has realized that interoperability is the major concern in present healthcare
scenarios. Thus, a balancing approach is required to enhance the data availability is
based on interoperability rather than any other form of integration.
This interoperability can be achieved efficiently through proper security measures.
The proposed framework is good in terms of providing data to research, innovation,
and analysis. These technicalities would help anyone to understand the relevant
health changes across the targeted population and monitor them in an efficient way.

Zhang et al. [25] 2017

This work is an extension of work done to integrate interoperability in the healthcare
sector [11]. Interoperability through data is preferred to have a patent centric system.
A transparent system to both doctor and patient will bring trust and encourage to have
healthy practices and remove frauds. This is possible through blockchain-based
solutions. Thus, a DASH architecture is proposed and explained in this work.
The complexity of the system is considered by designing various activities using UML
diagrams. The detailed functionality of each sub-system is explained with exceptions
through designs only. There is a further need to prove the proposed designs with
statistical and implementations methods.
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Table 1. Cont.

Author Year Consensus Algorithm & Salient Features

Proof-of-Concept

Engelhardt [26] 2017

This work has observed that the integration of blockchain technology would bring
various advantages to the healthcare system with better administration, monitoring,
and accessibility. These claims are made with concrete examples having clear and
specified near and long-term goals, promises, and challenges.
This theoretical framework based discussion is fruitful to have an understanding of a
pre-specified set of stakeholders, their roles, regulations, and other technical details.
It is observed that academic discussions are not just helpful for addressing the
healthcare needs but to explore various other healthcare-associated system and their
interoperability in the blockchain-based modern architecture.

Proof-of-Work, Proof-of-Stake, Proof-of-Burn

Kuo et al. [27] 2017

This work has introduced the Bitcoin-based blockchain technology with proof-of-work
in a decentralized mechanism-based healthcare system. The major topics discussed in
the proposed healthcare framework are security, availability, robustness,
data immutability etc. The discussed framework mainly explores the feasibility of
blockchain in biomedical and healthcare applications, research or record management.
Here, the blockchain-based double-spending and single-point-of-failure are discussed
with healthcare blockchain scenarios. Additionally, the security measures to enhance
the blockchain technology are addressed as well. Moreover, the presented work is
theoretical rather than practical or statistical proving approach.

Proof-of-Existence, Proof-of-Verification, Proof-of-membership

Xia et al. [28] 2017

This work has concentrated over interoperability through data sharing in a blockchain
and cloud environment based healthcare system. This healthcare system emphasizes
medical records over institution interoperability. Thus, a multilayered approach is
proposed to have three consensus algorithms operated through cryptography
primitives and protocols.
The proposed system has user, system management and storage layers. The user layer
defines the different types of users that can interact with the system to have data
accessibility and interactions. The system management layer defines the roles of the
issuer, verifier, consensus nodes, pool of transactions and blockchain technology-based
network construction. Finally, the storage layer defines various types of storage and
classification of data. Each of these layers does not have a role without blockchain and
cloud computing features and functionalities.

Cryptography and game-theory

Zhang et al. [29] 2017

This work has realized that the present system does not interconnect the heterogeneous
data sources to have interoperability whereas the proposed decentralized application
will connect them to have a better environment. The healthcare environment would be
better in terms of data accessibility and fault tolerance approaches.
This work has explored the blockchain expectations, scalability issues in the present
and blockchain-based healthcare system, cost-effectiveness, patient-centered support
etc. Here, technical evaluations regarding these issues are explored theoretically and
with existing Ethereum based architecture.

Proof-of-Work

Funk et al. [30] 2018

This work has realized the easiest implementation of blockchain in healthcare
professional education. Here, the details of the regulatory body, technology,
competency matrix, online learning, online courses, and media-based education are
discussed for exploring and finding the trends of blockchain application in the
real-time healthcare sector.
This work is a short survey of the possibility of blockchain implementation in
healthcare education and professionals. The platform expectancy is to develop efficient
information sharing, structured, verifiable, trusted, accountable, incentivized and
secure platforms for healthcare education.

Gordon et al. [31] 2018

This work emphasized over patient-centric data sharing and management system
compared to the institution or specialization-centric system. Thereafter, the barriers to
patient driving interoperability are explored, analyzed and facilitated for the transition
from the present system to a patient-centric approach.
This article specifies the interoperability feature comparison of two systems:
(i) the present hospital, clinics, pharmacies, doctors-based present system, and (ii)
blockchain-based data-centric system for electronic health and medical records.
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Table 1. Cont.

Author Year Consensus Algorithm & Salient Features

Mamoshina et al. [32] 2018

This work hs presented the details of artificial intelligence and blockchain
technology-based innovative healthcare solutions that can be used to speed-up the
research aspects in the biomedical field. Further, the patient will be able to appraise
and evaluate his/her records in a way that he/she chooses to be the best.
In this work, various designs are proposed to have service instance, auditing,
authenticity and load balancing in blockchain-based healthcare applications. Further,
deep neural networks are applied and trained to find the experimental results from the
patient data and its feature extraction processes.

Zheng et al. [33] 2018

This work has proposed conceptual design for data sharing in a secure and transparent
manner with blockchain, cloud computing, and machine learning approaches.
The goal of this work is to enroll users to self-control their data, apply security
approaches in sharing data with associated stakeholders in the healthcare system
under the General Data Protection Regulation (GDPR) compliance.?
The proposed architecture applies data quality check at its initial steps, integrated
necessary security primitives and protocols with pre-processed and formatted data
having recorded with timestamps, cloud storage enables to store data in encrypted
form, and accessibility to users and consumers through proper application interfaces.

Proof-of-Work, Proof-of-Concept

Griggs et al. [34] 2018

This work has implemented a private blockchain using Ethereum protocol. Here,
sensors are used to communicate with smart devices and provide data for all
associated events on the blockchain. This data is more trustworthy because everyone is
bound with smart contracts that are automated.
In an example, sensors are associated with the human body and a master device
(like mobile) receives the data from these sensors and transmits to the blockchain
network. In parallel, a smart contract executes that look after the compliances of any
data related issue.

Multiple (Proof-of-work, Proof-of-Stake, Proof-of-Activity, Proof-of-Burn, Proof-of-Deposit etc.)

Hölbl et al. [35] 2018

This is a review work for analyzing the contributions in the field of blockchain
technology usage in the healthcare domain. There are various statistics shown in this
work to present the need and advantages of blockchain technology through several
publications and findings.
This work has discussed multiple distributed consensus protocols such as
proof-of-work, proof-of-stake, delegated-proof-of-stake, proof-of-importance,
proof-of-activity, proof-of-burn, and proof-of-deposit etc. These distributed consensus
algorithms are presented w.r.t the present stage of their usage. Additionally, various
advantages, applicability and other technical details about blockchain are presented in
this work.

Proof-of-Stake

Shen et al. [36] 2019

In this work, an efficient data-sharing scheme is proposed for the healthcare system
using blockchain technology named as MedChain. The proposed scheme uses a
session-based healthcare data sharing approach for finding the flexibility in the data
availability approach securely and efficiently.
Medchain architecture considers every stakeholder as a node in a peer-to-peer
architecture. In this architecture, two types of services run (i) directory and (ii)
blockchain. Directory services provide database accessibility whereas, blockchain
services ensure security, transparency, immutability and consensus-building
advantages.

Proof-of-Work, Proof-of-Stake, Proof-of-Byzantine Fault Tolerance

De Aguiar et al. [37] 2020

This work has surveyed over the various approaches applied in integrating the
blockchain technology in the healthcare sector. Various types of data such as medical
records, image sharing, and log management are found to be important in the
healthcare system.
This survey is advanced to others in terms of detailed benefits and limitations of
healthcare, IoT and blockchain integration with healthcare, proposing techniques that
are found to be useful in the healthcare domain, data access control feature system
with improved health records and how it helps in improving the statistics, use cases for
monitoring and remote accessibility etc.
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3. Proposed Approach

This section explains the kidney models (generic and wearable) designed in JaamSim [38].
These models are required to be integrated with Healthcare 4.0 processes in the futuristic smart
healthcare system. Thus, the Healthcare 4.0 processes-based model is presented. Further, this section
explains the proposed consensus algorithms for wearable kidney operations. Here, multiple models
with the statistical approach are presented to have efficient and optimized performances. The detailed
functionalities of two major categories of proposed approaches are presented as follows:

3.1. Proposed Kidney Models

This section explains the generic and wearable kidney processes, their needs, models,
and operations in detail. Further, the processes of integrating the kidney model with Healthcare 4.0
processes are explained.

