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Abstract: In this paper, we consider the problem of decision fusion for noncoherent detection in a
wireless sensor network. Novel to the current work is the integration of the hybrid multi-access
channel (MAC) in the fusion rule design. We assume that sensors transmit their local binary decisions
over a hybrid MAC which is a composite of conventional orthogonal and nonorthogonal MACs.
Under Rayleigh fading scenario, we present a likelihood ratio (LR)-based fusion rule, which has
been shown to be optimal through theoretical analysis and simulation. However, it requires a large
amount of computation, which is not easily implemented in resource-constrained sensor networks.
Therefore, three sub-optimal alternatives with low-complexity are proposed, namely the weighed
energy detector (WED), the deflection-coefficient-maximization (DCM), and the two-step (TS) rules.
We show that when the channel signal-to-noise ratio (SNR) is low, the LR-based fusion rule reduces
to the WED rule; at high-channel SNR, it is equivalent to the TS rule; and at moderate-channel SNR,
it can be approached closely by the DCM rule. Compared with the conventional orthogonal and
nonorthogonal MACs, numerical results show that the hybrid MAC with the proposed fusion rules
can improve the detection performance when the channel SNR is medium.

Keywords: decision fusion; distributed detection; hybrid MAC; wireless sensor networks

1. Introduction

Wireless sensor networks (WSNs) consist of a large number of geographically distributed sensors
that have limited resources, such as energy, processing capabilities, and communication bandwidth [1].
With sensor collaboration, potentially powerful networks can be constructed to accomplish certain
tasks, such as environment monitoring, surveillance, health care, and home automation [2-9].

A prevailing model used for such applications is the orthogonal multi-access channel (MAC)
model wherein sensors make local decisions based on their observations and subsequently transmit
these decisions in parallel to a fusion center (FC). Numerous researchers have focused on the problem
of distributed detection (decision fusion) over orthogonal MACs [10-21].

Another type of MACs from sensors to the FC is the nonorthogonal MAC [22]. In this case,
multiple sensors are allowed to communicate with an FC through the same channel. Using this
scheme, bandwidth requirement or detection delay can be significantly reduced. However, in order to
realize the nonorthogonal MAC, channel information needs to be fed back from the FC to each sensor
so that synchronization among all the sensors can be established. Under the assumption of perfect
synchronization, the type-based multiple-access scheme is studied in [23-25]. In [26], it is shown
that the nonorthogonal MAC can achieve the same asymptotic performance as centralized detection.
When wireless channels are subject to fading, in [27,28], the optimal likelihood ratio (LR) fusion rule
is shown to be equivalent to a simple energy test under both Rayleigh and Rician fading channels.
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Further, decision fusion for WSNs with space diversity has been studied in [29-33]. Obviously, space
diversity can effectively suppress the channel fading and hence lead to good performance. However, to
employ space diversity, we need multiple antennas to be equipped at the FC. Due to the size constraint
of sensors, this could be impractical for many WSN applications [34]. An alternative for space diversity
is the cooperative transmission scheme [35,36], in which multiple relays are used to assist the sensors
to send their decisions to the FC.

Recently, the idea of hybrid MACs with sensor grouping has emerged in [37]. For hybrid MACs,
the orthogonal MAC is adopted across different groups, whereas the nonorthogonal MAC is used
for sensors within each group. A flexible trade-off between these two MAC schemes can therefore be
obtained by changing the number of groups and the number of sensors in each group. Using coherent
detection and assuming channel gains are available, the hybrid MAC is shown to provide more
performance choices than orthogonal and nonorthogonal MACs [38]. The use of coherent detection
requires the knowledge of channel phrase. However, acquiring this phrase information usually results
in additional training overhead, which may be too costly for resource-constrained sensor networks.
Moreover, due to limited resource, the assumption that channel gains are known at the fusion center
may be too strong. Thus, in this paper, we consider the case of noncoherent detection in the hybrid
MAC WSN. Our goal here is to develop fusion rules which require only the knowledge of channel
statistics instead of channel gains. Specifically, we present the optimal fusion rule based on the LR test
and derive three suboptimal alternatives with low complexity, namely the weighed energy detector
(WED), the deflection-coefficient-maximization (DCM), and the two-step (TS) rules.

The remainder of the paper is organized as follows. In Section 2, we formulate the fusion
problem in the hybrid MAC WSN. In Section 3, we derive the optimal LR-based fusion rule and three
sub-optimal alternatives. Performance analysis is contained in Section 4. Finally, some concluding
remarks and future work are presented in Section 5.

Notation—Lower-case bold letters denote vectors; E[], Var[-], D[], and (-)” are used to denote
expectation, variance, deflection coefficient, and transpose, respectively; P(-), p(-) denote probability
mass functions and probability density functions (pdf), in particular P(A|B) and p(a|b) represent
the probability of event A conditioned on event B and the pdf of random variable a conditioned on
random variable b, respectively.

2. System Model

Consider a sensor network with N sensors, where each sensor collects its observation generated
according to either Hy (e.g., the target is absent) or H; (e.g., the target is present), which are two
hypotheses being tested. The prior probabilities of Hy and H; are denoted by P(Hp) and P(H;),
respectively. After receiving its observation, each sensor makes a binary decision and transmits it with
ON-OFF signaling to the FC. The model of the distributed detection system is illustrated in Figure 1.
The N sensors are divided into K groups, with the kth group containing Ly sensors,and N = YK 1.
Denote Sy;, | = 1,..., Ly as the Ith sensor in the kth group, and u;; € {0, 1} as the binary decision
made by S ;. For sensor Sy, it will transmit a pulse (i.e., uy; = 1) to the FC if H; is decided, and will
remain silent (i.e., 1 ; = 0) during its transmission period if Hy is decided. The detection performance
of sensor Sy ; can be characterized by its detection probability:

Py, = P(uy; = 1|Hy) 1)

and its false alarm probability:
Pfk,l = P(ug,; = 1|Hp). )

In hybrid MAC networks, sensors in each group transmit their decisions via the same channel
(i.e., the same time slot or frequency band) and different groups communicate with the FC through
independent and mutually orthogonal channels. Thus, the received signal at the FC can be expressed as
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L '
Yk = Z hk,le]‘l’kr’ukll +n, k=1,...,K, 3)
I=1

where hy; is the real-valued channel gain, ¢ ; is the channel phase, and 7y is zero-mean complex
Gaussian noise with variance 2(7,?.

Sensor S, j|e e . 1|+ #[Sensors,

Sensor S, ,

Figure 1. System model.

3. Noncoherent Decision Fusion

Noncoherent reception is a useful technique because it does not require the knowledge of channel
phase. Using such technique, the FC can employ fusion rules based on the received signal envelop, or
equivalently, the signal power. Therefore, we consider the case of noncoherent reception at the FC and

develop fusion rules based on the received signal power {zk = |yk|2, k=1,...,K }

3.1. LR-Based Fusion Rule

The optimum fusion rule can be formulated based on the log-likelihood ratio test:

p(Zl,. . .,ZK|H1) Ii]
<
p(z1,---,zx|Ho) H,

4)

ALR =In
where the threshold 7 can be determined from the false alarm constraint in the Neyman—-Pearson test
or can be chosen to minimize the fusion error probability in the Bayesian test [39].

Define a random variable M, = M(u;) = ZZLQ ur;, where wp = (U1, g, - ,uk,Lk)T.
Assuming a Rayleigh fading channel with unit power, we can obtain [27]

1 £

M, = — 7m+27,%' 5
p(z| My = m) 202 )
Subsequently, we have
Ly
p(z[Hi) = ) p(z| My = m)P(My = m|H;), i=0,1, (6)

m=0
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where P(Mjy = m|H;) can be represented by the Poisson-binomial distribution, namely
Ly

P(M=mitn) = ¥ TI(; “’“H (1= P )", @)

uk:M(uk):m 1=

P(My=m|H)= Y H Py, ““H (1— Py, )" "k, ®)

M (u)=ml=1

Further, if local decisions are independent and identically distributed (i.i.d.), i.e., Pfk = Pf and