3.1.1. Generic Kidney Model

The kidney is an important part of the human body, it works day and night to clean blood and
form urine by filtering water and waste from it. Thus, urine travels from kidney, bladder and then
out from urethra. Further, the kidney keeps the body’s fluid balance, electrolyte levels, urine waste
removal, blood pressure regulation and maintain red blood cells (RBCs) counts. Few of the initial
kidney abnormal functions include pain in urination or back-side under the ribs, vomits, nausea,
high fever etc. These signs and symptoms vary with age. Kidney infections can be life-threating
if proper and timely medical care is not provided. A generic kidney model designed in JaamSimis
shown in Figure 2. In this sub-section. this work started with generic kidney processes explanations,
designing the basic kidney process model, designing the wearable kidney model, presenting the need
and design of the internet of things based wearable kidney model, and presenting healthcare 4.0 based
kidney model processes.
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Figure 2. Generic Kidney Monitoring System.

Generic Kidney Processes: The following are the basic kidney processes in urine formation
from plasma:

• Filtration: A normal kidney filters around 180 L of fluid every day and a plasma volume is around
3 L. Overall, the complete plasma volume is filtered 60 times per day using hydraulic pressure in
the cluster of nerves, spores or small blood vessels importantly known as capillaries of around
kidney tubule also known as the glomerulus.

• Reabsorption: Also known as tubular reabsorption is a process in which nephron removes water
and solutes from pre-urine fluid (tubule) and return into the plasma. As the water and solutes
are absorbed once and it is returned back thus it is called reabsorption. In the reabsorption
process, around 70 L of the filtered water and solute are returned. In the loop of Henle, sodium
reabsorption occurs as well in bulk.
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• Regulated Reabsorption: In this process, hormones monitor and estimates the systemic conditions
and act to control the rate of water and sodium in the distal tubule and collecting duct.

• Secretion: This process enhances the kidney’s ability by removing certain wastes and toxins into
tubular fluid. This is considered to be an essential process in regulating potassium concentrations
and pH values.

• Excretion: This is the outcome of the three processes filtration, absorption, and secretion. Here,
initial tubule fluid concentration of a substance is similar to plasma but in subsequent reabsorption
and/or section it differs in the urine. In other words, if Eamount, Famount, Ramount and Samount represents
the excretion filtered, reabsorbing and secreted amounts then all can be co-related using:

Eamount = Famount −Ramount + Samount (1)

Kidney Function Tests: The kidneys are a vital part of the human body as they filter waste products
from the blood and expels from the human body through urine. The kidney controls various levels
of water, necessary minerals and critical in producing vitamin D, red blood cells and hormones for
regulating blood pressure. There are simple blood and urine tests that can be performed over regular
intervals to identify the issues with your kidneys. These tests are classified into urine, blood, imaging
and kidney biopsy [39].

Urine Tests: These are important tests for a kidney because it is related to waste outcomes of
the kidney. An expert doctor recommends having these tests regularly for monitoring the kidney
abnormalities. Various tests in this category include urinalysis, urine protein, microalbuminuria,
and creatinine clearance test. These tests are briefly explained as follows.

• Urinalysis: This process is used to verify the presence of protein and blood in the urine. A protein
may occur in the body due to various reasons like infection, heavy physical activities etc.
To measure the products of muscle tissue (called creatinine), urine samples are collected over a
24-h collection. This regular measurement indicates the formation of creatinine clearing from a
human body.

• Urine Protein: This test is usually performed in urinalysis. However, a separate dipstick can
be used to find proteinuria (excessive protein). Here, a specific dipstick test which includes
albumin specific dipstick or albumin-to-creatinine ratio can be used to have quantitative dipstick
test measurements.

• Microalbuminuria: This test is recommended by doctors to those patients who have diabetes or high
blood pressure issues. In this test, a tiny amount of protein (albumin) is identified in urine samples.
After standard dipstick test finding as negative, this more sensitive dipstick test is performed.

• Creatinine Clearance Test: In this test, the amount of waste product produces in the kidney per
minute is measured. This measurement is performed by a comparison of the creatinine in the
24-h sample to the creatinine level in the patient’s blood. Additionally, this test indicated normal
muscle wear and tear in the body.

Blood Tests: Like urine tests, blood tests are equally important. These tests help to measure protein,
nitrogen or kidney filtering rate. Various tests in this category include serum creatinine, blood urea
nitrogen (BUN), and estimated glomerular filtration rate (GFR). These tests are briefly explained
as follows.

• Serum Creatinine: This is a blood test that measures the creatinine level in the human body.
According to [39], signs of kidney problem starts if creatinine level is higher than 1.2 milligrams/
deciliter (mg/dL) for women and 1.4 mg/dL for men.
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• BUN: This test measures the amount of nitrogen in the blood. Nitrogen is a breakdown product of
protein present in the human body and consumption of common medications, antibiotics can also
result in higher BUN value. Thus, it is very important to regularly measure and maintain this
record for doctor recommendations. A normal BUN reading varies between 7 to 20 mg/dL and
higher than this could indicate certain other health issues.

• GFR: This is a very important test for a patient having kidney disease and it measures the kidney
wellness with a measurement of how good is the kidney in removing the wastes and excess fluids
from the blood. As a kidney have multiple filtering units (called nephrons), GFR is the sum of all
functional nephrons’ filtering rate and it can be calculated indirectly from patient’s age as:

GFR = 140− Patient′age (2)

There are different formulas in GFR computations. Two of these formulas are important and
frequently discussed include Cockcroft & Gault, and the Modification of Diet in Renal Disease
(MDRD) [40]. The Cockcroft & Gault formula is:

CreatinineClearance

=
[140−Patient′ageinyears]×LeanBodyWeight(LBW)×1.23 ( f ormein)mls/min

serumcreatinine(umol/L)
(3)

LBW = Patient′heightincentimeter− 100 (4)

Here, the LBW value is the same as of serum creatinine value if the patient is a woman and kidney
function is normal. In a real scenario, if a patient’s age is lesser than LBW value than the actual weight
is used for measurements. MDRD GFR calculation formula is:

GFR
(
mL/minper 1.73 m2; 1.21

)
= 186.3× serumcreatinine

(
e−1.54

)
×Age

(
e−0.203

)
×A× B

(5)

Here, A = 0.742 if the patient is female and B = 1.21 if the patient is african-american. It is also
necessary to observe that GFR decreases with age. In normal range, the kidney is considered to be fit if
its GFR ranges from 100 to 140 mls/min. It can have mild kidney failure symptoms if GFR value is less
than 90 mls/min. A moderate failure if it goes below 60 mls/min. A severe kidney failure, if it is below
30 mls/min and kidney, is at end-stage if GFR value is below 15 mls/min. A value below 15 mls/min
strongly indicates the complete failure and necessity of either any type of dialysis or transplantation.

Imaging Tests: Using image-based tests (like ultrasound or CT scan), kidney structural abnormalities
or vein obstructions are observed through image-based proofs. Various tests in this category
re-explained as follows.

• Ultrasound: In this test sound waves are passed to get the kidney’s picture. This test helps in
finding the kidney abnormalities (both in terms of size or position). This test is frequently used in
finding the kidney stones or tumors that are getting common in most of the patients.

• CT Scan: This is another imaging test that uses X-ray technique for getting the kidney’s picture.
Like ultrasound, this test is also useful in finding the obstructions (like kidney stones) or structural
abnormalities. This test uses intravenous contrast dye inserted into the kidney for getting the
image. This dye can be harmful to those that are already facing kidney diseases or abnormalities.

Kidney Biopsy: In this test, thin needles with sharp cutting edges are used to slice kidney tissues.
Small pieces of kidney tissues are examined with a microscope for various reasons like identification
of a disease or its categories, identification of kidney stage i.e., how much kidney is damaged or if
some treatment is undergone then is it progressive or create harmful effects over the kidney, finding
the cause of kidney transplantation failure etc.
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Test-performing criteria: Various kidney function tests either require a small or continuous sample.
Majorly urine and blood samples are collected. A brief explanation to test performing criteria is
explained as follows.

• Urine Sample: There are various criteria to perform a urine test. Some may require a very small
amount of urine only whereas others require a full 24 h samples. If there is a need to measure the
quantity of urine produced then 24-h samples are required. On the other hand, a set of tests to
determine protein, blood, sugar etc. require a small sample only.

• Blood Samples: In blood-based tests, a small quantity of blood sample is collected by slipping
a hollow needle into the patient’s skin and vein. The sample collected is sent to the lab under
proper monitoring of an expert doctor and a detailed report is prepared with a unique patient
identification mechanism.

Figure 2 shows the generic kidney monitoring system model designed using the JaamSim simulator.
In this simulation-model, inputs to the kidney are artificially planned with random kidney controlling
functions. Additionally, a simulated environment of kidney function tests is designed which either
collects samples from the kidney (considered as the human body part) or from urine. Input to imaging
tests and biopsy are randomly provided through the kidney controller. Presently, the simulator model
is not mapped to real data for experimental comparisons but this model considers random inputs and
gives unpredictable outputs. This way of experimentation is performed to have unknown cases and
their remedies.

3.1.2. Lightweight and Wearable Kidney Model

Figure 3 shows the JaamSim model for wearable kidneys with blockchain technology. The wearable
kidney monitoring system model is different from the generic kidney model in many terms.
In real-scenarios, it has been observed that kidney dialysis processes are very expensive and not very
successful for quality of life [41,42].Sensor2020, 9, x FOR PEER REVIEW 15 of 43 
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Thus, there is a need for solutions with a high success rate and patient satisfaction. In recent
times, the wearable kidney is designed and successfully experimented with over three patients as
well [42]. However, it is presently not available to the public because still two studies/experiments are
going on to have a much higher success rate in the wearable kidney’s dialysis process. The designed
wearable kidney is lightweight, easy to cover under cloths, better control over blood pressure, lesser
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pressure over the heart by reducing the fluid weight, reduces the medications and have much lesser
diet restrictions [42]. In [43], a comparison of five artificial kidney models is presented. Presently,
one wearable artificial kidney model is designed for hemodialysis and three are designed for peritoneal
dialysis process. The fifth nanodialysis model (named the NaNo) is designed to process both
hemodialysis and peritoneal dialysis processes. Figure 3 shows the simulated model for wearable
kidneys designed in present times. Various components of the wearable kidney model are briefly
explained as follows.

• Mineral Controller: This system controls the quantity and quality of minerals (compound, creatinine,
uric acid, sodium, amino acid, sugar, protein, nitrogen, blood, water etc.) required for a kidney.

• Battery System: Wearable kidneys are known to be lightweight as well and one of the reasons
for this is the use of light batteries. These batteries can be charged overnight with fewer
resources [42]. This system gives power to every electronic circuit and equipment to operate and
control the activities.

• Electronic Wireless Control: This is an electronic circuit that is wearable artificial kidney but it is
considered to be wireless in our proposed model because to enhance the data collection feature
for blockchain network and IoT-enabled platforms. Further, this would add additional individual
technology benefits to the overall model. Thus, in addition to a patient monitoring system (planned
for present wearable kidney models), the proposed model has data collection and sharing features.

• Water Filtration: This system applies various filters and membranes to do impure water filtration
and regeneration. This is considered to be the copy process of generic kidney mapped in a
simulated environment. The pumping system is also considered to be a sub-system of this system.

• Hemodialyzer or peritoneal dialysis: This system is designed to have a dialysis process. In the
simulation, it is considered to have success dialysis process and results in irrespective of its type.
Dialysis membrane and dialysate regeneration are considered to be part of this system only.

• Water Supplier: This system is a source of external, fresh and purified water supply to an artificial
kidney system.

3.1.3. Wearable Kidney Model with Edge Computing and Internet of Things Network

Figure 4 shows the JaamSim model for wearable kidneys attached to a local internet of things
network with edge and cognitive services suitable for family or local hospital services. This model is
divided into two layers (layer-1 and layer-2). In layer-1, this model collects the wearable kidney data
electronically or through a wireless medium. The collected data is classified and shared uniformly
among all content delivery network (CDN) servers. These servers are simulated to provide quick
service response with high processing time and minimum delay. In processing, communication and
computational speed complexities are computed, whereas, delay counts processing, transmission and
propagation delays. Thereafter, blockchain and edge server processing are applied in layer-2. In a
blockchain network, blockchains are constructed for patient medical records (patient ID, blood pressure,
glucose, lactate, bicarbonate, calcium, sodium, urea, amino acid, creatinine, urine appearance,
ketone bodies, bilirubin, bile salt, nitrite, leukocyte esterase, potassium, urine appearance (clear,
cloudy/opalescent, high yellow color, mild yellow color, smoky red, brownish, orange, red, black,
milky), urine volume, GFR, dialysis type, serum creatinine, serum phosphate, age, and gender), layer-1
server computing record (timestamp, patient ID, type of data, server ID, delay (in msec.), and response
time), and layer-2 server computing record (timestamp, patient ID, block ID, blockchain ID, uncle count,
transaction count etc.). All of this data is pre-processed before applying the cognitive and machine
learning approach to analyze and generate a response to kidney devices.
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3.1.4. Wearable Kidney Model with Industrial Kidney Internet of Things (IKIoT) and Other Healthcare
4.0 Processes

Figure 4 shows the JaamSim model for wearable kidney attached in a larger domain-based
industrial Internet of Things network named as IKIoT having cloud, edge, cognitive, machine
learning services for system efficiency suitable for larger distance (across the city, state or regions)
hospital services.

3.2. Proposed Consensus Algorithm

In this section, a single and multi-player consensus algorithm is proposed for resource-constrained
devices. Here, multiple consensus algorithms are proposed based on PoG. In PoG, either a single
or multiple players observe specific activities of each other before considering the request of a node
to add a new block in the existing blockchain.These proposed consensus algorithms are helpful in
trust establishment as well. Here, past and present communication experiences help count the trust.
This trust value increases with an increase in bits-matching. These algorithms are explained as follows.

3.2.1. Single-Player Single-Bit (SPSB) PoG Consensus Algorithm

Figure 5 shows an example of the SPSB consensus algorithm. In this algorithm, a single bit of
activity is observed. A simplified example if single bit activity is observing the position. For example,
if there are two parties (existing trusted node and node interested to add new block) then SPSB
PoG works in two phases: data exchange, and bit observation and verification phase. The data
exchange phase share random data from an existing trusted node towards node interested to add a
block. Thereafter, both sides take a computational challenge. For example, Figure 5 shows a ‘hash’
computational challenge. This challenge may vary from node to node but a common challenge should
be selected at both sides. A publicly hidden challenge but known to two parties sound good for a
healthy transaction system. Now, a set of activities are observed over a while. An existing trusted
node can ask for a bit position at any time over this period and a node interested in adding a new
block is strongly bound to reply to the bit position. After n-rounds of bit position verification, the node
is allowed to add a block. In this complete process, node interested to add new blocks may contact
multiple existing trusted nodes but get permission from the single existing trusted node.
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The probability of ith node interested in adding block having successful bit matching with N
individual existing trusted nodes out of M, where 1 ≤ i ≤ M−N + 1, is computed using Equation (6):

P(Ni) =
1

2N (6)

Now, the probability of a single bit matching randomly from a single existing trusted node out of
M is computed using Equation (7):

P(Ni) = 1− (
1
2
)

M
(7)

Further, the probability of success in a single bit matching after K-trials is computed using
Equation (8):

P(Ni) = HC× (1− (
1
2
)M)

K
(8)

where HC is the hit count i.e., the number of times N nodes are found active and the bit is matched.
In this experimentation, K-trialsare made for reaching the desired level of successful hit counts.

In this experimentation, the computational challenge may vary. For example, single-bit matching
could be replaced with a maximal matching graph. Maximal graph matching computational challenge
would allow all trusted nodes to select different graphs and omits the necessity of the data exchange
phase. Figure 6 shows an example of a single-player maximal graph (SPMG) PoG consensus algorithm.
In this algorithm, node interested in adding a new block selects a set of nearby existing trusted nodes
having similar graph patterns (possibly the same number of vertices and edges). Further, there is
one phase only in executing this algorithm: maximal edge matching. In maximal edge matching,
node interested in adding block sends a request of edge matching to existing trusted nodes. If both
parties found a maximal graph matching then-new block can be added. Now, the type of graph varies
in this procedure.

For example, the probability of success in the complete graph can be computed using Equation (9):

P(Ni) =
(2m)!