Pdk,l = P;, we have
P(My = m|Hp) = < f’f ) (Pf)m(l _ Pf)er, )

P(My = m|Hy) = ( Z‘ )(Pd)m(l — Pyl (10)

Substituting (5), (9) and (10) into (6), and using (4), we can obtain the optimal LR-based
fusion statistic:

Hy)
A —In? (21 Z2,0 2k |Hh
LR p(z1 er ZK\HO) .
(P, )m 1-Py) me m+247]%
m+2¢7 (11)
= Ly—m __Fk
k=1 Z (Pf) (1 Pf) e m+2¢7]%
m=0 m m+2(7k

where the assumption of conditional independence of z, k =1, ..., K, is used.

We can see that, as the number of groups increases, the test statistic in Equation (11) via sums of
exponential functions becomes more and more complicated. Since most WSNs are resource constrained
with regards to energy and processing capabilities, the optimal LR-based fusion rule with high
complexity may be unsuitable for many practical WSN applications. Suboptimal alternatives with
reduced complexity are then more desirable.

3.2. WED Fusion Rule

In this part, we consider the low-SNR approximation for the LR-based fusion rule and have the
following proposition.

Proposition 1. As the channel noise variance 0 — oo, the LR-based fusion statistic in Equation (11) reduces
to a form analogous to a WED statistic:

m Ly—m m —
AWED—22< ) (Pr)"(1-p) " = ()1 Pt N .

2
1m m +20k
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Proof. For low SNR, i.e., 0’}3 — 00,

b ( Lk ) Lg—m, 7mj§02
ps "(1-Py) ™ k
n=0\ m
Ak = Le (L -k
k=1 k Ly—m = m+20;
(1-p k
E ( o ) 7)) e
Ly L z
W K 5 ( o )(m) (=Pt (1= )
~ Y In T
k=1 k k Li—m z
;0( m )“’f) S
L
-3 ( b )(de"(l P By
K m=0 m m+217k
=Y In - I
k=1 k k m Lp—m z
1—m20< ) () (=P mé(,%
() K L Ly m Ly m Ly—m|  zp
28 5 () [0 r)
where we have used ¢* ~ 1 + x for small x in (1) and In(1 + x) ~ x for small x in (). O

Notice that the WED fusion statistic in Equation (12) is a linear combination of the received
powers zx/s. Under the condition that sensors are uniformly grouped and all the channels have the
same noise power, i.e., Ly = L and (T,? = ¢2 for all k, the WED fusion statistic can reduce to a form
analogous to a simple ED statistic:

K
Aep =Yz (13)

k=1

3.3. Decision Fusion Rule via Maximization of Deflection Coefficient

Different from Section 3.2, in this part, we will obtain the combining weights of the
linear-combining fusion statistic by maximizing the deflection coefficient [11]. The deflection coefficient
could reflect the output SNR and is often used to characterize the performance of a binary hypothesis
test. It is worth noting that the use of deflection criterion usually yields a robust performance in many
detection problems [12]. The deflection coefficient is defined as

E(A|H1) — E(A|Ho)]?
Var(A|Hp) ’

D(A) = [ (14)

where E (-) and Var (-) denote the mean and variance of the fusion statistic, respectively. Using
Equation (14), we have the following proposition.

Proposition 2. Under the criterion of maximizing the deflection coefficient, the linear-combining fusion statistic,
referred to as the DCM statistic, is given by

Lizk
+ L[ (2 + 40) Py — 2P2] + 4o

K
(15)
;1 L%P}%

Apcm =

Proof. See the Appendix A. [

It is clear that when sensors are uniformly grouped and all the channels have the same noise
power, the DCM fusion statistic is equivalent to the ED statistic. Thus, the DCM and WED fusion



Sensors 2019, 19, 120 6 of 15

statistics coincide in this special case. It is worth noting that the DCM fusion statistic only requires the
mean and the variance, which makes it very convenient to use for many practical applications.

3.4. Two-Step Fusion Rule

Motivated by the decode-then-fuse approach proposed in Equation [29], we now consider the
case of high-channel SNR and develop the two-step fusion statistic as follows.