2m ×m!
(9)

where m = 2n i.e., twice the number of vertices in the graph.
Although complexity varies with the computational challenge a new challenge procedure adds

unknown computational efforts to a consensus algorithm that is healthy for consensus building.
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A threshold number should be set for all nodes interested to add new blocks. This threshold
factor is a performance factor that indirectly indicates the response time of creating a new block in the
existing blockchain network. To speed-up the new block creation process, a single bit challenge for
multiple players is the best criterion because it reduces real-time computational efforts and increases
the performance as well. Now, suppose there are n-players interested to permit a node in adding
a block and R1, R2, R3, . . . Rn represents the number of randomly matched bits for n-players at a
particular time. Now the probability of allowing a node to add block from an individual player can be
computed as: p1 = 2R1/M, p2 = 2R2/M, p3 = 2R3/M . . . . pn = 2Rn/M. Here, M is the maximum number
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of bits available for matching. The success probability of node interested to add block is computed
using Equation (9).

3.2.3. Multi-Player Multi-Bits (MPMB) PoG Consensus Algorithm

The MPMB PoG consensus algorithm ensures consensus of multiple players after multi-bits
matching between node interested to add a block and existing trusted node as shown in Figure 8.
In multi-bits matching, bits can be selected randomly or consecutively. Both of these mechanisms
increase computational complexity as compared to SPSB or MPSB. Random selection of multiple bits
provides random bit matching every time which in-results to random challenge. Now, given a space of
N1 and N2 possible number of bits picked from two sides (existing trusted node and node interested to
add block) out of M1 and M2. The probability of randomly generating multiple same bits is N1/N2.
Where, N1 ≤ N2. If N1 and N2 are of fixed size then the probability of randomly selecting k-multiple
bits that are all matching is defined by Equation (10):

N1

N2
×

N1 − (k− 1)
N2 − (k− 1)

×
N1 − (k− 2)
N2 − (k− 2)

× . . .×
N1 − 1
N2 − 1

(10)
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Variation in Equation (5) is exponential. As consent from multiple existing trusted nodes increases
the probability of adding a block also increases. A highly randomized bits selection and matching
generated unique challenge which in-turn increases the security level as well.

3.3. Proposed Simulation-Optimization in Improving Network Performances

In this section linear directional search approach-based simulation-optimization algorithms are
proposed for identifying the optimum QoS based path for data transmission in the proposed Industry
4.0 processes-based approach. Algorithm 1 is linearly dependent on the previous set of QoS directions.
There could be scenarios where QoS directions are linearly independent. For example, delay in
transmission of a single packet between two ends it independent of delay in transmission from its
predecessors. In such a linearly independent case, no linear search is required for identifying the
optimum results. Further, both quadratic and non-quadratic set of problems can be solved with a
maximum of n-iterations. Here, solutions of non-quadratic problems are different from quadratic
problems because directions for further path selection are based on gradient or Hessian. Both gradient
and Hessian simplifies the optimization process considerably for non-quadratic problems. Algorithm 2
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is proposed for both quadratic and non-quadratic problem set suitable to be solved through gradient or
Hessian methods. As compared to Algorithm 1, Algorithm 2 is time-consuming because of derivative
calculations and it may not be suitable for those whose derivatives are impossible to deduce or
compute. In specialized derivative cases, other mathematical computations (inversion, dot product,
multiplication etc.) may be required for removing the errors or inaccuracies. Overall, it would be a
significantly time-consuming process and should be avoided if critical services such as overloaded
servers, critical patient data, fast accessibility etc. are involved.

Algorithm 1: Proposed QoS-sequential Coordinate-descent Data Transmission Path Search Algorithm

Goal: To find QoS based data transmission path through an intermediate device’s local properties with
sequential search directions and strict mathematical incidental relation between successive search directions.
Premises: Let f (x) is the objective function with n-QoS parameters vector x = [x1, x2, . . . , xn]

T, search
direction vector dl = [0 0 . . . 0 dl 0 . . . 0]T, α is the coefficient of search direction vector and it varies with the
property of parameter (under consideration), xlo is the local-optimum parameter input with f

(
xlo

)
local-final

objective function with acceptable output, xgo is the global-optimum parameter input with f (xgo) global-final
objective function with acceptable output, En is the Euclidean space for all parameters, and βmin

QoS and βmax
QoS are

the minimum and maximum acceptable tolerance level for QoS parameter. Further, Tsimulation is the total
simulation time for finding the global optimum solution.

(1) The objective function is decided initially with:

min
x

F = f (x), Here, x ∈ EnOrmax
x

F = f (x), Here, x ∈ En

(2) Initialize the QoS parameter tolerance levels i.e., βmin
QoS and βmax

QoS.

(3) While Tsimulation expires do
(4) For k in [1, 2, 3, . . . , n]:

a. Set dk = [0 0 . . . 0 dk 0 . . . 0]T

b. If f (xk + αdk) is Minimum then
c. αk = α

d. Set xk+1 = xk + αkdk

e. Compute fk+1 = f (xk+1)

f. If βmin
QoS ≤ ||αkdk|| ≤ β

max
QoS then

g. xlo = xk+1

h. f (xlo) = fk+1

i. Exit
j. End If
k. End If
l. End For
m. If k == n then
n. Set x1 = xk+1

o. k = k+1
p. Goto Step 5
q. End For
r. End While

(5) xgo = xlo

(6) f (xgo) = f (xlo)

(7) f f inal= f (xgo)
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Algorithm 2: Proposed QoS-sequential Coordinate-descent Data Transmission Path Search Algorithm with
Gradient Information.

Goal: To find QoS based data transmission path through an intermediate device’s local properties without
sequential search directions and strict mathematical incidental relation with gradient information.
Premises: In addition to premises defined in algorithm 1, g(x) is the gradient and H(x) is the Hessian defined

for objective function f(x). Here, ∇ is the derivative of objective function w.r.t. all n-parameters and ∂ f
∂xk

is the
derivative of f w.r.t. objective function parameter xk.

(1) Initialize ∇ = [ ]

(2) The objective function is decided initially with:

min
x

F = f (x), Here, x ∈ EnOrmax
x

F = f (x), Here, x ∈ En

(3) Initialize the QoS parameter tolerance levels i.e., βmin
QoS and βmax

QoS.

(4) If f (x) is first order derivative then

a. For k in [1, 2, 3, . . . , n]:

b. Compute ∇k =
∂ f
∂xk

c. Append ∇with ∇k

d. End For
e. Compute ∇ = ∇T

f. g(x) = ∇ f (x)
g. End If
h. If f (x) is second order derivative then
i. For j in [1, 2, 3, . . . , n]:
j. For k in [1, 2, 3, . . . , n]:

k. Compute ∇ j,k =
∂ f

∂x j∂xk

l. Append ∇with ∇ j,k

m. H(x) = ∇
[
∇

T f (x)
]

n. End For
o. End For
p. End If

(5) For k in [1, 2, 3, . . . , n]:

a. Compute αk =
[g(xk)]

Tg(xk)

[dk ]
THk(x)dk

b. Set xk+1 = xk + αkdk

c. Compute fk+1 = f (xk+1)

d. End For

(6) If βmin
QoS ≤ ||αkdk|| ≤ β

max
QoS then

a. xlo = xk+1

b. f (xlo) = fk+1

c. Exit
d. End If

(7) Set k = k+1
(8) Compute g(xk+1) = ∇ f (xk+1)

(9) Compute αk =
[g(xk+1)]

Tg(xk+1)

[g(xk)]
Tg(xk)

(10) Compute dk+1 = −g(xk+1) + αkdk

(11) Compute αk =
[g(xk)]

Tg(xk)

[dk ]
THk(x)dk

(12) Set xk+1 = xk + αkdk

(13) Compute fk+1 = f (xk+1)

(14) If βmin
QoS ≤ ||αkdk|| ≤ β

max
QoS then

a. xlo = xk+1

b. f (xlo) = fk+1

c. Exit
d. End If

(15) Go to step 7
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4. Simulation and Results Analysis

In this section, blockchain is constructed and various proposed PoG consensus algorithms are
integrated for performance and security analysis. These analyses are performed as follows:

(1) Kidney Operation Simulation and Analysis
Figures 9 and 10 show the execution of a generic kidney model and wearable kidney model.

The kidney operations are simulated with different network scenarios starting from edge, fog and cloud
network services with blockchain and Healthcare 4.0 processes as shown in Figure 11. To measure the
performance, multiple case-studies with variations in patient type, disease identification, and treatment
are taken in this work. These case studies are briefly discussed as follows:
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Case Study 1: In this case, random 60 or more years-old patients with high blood pressure, frequent
hypertensive complaints, eye infections, mild or complete mouth saliva absence, and frequent back pain
are generated. Here, random variations of blood pressure (120 to 160)/(75 to 100) mm Hg, pulse range
of (80 to 100)/min are generated. Among tests, blood sugar (both fasting and random) measurements
range from (200 to 320) mg/dL, urine benedict (blue, green, orange and brick-red), urine albumin-
to-creatinine ratio (2 to 30 mg/g), serum creatinine levels 0 to 6 mg/dL, BUN 7 to 130 mg/dL are
simulated. Here, it is assumed that patients’ other tests including serum immunoglobulins, bacteria
culture, serum electrophoresis etc. are normal. In treatment, a patient’s age, gender, and degree of
renal damage are important to observe at the time of starting any treatment. There is need to go with
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other tests like protein loss, edema, hypercoagulable, mineral deficiencies and medication suitable for
protection from side-infections. All of the medical test values are probabilistically generated randomly
with JaamSim probabilistic distribution components. There is no constraint put over generating the
number of patients or hospital referred.Sensor2020, 9, x FOR PEER REVIEW 24 of 43 
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Figure 11. Proposed wearable kidney edge computing with IoT and blockchain technology in execution.

• Kidney operation simulation with edge computing, IoT and blockchain network
Figure 12 shows the average hash rate variations for the proposed approach with edge, IoT,

and blockchain (with multi-player single-bit PoG) technologies. The hash rate varies between
0.1 million GH/s to 0.18 million GH/s. The trends of hash rate are variable over simulation time because
it depends upon incoming data and transactions. In simulation data and transactions are uniformly
and continuously planned thus its hash rate is not constant.
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Figure 12. Average hash rate analysis (with IoT and edge).

• Kidney operation simulation with edge computing, fog computing, IoT and blockchain network
Figure 13 shows the average hash rate variations for the proposed approach with edge, fog,

IoT, and blockchain (with multi-player single-bit PoG) technologies. The hash rate varies between
0.1 million GH/s to 0.16 million GH/s. The maximum range of hash rate, in this case, is lower than
the previous case (kidney operation simulation with edge computing, IoT and blockchain network)
because fog computing added additional time overhead which in-turn increases the time taken to
commit a transaction and thus, reduces the hash rate as well. The trends of hash rate are variable over
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simulation time because it depends upon incoming data and transactions. In simulation data and
transactions are uniformly and continuously planned thus its hash rate is not constant.
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Figure 13. Average hash rate analysis (with IoT, edge, fog).

• Kidney operation simulation with edge computing, fog computing, cloud computingIoT and
blockchain network

Figure 14 shows the average hash rate variations for the proposed approach with edge, fog,
IoT, and blockchain (with multi-player single-bit PoG) technologies. The hash rate varies between
0.1 million GH/s to 0.15 million GH/s.
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Figure 14. Average hash rate analysis (with IoT, edge, fog, and cloud).

The maximum range of hash rate, in this case, is lower than the previous two cases (kidney
operation simulation with edge computing, IoT and blockchain network, and kidney operation
simulation with edge computing, fog computing, IoT and blockchain network) because fog and
cloud computing added additional time overhead which in-turn increases the time taken to commit a
transaction and thus, reduces the hash rate as well. The trends of hash rate are variable over simulation
time because it depends upon incoming data and transactions. In simulation data and transactions are
uniformly and continuously planned thus its hash rate is not constant.

Case Study 2: In this case, random 40 to 60 years old male patients with hemoglobin levels range
from 11.5 to 18.5 g per deciliter, platelet range from 150,000 to 450,000 platelets per microliter of
blood with a total count greater than 8000/cu. mm, and ESR 1 to 20 mm/h is considered. All other
remaining parameters are considered to be the same as case study 1. In treatment, other laboratory
tests including BUN, serum creatinine, hemoglobin, electrolytes, serological tests, RBC and WBC
counts, urine electrolytes etc. are necessary to recommend a patient to go for a particular type of
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kidney treatment process. In the simulation, these values are probabilistically random and generated
through the JaamSim model only.

• Kidney operation simulation with edge computing, IoT and blockchain network
Figure 15 shows the average hash rate variations for the proposed approach with edge, IoT,

and blockchain (with multi-player single-bit PoG) technologies. The hash rate varies between
0.1 million GH/s to 0.18 million GH/s. The trends of hash rate are variable over simulation time because
it depends upon incoming data and transactions. In simulation data and transactions are uniformly
and continuously planned thus its hash rate is not constant.
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Figure 15. Average hash rate analysis (with IoT and edge).

• Kidney operation simulation with edge computing, fog computing, IoT and blockchain network
Figure 16 shows the average hash rate variations for the proposed approach with edge, fog,

IoT, and blockchain (with multi-player single-bit PoG) technologies. The hash rate varies between
0.1 million GH/s to 0.16 million GH/s. The maximum range of hash rate, in this case, is lower than
the previous case (kidney operation simulation with edge computing, IoT and blockchain network)
because fog computing added additional time overhead which in-turn increases the time taken to
commit a transaction and thus, reduces the hash rate as well. The trends of hash rate are variable over
simulation time because it depends upon incoming data and transactions. In simulation data and
transactions are uniformly and continuously planned thus its hash rate is not constant.
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Figure 16. Average hash rate analysis (with IoT, edge, fog).

• Kidney operation simulation with edge computing, fog computing, cloud computingIoT and
blockchain network

Figure 17 shows the average hash rate variations for the proposed approach with edge, fog,
IoT, and blockchain (with multi-player single-bit PoG) technologies. The hash rate varies between
0.1 million GH/s to 0.15 million GH/s. The maximum range of hash rate, in this case, is lower than the
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previous two cases (kidney operation simulation with edge computing, IoT and blockchain network,
and kidney operation simulation with edge computing, fog computing, IoT and blockchain network)
because fog and cloud computing added additional time overhead which in-turn increases the time
taken to commit a transaction and thus, reduces the hash rate as well. The trends of hash rate are
variable over simulation time because it depends upon incoming data and transactions. In simulation
data and transactions are uniformly and continuously planned thus its hash rate is not constant.
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Figure 17. Average hash rate analysis (with IoT, edge, fog, and cloud).

Case Study 3: In this case, random 40 to 60 years old male patients with hemoglobin levels range
from 11.5 to 18.5 g per deciliter, platelet range from 150,000 to 450,000 platelets per microliter of blood
with a total count greater than 8000/cu. mm, and ESR 1 to 20 mm/h is considered. All other remaining
parameters are considered to be the same as case study 1. These values are probabilistically random
and generated through the JaamSim model only.

• Kidney operation simulation with edge computing, IoT and blockchain network
Figure 18 shows the average hash rate variations for the proposed approach with edge, IoT,

and blockchain (with multi-player single-bit PoG) technologies. The hash rate varies between
0.1 million GH/s to 0.17 million GH/s. The trends of hash rate are variable over simulation time because
it depends upon incoming data and transactions. In simulation data and transactions are uniformly
and continuously planned thus its hash rate is not constant.
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Figure 18. Average hash rate analysis (with IoT and edge).

• Kidney operation simulation with edge computing, fog computing, IoT and blockchain network
Figure 19 shows the average hash rate variations for the proposed approach with edge, fog,

IoT, and blockchain (with multi-player single-bit PoG) technologies. The hash rate varies between
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0.1 million GH/s to 0.17 million GH/s. The minimum and maximum range of hash rate, in this case,
is same as of previous case (kidney operation simulation with edge computing, IoT and blockchain
network) because the number of patients, in this case, is very large and resources are continuously
engaged to have a high hash rate and delays are minimal. The trends of hash rate are variable over
simulation time because it depends upon incoming data and transactions. In simulation data and
transactions are uniformly and continuously planned thus its hash rate is not constant.
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Figure 19. Average hash rate analysis (with IoT, edge, fog).

• Kidney operation simulation with edge computing, fog computing, cloud computingIoT and
blockchain network

Figure 20 shows the average hash rate variations for the proposed approach with edge, fog,
IoT, and blockchain (with multi-player single-bit PoG) technologies. The hash rate varies between
0.1 million GH/s to 0.17 million GH/s. The minimum and maximum range of hash rate, in this case,
is same as of the previous two cases (Kidney operation simulation with edge computing, IoT and
blockchain network, and kidney operation simulation with edge computing, fog computing, IoT and
blockchain network) because the number of patients, in this case, are very large and resources were
engaged with transactions only that int turns reduces the delay and increases the hash rate. The trends
of hash rate are variable over simulation time because it depends upon incoming data and transactions.
In simulation data and transactions are uniformly and continuously planned thus its hash rate is
not constant.
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Figure 20. Average hash rate analysis (with IoT, edge, fog, and cloud).