In the first step, each group makes a binary decision 1} based on z;. This is equivalent to a
distributed detection using the nonorthogonal MAC, and the decision 1 can be obtained through the
maximum likelihood (ML) detector [39] as
=1

2 p(zx|Ho)- (16)

uk:O

p(zx|H1)

As shown in Equation [28], this ML detector is equivalent to a simple threshold test on z.
Therefore, we have
g = I(zx > ), 17)

where I(-) is the indicator function, and the threshold 7; of the kth group can be calculated by

m Ly—m m Li—m .
m m—+ 20',3 '

m=0

Define u = {iufy, k = 1,...,K} and the probabilities of false alarm and detection of the kth group
by Pr, and Pp,, respectively. Thus, we have

P(u|lHy) = II P(ux=1|Hp) TI P(ux =0[Ho)
Zp>Tp 2 <Tj (19)

= II Pg I1 (1—Pg)

Zp > Ty 2 <Tj

P(u|Hy) = [I P(ux=1[Hy) [1 P(ux =0[Hy)

Zp>Tg Zp <Tj (20)
= II Pp, IT (1—-Pp,)
Zp > T 2 <Tj

where Pr, and Pp, can be obtained by

L L m Ly—m — Tk 5
e B (8",
m=0
Ly Lk L _ % o
Pp, =) (Pa)" (1= Pg)™"e ™%, (22)
m=0\ ™
In the second step, the fusion center makes a global decision ug based on the likelihood ratio test
on u: P(&|H: ) p 1_p
ujt Dy — D
Arg =In———% = In — + In . (23)
Py & T TR,

Note that for high-channel SNR, all the groups make correct detection with a large likelihood and
this two-step fusion statistic, referred to as the TS statistic, should be a good approximation for the
optimal LR-based fusion statistic.
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4. Performance Analysis

4.1. Asymptotic Behaviors of Linear-Combining Fusion Rules

In the following, we evaluate asymptotic behaviors for uniformly grouped hybrid MAC. We have
shown in Section 3 that, in the case of the same channel SNR, the proposed linear-combining statistics
(i.e., WED and DCM statistics) will reduce to a simple ED statistic. Thus, in this part, we focus on this
ED statistic and evaluate its asymptotic behaviors as K — co and L — oo, respectively.

4.1.1. Asymptotic Behavior as K — oo

When L; = L and (7]3 = o2 for all k, the ED fusion statistic in Equation (13) is the sum of i.i.d.
random variables. Therefore, if the number of groups (i.e., K) is large, this fusion statistic can be
approximated by Gaussian distribution according to the central limit theorem. Thus, we have

2
~ (VOr‘TEDO , under Hy

AND) (24)

2 7
~ (Vlf‘TEDl , under H;

where X ~ ( U, 17% D) denotes that X is a Gaussian random variable with mean y and variance 0% D and
where y; and 0'% Dy’ fori=0,1, are given by

po = NPs + 2Ko?, (25)
0fp, = (L —2)NPF + (2 +40°)NPs + 4Kc*, (26)
11 = NP; + 2Ko?, (27)
0fp, = (L —2)NPF + (2 + 40°)NP; + 4Ko™. (28)

4.1.2. Asymptotic Behavior as L — oo

When the group size (i.e., L) is large, we have the following proposition.

Proposition 3. As L — oo, the system-level probabilities of detection and false alarm are, respectively

_ v szl 1 ,)/ i
— LP;+20
Poy =e it Z[:)z'(LPd—i-ZcTZ> *9)
1=|
and
7 _K-1 !
1 v

Pr — LPy+202 - , 30
o =€ L LP; + 202 0)

where vy is a threshold.