Case Study 4: A Caucasian 25 years old male presented with complaints of bilateral flank pain,
hypertension, and intermittent hematuria. Family history is suggestive of some ongoing kidney issues
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in the family which is under-diagnosed as of early death in the family in the late 30 s. On examination,
if he is noted to have bilateral irregular mass in the unilateral region. Bloods test performed including
complete blood counts, urea, electrolytes, BUN, CRP, LFTs, etc. Renal USS reveals bilateral multiple
cysts in the kidneys. Further evaluation including renal CT and intravenous pyelogram were performed.
Treatment includes antibiotics treatment for UTIs, hypertensive, low sodium diet and regular follow
up particularly brain CT to manage long term complications.

• Kidney operation simulation with edge computing, IoT and blockchain network
Figure 21 shows the average hash rate variations for the proposed approach with edge, IoT,

and blockchain (with multi-player single-bit PoG) technologies. The hash rate varies between
0.1 million GH/s to 0.17 million GH/s. The trends of hash rate are variable over simulation time because
it depends upon incoming data and transactions. In simulation data and transactions are uniformly
and continuously planned thus its hash rate is not constant.
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Figure 21. Average hash rate analysis (with IoT and edge).

• Kidney operation simulation with edge computing, fog computing, IoT and blockchain network
Figure 22 shows the average hash rate variations for the proposed approach with edge, fog,

IoT, and blockchain (with multi-player single-bit PoG) technologies. The hash rate varies between
0.1 million GH/s to 0.17 million GH/s. The minimum and maximum range of hash rate, in this case,
is same as of previous case (kidney operation simulation with edge computing, IoT and blockchain
network) because the number of patients, in this case, is very large and resources are continuously
engaged to have a high hash rate and delays are minimal. The trends of hash rate are variable over
simulation time because it depends upon incoming data and transactions. In simulation data and
transactions are uniformly and continuously planned thus its hash rate is not constant.
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Figure 22. Average hash rate analysis (with IoT, edge, fog).
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• Kidney operation simulation with edge computing, fog computing, cloud computing IoT and
blockchain network

Figure 23 shows the average hash rate variations for the proposed approach with edge, fog,
IoT, and blockchain (with multi-player single-bit PoG) technologies. The hash rate varies between
0.1 million GH/s to 0.17 million GH/s. The minimum and maximum range of hash rate, in this case,
is same as of the previous two cases (kidney operation simulation with edge computing, IoT and
blockchain network, and kidney operation simulation with edge computing, fog computing, IoT and
blockchain network) because the number of patients, in this case, are very large and resources were
engaged with transactions only that int turns reduces the delay and increases the hash rate. The trends
of hash rate are variable over simulation time because it depends upon incoming data and transactions.
In simulation data and transactions are uniformly and continuously planned thus its hash rate is
not constant.
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Figure 23. Average hash rate analysis (with IoT, edge, fog, and cloud).

Case Study 5: A young 21 year-old female presented with sudden onset of fever, crampy abdominal
pain and purpuric rash starting on the legs. After hospital admission, she has initial investigations
including full blood count (FBC), U &E, BUN, clotting screen, LFTs, urine culture and clood cultures.
Details of personal history revealed recent respiratory infection. This patient is observed with purpura
and it is a Henoch-Schonlein Purpura (HSP) hallmark and there I no chance of it due to low platelet
count or any inflammation. This patient is put under observations and abnormalities include arthritis,
abdominal disturb, kidney inflammation etc. are frequently observed. These signs are found to be
observed majorly in children very frequently. In children, a disease with similar signs is resolved
much earlier as compared to adults. Now, the patient should be cross-examined for a renal disease
before prescribing for any nonsteroidal anti-inflammatory drug. A 100 mg/day dapsone dose can be
prescribed for HSP positive case considering that it can affect the abnormal immune system response.
Steroids are not preferred choice. It is recommended to discuss with the patient that in recurrent spells
of purpura patients the chances of resolving it of its own are much higher.

• Kidney operation simulation with edge computing, IoT and blockchain network
Figure 24 shows the average hash rate variations for the proposed approach with edge, IoT,

and blockchain (with multi-player single-bit PoG) technologies. The hash rate varies between
0.1 million GH/s to 0.17 million GH/s. The trends of hash rate are variable over simulation time because
it depends upon incoming data and transactions. In simulation data and transactions are uniformly
and continuously planned thus its hash rate is not constant.



Sensors 2020, 20, 2868 30 of 42

Sensor2020, 9, x FOR PEER REVIEW 31 of 43 

 

 
Figure 24. Average hash rate analysis (with IoT and edge). 

• Kidney operation simulation with edge computing, fog computing, IoT and blockchain network 

Figure 25 shows the average hash rate variations for the proposed approach with edge, fog, IoT, 
and blockchain (with multi-player single-bit PoG) technologies. The hash rate varies between 0.1 
million GH/s to 0.17 million GH/s. The minimum and maximum range of hash rate, in this case, is 
same as of previous case (kidney operation simulation with edge computing, IoT and blockchain 
network) because the number of patients, in this case, is very large and resources are continuously 
engaged to have a high hash rate and delays are minimal.  

 
Figure 25. Average hash rate analysis (with IoT, edge, fog). 

The trends of hash rate are variable over simulation time because it depends upon incoming 
data and transactions. In simulation data and transactions are uniformly and continuously planned 
thus its hash rate is not constant. 

• Kidney operation simulation with edge computing, fog computing, cloud computing, IoT and 
blockchain network 

Figure 26 shows the average hash rate variations for the proposed approach with edge, fog, IoT, 
and blockchain (with multi-player single-bit PoG) technologies. The hash rate varies between 0.1 
million GH/s to 0.17 million GH/s. The minimum and maximum range of hash rate, in this case, is 
same as of the previous two cases (kidney operation simulation with edge computing, IoT and 
blockchain network, and kidney operation simulation with edge computing, fog computing, IoT and 
blockchain network) because the number of patients, in this case, are very large and resources were 
engaged with transactions only that int turns reduces the delay and increases the hash rate. The 
trends of hash rate are variable over simulation time because it depends upon incoming data and 
transactions. In simulation data and transactions are uniformly and continuously planned thus its 
hash rate is not constant. 

0

50000

100000

150000

200000

Ha
sh

 R
at

e

Simulation Time (Minutes)

Average Hash Rate (GH/s)
Average Hash Rate (GH/s)

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

10
0

20
0

40
0

80
0

1,
60

0

3,
20

0

6,
40

0

12
,8

00

25
,6

00

51
,2

00

10
2,

40
0

20
4,

80
0

40
9,

60
0

81
9,

20
0

1,
63

8,
40

0

3,
27

6,
80

0

6,
55

3,
60

0

13
,1

07
,2

00

26
,2

14
,4

00

52
,4

28
,8

00

10
4,

85
7,

60
0

20
9,

71
5,

20
0

41
9,

43
0,

40
0

83
8,

86
0,

80
0

1,
67

7,
72

1,
60

0

3,
35

5,
44

3,
20

0

6,
71

0,
88

6,
40

0

13
,4

21
,7

72
,8

00

26
,8

43
,5

45
,6

00

53
,6

87
,0

91
,2

00

10
7,

37
4,

18
2,

40
0

Ha
sh

 R
at

e

Simulation Time (Minutes)

Average Hash Rate (GH/s)
Average Hash Rate (GH/s)

Figure 24. Average hash rate analysis (with IoT and edge).

• Kidney operation simulation with edge computing, fog computing, IoT and blockchain network
Figure 25 shows the average hash rate variations for the proposed approach with edge, fog,

IoT, and blockchain (with multi-player single-bit PoG) technologies. The hash rate varies between
0.1 million GH/s to 0.17 million GH/s. The minimum and maximum range of hash rate, in this case,
is same as of previous case (kidney operation simulation with edge computing, IoT and blockchain
network) because the number of patients, in this case, is very large and resources are continuously
engaged to have a high hash rate and delays are minimal.
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Figure 25. Average hash rate analysis (with IoT, edge, fog).

The trends of hash rate are variable over simulation time because it depends upon incoming data
and transactions. In simulation data and transactions are uniformly and continuously planned thus its
hash rate is not constant.