Proof. As L — oo, the conditional probability density function of z; can be approximated by Ref. [27]

1 =

Y — Cippia? 1
p(zx|Hy ) LPdJrZUZe a2t (31)

(Z |H ) o #ei LPijfZVZ (32)
PRERE0) = Tp 1202 '

Since Agp in Equation (13) is the sum of random variables obeying the exponential distribution,
we can obtain
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K—-1 x
X Ty
Agp = x|Hy) = € LPg+act (33)
P( ‘ (K )' LPd+2(72)
oKt T
p(AED = X|H()) = e f . (34)

(K — 1)!(LPs +202)%
With the above results, we can derive the system-level probability of detection:
Pp, = [ p(App = x|Hy )dx

- T _K-1 K—1 ) .
- 1, LPj+202 ° K—1—i oy it+1
T ( i ) T LRk (35)

- T _K-1 i
— ¢ LPjt202 y 1 0
= T\ LP+207

In the above derivation, we have used the formula in Ref. ([40], Equation (2.321)). Similarly,
we have the system-level false alarm rate as in Equation (30). 0O

4.2. Performance Analysis of the TS Fusion Rule

In evaluating the performance of the TS fusion rule, it is assumed that sensors are uniformly
grouped and all the channels have the same noise power. The system-level probabilities of false alarm,
detection, and error are provided in the following proposition.

Proposition 4.

(a)  For the Neyman—Pearson detection, the system-level probabilities of false alarm and detection are given by

KK\, K—i
P =) < ; >PF(1 —Pp)" (36)
i=K.
KK\, K—i
Pp, = Y < i )PD(l—PD) , (37)
i=K.

where K is a discrete threshold.
(b)  For the Bayesian detection, the fusion error probability is given by

K K K K
PC—P(Hl)—P(Hl)Z(Z)PD(l—pD iy Z( )pp1_pp) )

i=T i=T
The threshold T can be obtained as T = [T*|, where

P(Hy) (1-P; \ K
ln{P(H(f)(ng) }

" In{Pp(1— Pr)/Pe(1—Pp)}

(39)

and [-] denotes the standard ceiling function.

Proof. Under the condition that L; = L and (7,% = o2 for all k, we have Pp, = Pp, Pp, = Pr,and 7 = 7.
Define K; = |S1|, where S; = {k: zx > T}, i.e., Kj is the cardinality of S;. Thus, the TS fusion rule
reduces to a simple counting rule:

p(1 — Pp) +Kin (1—-Pp)

A —Klni —_—.
B Pr(1 = Pp) (1—Pp)

(40)
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Note that the TS statistic is equivalent to Kj, which follows binomial distribution, i.e.,
Ki|H; ~ B(K,Pp) and Ky|Hy ~ B(K, Pr). Given K, we obtain (36) and (37).

If the prior probabilities of Hy and Hj are known at the fusion center, we can employ the Bayesian
approach to minimize the fusion error probability. Thus, we have

A1 P(Hy)
Ars 2 . 41
' % P(Hy) b
The fusion error probability can therefore be obtained as
P, = P(Hy)Pg, + P(Hy)[1 — Pp,]. (42)

Substituting Pr, and Pp, into (42), we then obtain (38). Note that (39) can be derived by starting from
(41) and exploiting the fact that the TS fusion statistic in Equation (40) is monotonic. [

4.3. Numerical Results

In this part, we show some simulation results. We consider the simplified scenario where sensors
collaborate to detect a known parameter in Gaussian noise with zero mean and unitary variance.
Each sensor makes its binary decision by employing a threshold test on the observation. Its false
alarm rate is set to Py = 0.05 while the detection probability is P; = 0.5. The channel SNR is
defined as SNR; £ 10log,,(1/(207)) dB. All the simulation results are obtained by averaging over
10° realizations.

First, we consider the case where 30 sensors are partitioned into 10 groups, and different groups
have different channel SNRs for their channels to the FC. Specifically, the sensor grouping strategy
is denoted by {L;} = {1, 1,1,3,3,3, 3,5,5, 5}, respectively. We assume that the channel SNRs are
distributed as {SNR;} = {S—6,5—-4,5-2,S,S5,5,5,5+4+2,5+4,5 + 6} dB, respectively, where S
is the arithmetic mean of all the channel SNRs. Figure 2 presents the receiver operating characteristic
(ROC) curves for different fusion rules at S = 0 dB. Here, an idealistic centralized detection scenario,
where sensors transmit their raw observations to the FC, serves as a performance baseline for
distributed detection. As shown, the LR-based fusion rule performs closely to the centralized detection,
and provides the optimal performance among all the distributed fusion rules. The DCM fusion rule is
slightly worse than the optimal LR-based fusion rule and outperforms both WED and TS fusion rules.