• Kidney operation simulation with edge computing, fog computing, cloud computing, IoT and
blockchain network

Figure 26 shows the average hash rate variations for the proposed approach with edge, fog,
IoT, and blockchain (with multi-player single-bit PoG) technologies. The hash rate varies between
0.1 million GH/s to 0.17 million GH/s. The minimum and maximum range of hash rate, in this case,
is same as of the previous two cases (kidney operation simulation with edge computing, IoT and
blockchain network, and kidney operation simulation with edge computing, fog computing, IoT and
blockchain network) because the number of patients, in this case, are very large and resources were
engaged with transactions only that int turns reduces the delay and increases the hash rate. The trends
of hash rate are variable over simulation time because it depends upon incoming data and transactions.
In simulation data and transactions are uniformly and continuously planned thus its hash rate is
not constant.
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Figure 26. Average hash rate analysis (with IoT, edge, fog, and cloud).

• Learning points from kidney simulations and case-studies:
The following are the other learning points from kidney simulation and medical case studies.
Uncle Block Analysis: Uncle blocks are not part of the blockchain network family but they are

potential blocks of the network. Figure 27 shows the number of uncle blocks variations over simulation
time for five case studies. It is observed that the case study 4 and case study 5 are having higher uncle
block variations as compared to case study 1 to case study 3. This is because case study1, case study 2
and case study 3 are uncommon and a large number of tests are required before considering the patient
under some treatment. Each of these tests requires one or more transactions and these transactions
delay the execution. Whereas, case study 4 and case study 5 predicts normal patients. These cases are
large in number and there are multiple block competitors to complete the transactions which in-turn
increases the number of uncle blocks. The creation of uncle blocks shows healthy competition that
in-turns reflect blockchain healthiness. As a result, it is observed that the proposed blockchain approach
and its integration with industry 4.0 processes show a good quality network and interoperability.
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Figure 27. Comparative uncle block analysis.

Block Size Variations: Figure 28 shows the average block time variations over simulation time
for five case studies. Results show that the average block time in case stud 4 and case stud 5 is
comparatively lesser than case study 1, case study 2 or case study 3. This is because of the number of
transactions required in the case of case study 4 and case study 5 is much lesser than other case studies.
These transactions are lesser because the days required to undergo treatment, medication and doctor
consultations are lesser as compared to other cases. In the case of other case studies (case study 1,
case study 2 and case study 3), the block time variation is very large because the type of treatment varies
from patient to patient and all of these cases are sensitive and specialized cases of kidney treatment.
Thus, special care is required to treat them. In their treatment, a large amount of data and associated
transactions are required which in-turn increases the block size.
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(2) Security Analysis
In the security analysis, themajority attack is analyzed statistically. This analysis is explained

as follows:
Majority Attack: In single or multiple existing trusted node scenarios, if attackers are present and

these attacks have more control over existing trusted nodes or they have their own existing trusted
nodes more than other nodes then a majority attack can happen by incorporating wrong transactions
during mining. For example, SPSB PoA accepts the consensus of one player only before allowing any
node to add a block. Now, if an attacker incorporates his node in the network and any node places
a request to this node for adding a block then chances of an attacker in fulfilling his intentions are
higher. As the number of players required for consensus-building increases, the chances of a majority
attack decrease. As a result, if the number of blocks in blockchain and trust of participants in the
blockchain network increases then it would be difficult to break ‘proof-of-game’ for an attacker and
tamper the chain. In this work, a Chernoff bound equation is used to prove this concept. Here, if P
is the population size of honest participants that are using proposed ‘proof-of-game’ for consensus
building and q-dishonest participants are trying to break the game with tampering. Now, both (honest
and dishonest) participants would try to maximize their chances of success (CS) as:

CS
M = Max{{Uni f orm(0, 1)}P} (11)

CS
m = Max

{{
Uni f orm(0, 1)

}q
}

(12)

Let’s assume that there are n-blocks created in the blockchain. Thus, the probability of blockchain
construction (Pn

const) with high trust can be computed as:

Pn
const =

n∑
i=1

CS
i −CS

q (13)

On the other hand, Chernoff bound and independence gives the probability that the attacker is
successfully able to tamper the blockchain and it is computed as follows:

Ptamper
(
CS

N ≤ 0
)
≤

min
s>0E

[
e−sCS

N

]
= min

s>0

N∏
t=1

E
[
eCS

P(t)
]
E
[
eCS

q (t)
]
= min

s>0(E
[
eCS

M(t)
]
E
[
eCS

m(t)
]
)

N
(14)

Here, successful blockchain construction means P > q and s > 0. In Equation (14) any product is
the inner dot product and its expectations are less than 1. Equation (14) also shows that the success
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probability of tampering a blockchain decreases if the number of blocks in blockchain increases or the
trust of participants is continuously building upward.

Other Attacks: In our previous [43–46], other attack analysis such as man-in-the-middle, wormhole,
black-hole, privacy leakage and synchronization failure-based attacks are explored against lightweight
bit verification approaches. It is observed that the proposed approach is secure against all of these
attacks because of fast bit-verification approach and randomization.

(3) Overall Blockchain Network Analysis
This sub-section shows overall blockchain network performance analysis using (i) priority of

blocks, (ii) block round and confirmation time, and (iii) number of blocks mined. The explanations are
as follows.

BlockchainPriority Level: As observed earlier, the increase in participant’s trust over blockchain
makes the security level high. A similar trend is observed in the number of players playing the game
and their association with an increase in the priority level of the blockchain network. If any participant
is considered as an authentic user of the blockchain network then the chances of his/her playing the
game in the network are also very high which in-turn increases the number of blocks mined. Figure 29
shows this presentation. Although this variation is slightly lesser than linear variation but it gradually
increases towards a larger number.
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Figure 29. Comparative analysis of blockchain priority level and number of blocks mined per participant.

Block’s round time and confirmation time: It is observed that the block’s round time and confirmation
timeis lesser than 10 min. This period is lesser because the resources available are varying with
challenge generation and confirmation. The propagation time is also close to real propagation time of
the Bitcoin network. Thus, the simulated is validated. Figure 30 shows an analysis of participants
association with blocks. Results show that the number of blocks mined increases with an increase
in participants association with blocks. Here, two scenarios are taken into consideration. In the
first scenario, one-participant is associated per block and in the second scenario, two-participants
are associated with blocks. The number of blocks mined increases at a much higher rate for the
two-participants scenario as compared to the one-participant scenario.

The number of blocks mined per second: An analysis over Intel Core i7-7200U CPU@2.5GHz, 8 GB
RAM and the 64-bit operating system shows that the number of blocks mined decreases exponentially
with an increase in bit-based or other increasing complexity based computational challenges as shown
in Figure 31. Here, 1, 5, 10, 15, 20 and 25-bits verification challenges are taken into consideration
for the bit-verification scenario. The other category of challenge generation scenario is based on a
hash function.

(4) Proposed PoG Consensus Algorithms Performance Analysis with Kidney System
Figure 32 shows the AnyLogic proposed PoG bit verifier circuit for automated Patient-Doctor

wearable kidney interactions [47–50]. This circuit shows the integration of two different systems (i)
the proposed PoG-based consensus model with variable bit-based challenge verification, and (ii) the
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healthcare system proposed for the wearable kidney system. The major components of the circuit are
explained as follows.Sensor2020, 9, x FOR PEER REVIEW 35 of 43 
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Figure 30. Analysis of the number of blocks mined as the number of participants associated with those
blocks increases with time.
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• BitGenerator: This component generates fixed length but random bits. These bits are used at both
sides (source and destination) for verification later.

• timeMeasureStart: This is the start time when the bits-matching system is observed for
performance analysis.

• selectOutput: This component is to divide the generated bits equally and parallel with the doctor.
This division is later used for verification between the wearable kidney and the doctor service to
build consensus.

• BitStorage: Here, bits are stored in the patient’s wearable kidney electronic system. Total-bits
length is fixed and it does not have large memory requirements. Thus, the processes are light in
terms of computational and communicational costs.

• BitVerifier: These components pick bits from both the doctor component and the patient’s wearable
kidney’s BitStorage component for comparison. In the simulation, a delay component is used for
this work. It adds a variable delay corresponds to bit comparison time.

• timeMeasureEnd: This is the end time of system observations. Both timeMeasureStart and
timeMeasureEndare used in various performance measurements such as circuit throughput, delay,
jitter etc.

• BitDisposeOff : This simulation circuit is designed to continuously generate new bits. Thus,
previously generated bits from both the wearable kidneys’ BitStorage and the doctor service are
disposed of using this component.

• Service: This is the doctor’s service component. This component associates’ doctor with the circuit.
• Doctor: A doctor is considered to be a person handling patients medically. It provides its services

through the service component.

There are other circuit components shown in Figure 32 as well such a dotted line (to follow the
queue while treatment), small circle (a position where patient stand for hospitalization), large rectangle
area (showing patient waiting area, and small rectangles with position symbols and tables (representing
patient and doctors).These components are better explained with 2D or 3D model execution after
results discussions. Figure 33 shows the AnyLogicPoG bit verifier circuit for patient-doctor interaction
and treatment model in execution.
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Figure 33. AnyLogicPoG Bit Verifier Circuit for Patient-Doctor Model in Execution.

Figure 34 shows the statistical graphs computing total patient handled, maximum doctor utilization,
and average doctor utilization. These statistics are dynamic i.e., variable with simulation time. Figure 34
shows one view after 3 s. At this time there are eight patients handled by 6 doctors with 100% doctor
utilization (i.e., all are available and working) and average doctor utilization is 98.62%. Average doctor
utilization is less than 100% because of the doctor’s other activities (excluding patient handling). All the
timing parameters in the system are scaled down to 1/100th for fast execution.



Sensors 2020, 20, 2868 36 of 42

Sensor2020, 9, x FOR PEER REVIEW 37 of 43 

 

 
Figure 33. AnyLogicPoG Bit Verifier Circuit for Patient-Doctor Model in Execution. 

Figure 34 shows the statistical graphs computing total patient handled, maximum doctor 
utilization, and average doctor utilization. These statistics are dynamic i.e., variable with simulation 
time. Figure 34 shows one view after 3 s. At this time there are eight patients handled by 6 doctors 
with 100% doctor utilization (i.e., all are available and working) and average doctor utilization is 
98.62%. Average doctor utilization is less than 100% because of the doctor’s other activities (excluding 
patient handling). All the timing parameters in the system are scaled down to 1/100th for fast 
execution. 

 
Figure 34. AnyLogic Graph for Patients and Doctor Statistics. 

Figure 35 shows the average bits matched in the proposed PoG consensus model using 
AnyLogic simulation. Results show that the average bits matched are 5.66 and maximum bits 
matched are 25 after 3 s. This shows that the proposed PoG consensus model is having less time 
complexity. The average bits matched are not an exact number because some bits are in the process 
of matching. 

 
Figure 35. AnyLogic Statistics for Bits Verifications in PoG. 

Figure 36 shows the system working distribution variation with simulation time. System 
working distribution is defined as the variation presenting the percentage of component utilization 
over simulation time. Like Figure 34,35, Figure 36 is also dynamic i.e., its values are continuous 

0
20
40
60
80

100
120

Total Patients Handled 8 Maximum Doctor
Utalization

Average Doctor
Utalization

0

5

10

15

20

25

30

Average Bits Matched Maximum Bits Matched

Nu
m

be
r o

f b
its

Figure 34. AnyLogic Graph for Patients and Doctor Statistics.

Figure 35 shows the average bits matched in the proposed PoG consensus model using AnyLogic
simulation. Results show that the average bits matched are 5.66 and maximum bits matched are 25 after
3 s. This shows that the proposed PoG consensus model is having less time complexity. The average
bits matched are not an exact number because some bits are in the process of matching.
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Figure 35. AnyLogic Statistics for Bits Verifications in PoG.

Figure 36 shows the system working distribution variation with simulation time. System working
distribution is defined as the variation presenting the percentage of component utilization over
simulation time. Like Figures 34–36 is also dynamic i.e., its values are continuous changes with
simulation time. Figure 36 shows one screenshot during the initial 3 s. Results show that the maximum
utilization of around 28.5% between 1 and 1.5 s.
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Figure 36. System Working Distribution Variations with simulation time.

Figure 37 shows the AnyLogic patient-doctor simulation in 3D view from one side. This diagram
shows that the patients are waiting in the waiting area before they queue-up for treatment from a
doctor. Figure 38 shows the top-view of 3D model designed for patient-doctor interaction. It looks
like the patient is physically interacting with doctors but this is a simulation only. In real-scenario,
patients with wearable kidney interact with the doctor through proposed wearable kidney with IoT,
edge computing and blockchain technology. Figure 39 is the patient-doctor simulation model in 2D.
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(5) Proposed Healthcare 4.0 Processes-based Network’s Performance Analysis
Figure 40 shows the Average Packet Delivery Rate (APDR) with an increase in patients in the

proposed IoT-Sensor-based healthcare system. These patients are generic kidney patients and the
performance of the network is analyzed for data storage and accessibility. Here, APDR is defined as the
ratio of packets successfully received to the destination divided by a packet sent by a source for medical
record storage or accessibility. Results show that the observed ADPR (without outliers) lies between
upper and lower acceptable limits. These upper and lower acceptable limits are decided based on
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maximum and minimum data required (for storage and accessibility) for generic patients respectively.
The observed APDR lies between 95% (approx.) to 97% (approx.). Thus, the proposed IoT-sensor-based
framework is considered to be efficient in performance. ADPR (with outlier) lies below threshold limits.
These outliers are considered to be present in the network for data breaches. These outlier activities
increase the number of packets in the network and lower the performance of patient data storage or
accessibility. Thus, overall network performance decreases. As the ADPR percentage decreases below
the lower acceptable range, the network is considered under attack. Thus, the security level can be
increased with an increase in the number of bits matching for consensus building.
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Figure 40. Average Packet Data Rate (ADPR) for Proposed IoT-Sensor based Network.

Figure 41 shows the average throughput (AT) variations with an increase in the number of patients.
AT is defined as the average value of total payload (bits) successfully delivered to the destination
node divided by simulation time in the network. Results show that the AT (without outlier) is lying
between upper and lower acceptable limits. Further, AT (with outliers) is below the lower threshold
limit. This indicates that attackers (with data breach) activities can lower the network performance
and can be identified easily. The lower and upper AT values lie between 120 Kbps to 250 Kbps,
approximately, whereas the lower and upper limits under ideal conditions are between 110 Kbps to
290 Kbps, approximately.
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Figure 42 shows the comparative analysis of the proposed work with the results of Saia et al. [19].
The results show that the delay in consensus building with different entities or devices in the

network is lesser for the proposed approach as compared to the encryption/decryption-based approach
used in Saia et al. [19]. This delay constantly increases with an increase in the number of devices.
This experimentation is considered for 50 devices. However, the trends in results show that the delay
gap increases. Thus, the proposed approach is much better compared tothe existing approach for small
devices based networks to large device networks.
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Figure 42. Comparative analysis of proposed work with existing using average delay time variations
in consensus building.

5. Conclusions

This work shows the advantages of a patient or data-centric system compared to specialization or
department-centric practices in the healthcare domain. The patient or data-centric system advantages
are analyzed with a wearable kidney-based simulation model. It has been observed in the simulation
that blockchain technology, Industry 4.0 processes, and data-centric systems bring transparency,
trust, and easy and fast accessibility. Thus, it would be easy to control, regulate and monitor
artificial medical automated body parts (like wearable kidneys). Here, there would always be an
option to monitor and control these medical body parts by a doctor or patient itself. Further, taking
resource-constrained electric devices (in artificial medical automated body parts) into consideration,
a blockchain technology-based PoG consensus algorithms are proposed to have a faster, secure,
and trustworthy data-centric network. In this work, Healthcare 4.0 processes (having Industry 4.0
processes capability) and blockchain technology-based simulation models are proposed specifically for
the kidney system. The simulation shows the working of a normal kidney, wearable kidney, and their
integration with proposed Healthcare 4.0 and blockchain-based processes. In results, average doctor
utilization is found to be close to 98% and network ADPR lies between 95% to 97% approximately
without the presence of outliers. In the presence of outliers, network performance decreases below
80% APDR (to a minimum of 41.3% in 10-simulation experimentation) and this indicates that there are
outliers present in the network. Simulation results show that the AT value lies between 120 Kbps to
250 Kbps for the proposed network. This study and experimentation show that there are numerous
advantages of the proposed system in electronic medical records, supply systems, biomedical research,
and education, data analytics etc. Thus, many prototypes based on blockchain processes (having
decentralized networks, smart contracts, on or off-chains, trust-building system etc.) can be designed
in the future for healthcare sector advancements. Further, there is a need to conduct more theoretical
or experimental research to evaluate the integration of blockchain technology in Healthcare 4.0
processes keeping their challenges (like interoperability, privacy, scalability, performance, QoS, etc.)
into consideration.
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