©
3
T

©
)
T

©
IS
T

System Detection Probability
o
o
T

0.3p Centralized benchmark
—o— LR
0.2 DCM i
—E— WED
0.1 —»— TS )
0 -4 |-3 ‘-2 I-1 0
10 10 10 10 10

System False Alarm Probability

Figure 2. Receiver operating characteristic (ROC) curves for different fusion rules at S = 0 dB.
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To better understand the performance difference as a function of channel SNR, Figure 3 gives
the probability of detection as a function of the mean value of channel SNRs for various fusion rules.
The system-level false alarm rate is fixed at Py, = 0.01 (unless otherwise specified). From this figure,
it is clear that the performances of WED and TS fusion rules approach that of the LR-based fusion
rule at very low and very high SNR respectively. The simulation results confirm that the WED fusion
rule is a low-SNR approximation of the LR-based fusion rule, and the TS fusion rule is a high-SNR
approximation of the LR-based rule. However, when the channel SNR is medium, the DCM fusion
rule has the best performance among the three sub-optimal rules. Table 1 gives the performance rating
for the proposed fusion rules under different SNR range. In addition, we report the comparison of
detection performance, computational complexity, and the requirement for a priori information for
each of the fusion rules in Table 2.

System Detection Probability

0 1 1 1 1 1
-10 -5 0 5 10 15 20

SNR

Figure 3. The probability of detection as a function of the mean value of channel SNRs for various
fusion rules.

Table 1. Performance rating under different SNR range.

Mean Value of Channel SNRs (dB) Performance Rating
—10~-3 LR > WED > DCM > TS
—2~1 LR > DCM > WED > TS
2~4 LR > DCM > TS > WED
5~20 LR > TS > DCM > WED

Table 2. Comparison of the fusion rules.

Fusion Rule Required Parameters Complexity Performance

LR Py, Py, (7,% Most complex Optimum

WED Py, Pf, 0',% Simple Near-optimal for low SNR
DCM Py, U]% Most simple Near-optimal for moderate SNR
TS Py, Py, (7]% Complex Near-optimal for high SNR

Next, we analyze the detection performance of the hybrid MAC under a uniform sensor grouping
strategy. We assume that all the channels have the same SNR. Figure 4 gives the probability of detection
as a function of channel SNR for the ED fusion rule. Figure 5 gives the numerically computed (i.e.,
using Equation (38)) error probability as a function of channel SNR for the TS fusion rule. Specifically,
the prior probabilities of Hy and H; are assumed to be equally likely. As shown in Figures 4 and 5,
the performance of the hybrid MAC is bounded by those of orthogonal and nonorthogonal MACs
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when the channel SNR is high or sufficiently low. In this case, the detection performances of both
rules improve with the increase of group size when the channel SNR is low, and deteriorate with the
increase of group size when the channel SNR is high. Note that, compared with the conventional
orthogonal and non-orthogonal MACs, the hybrid MAC can provide a better ROC when the channel
SNR is medium.

o
3
T

o
)
T

o
~
T

System Detection Probability
o
&
T

o
w

—&— K=30 and L=1 (Orthogonal MAC)
K=10 and L=3

0.2 —O— K=5and L=6 N
—%— K=3and L=10
0. 1g 3¢ —>— K=1and L=30 (Nonorthogonal MAC) | |
</
0 1 1 1 L L
-10 -5 0 5 10 15 20

SNR

Figure 4. The probability of detection as a function of channel SNR for the ED fusion rule.

0.5 T T

0.45

K=30 and L=1 (Orthogonal MAC)
K=10 and L=3

K=3 and L=10

K=1 and L=30 (Nonorthogonal MAC)

0.4

0.35

o
w
T

0.25

Error Probability

0.2

0.1

0.05 1

0
-10 -5 0 5 10 15 20
SNR

Figure 5. The error probability as a function of channel SNR for the TS fusion rule.

Finally, we examine the quality of approximation for the ED fusion rule. Specifically, we set
SNR = —5 dB. Figure 6 shows both the Gaussian approximation and the simulation results for a large
number of groups. When the number of groups is 100, the Gaussian approximation is seen to provide
a tight fit to the actual ROC for all values of L tested. We can also observe that increasing L results in a
decrease in the gap between the approximation and simulation results. Figure 7 gives the ROC curves
obtained by using the approximations (29) and (30), and those by simulations for L = 100. As shown,
the approximation results agree very well with the simulation results. In particular, when K = 3, we
see the approximation and simulation curves merging as shown in Figure 7.
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O  Simulation, L=1

I
~
T

Approximation, L=1 b
Simulation, L=2

System Detection Probability
o
o

o
w
T

Approximation, L=2 q
{  Simulation, L=3

0.2 Approximation, L=3 e
0.1 b 4

0 | L | |
0 0.2 0.4 0.6 0.8 1

System False Alarm Probability
Figure 6. ROC curves for the ED fusion rule with K = 100.
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‘ o
000
000
0,955>

0.8 )
Z
3
©
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x 0.7 )
<
8
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2
8 06 A
=
2 O  Simulation, K=1
& Approximation, K=1
0.5 Simulation, K=2 l
Approximation, K=2
0 {  Simulation, K=3
4 Approximation, K=3

0 0.2 0.4 0.6 0.8 1
System False Alarm Probability

Figure 7. ROC curves for the ED fusion rule with L = 100.

5. Conclusions

In this work, we study the problem of decision fusion under the hybrid MAC scheme.
Considering noncoherent detection at the fusion center, we present the optimal decision fusion
rule based on the LR test and derive three sub-optimal rules with low-complexity. When sensors are
uniformly grouped and all the channels have the same noise power, the WED and DCM fusion rules
reduce to the ED fusion rule. For the ED rule, we derive closed-form results to the distribution of
its fusion statistic under a large K and under a large L, respectively. In addition, we derive explicit
formulas of the TS fusion statistic under the Neyman—Pearson criterion and the minimum probability
of error criterion, respectively. Simulation results show that the WED fusion rule is a low-SNR
approximation of the LR-based fusion rule, and the TS fusion rule is a high-SNR approximation of
the LR-based fusion rule. The detection performance of the hybrid MAC generally improves with the
increase of group size when the channel SNR is low, and deteriorates with the increase of group size
when the channel SNR is high. Compared with the conventional orthogonal and nonorthogonal MACs,
the hybrid MAC can achieve a better performance when the channel SNR is medium. In this work, we
address only the fusion rule design for distributed detection of a known parameter in Gaussian noise.
The detection of an unknown deterministic signal or a random time-correlated signal in noise is worth
further investigation.
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Appendix A
Proof of Proposition 2. Let A be a linear combination of z;'s. We have
K
A = E CiZle, (Al)
k=1

where ¢;s denote the combining weights.
Using (6) and algebraic manipulation, we have

K
E[A|Ho] = Y cx(LePs +207), (A2)
k=1
K
E[A|H] = 2 (LgP; +207), (A3)
K
Var(A[Ho) = Y- { L3P} + L |2+ 407) Py — 2P}| + 4o }. (A4)
k=1

It immediately follows from (A2)—(A4) that

K 2
[ Y ckLi(Py — Pf)}
k=1

D(A) = < . (A5)
Le 2{L3P2 + Ly [ (2 + 407) Py — 2P3 + 4ot}
Denote
o 2 ck\/Lka + Ly [(2 +402)Py — ZPH + 40 (A6)
and L(Ps— P

\/L%PJ% + Li | (2 + 407) Py — 2P2] + 4o}

Applying the Cauchy-Schwartz inequality, we have D(A) < Z,Ile b%, with the equality holding if
and only if a; = by, where B is a constant.
Thus, the combining weights in (A1) that maximize D(A) are given by

Ly(Py — Py)

L2P} + L | (2 + 407) Py — 2P2| + 4o}

Ck = (A8)

Substituting (A8) into (A1) and neglecting the constant term that does not affect detection
performance, we obtain the DCM fusion statistic as in (15). 0O
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