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Abstract: Wearable sensors for human physiological monitoring have attracted tremendous interest
from researchers in recent years. However, most of the research involved simple trials without
any significant analytical algorithms. This study provides a way of recognizing human motion
by combining textile stretch sensors based on single-walled carbon nanotubes (SWCNTs) and
spandex fabric (PET/SP) and machine learning algorithms in a realistic application. In the study,
the performance of the system will be evaluated by identification rate and accuracy of the motion
standardized. This research aims to provide a realistic motion sensing wearable product without
unnecessary heavy and uncomfortable electronic devices.
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1. Introduction

Wearable technology, especially wearable sensors, has become mainstream these days,
and attracted great interest from researchers. By focusing on revealing the multi-dimensional aspects
of human life, the wearable tech can be widely applied in medical, healthcare, power sources, flexible
electronic components, etc. In the healthcare field, patients can be quickly diagnosed and treated for
a variety of diseases with the help of the devices [1]. In sport, athletes’ performance is monitored
in order to detect abnormalities, prepare training and tactics plans, or protect them from injuries [2].
Through special structures, wearable electronics can be applied in flexible batteries [3,4], capacitive
energy storage [5], data storage [1–6], or fashion [7].

Most of the operating mechanisms of sensors are based on a relationship between some physical
or chemical quantity such as temperature, pressure, stretch, light, sound, vibration, distance, humidity,
pH, and electrical properties such as resistance, electromagnetism, or the capacitance of constituent
conductive materials. According to this principle, a popular design approach for wearable sensors
is to integrate electronic devices including temperature guage, stretch, proximity, accelerometry,
and pulse-oximeter sensors into a small hard packet added on clothes, jewelry [2,8–11] or directly
on the skin [12–14]. For example, Son et al. [1] developed bio-integrated systems for diagnosis and
therapy of movement disorders. Someya et al. [14] discussed the latest progress in the use of soft
electronic materials and their related devices in biological interfaces. Lee et al. [15] studied the
development of skin-mounted graphene-hybrid (GP-hybrid) device arrays capable of sweat-based
glucose and pH monitoring in conjunction with a sweat-control layer. Gao et al. [16] presented a
mechanically flexible and fully integrated sensor array for multiplexed in-situ perspiration analysis,
which simultaneously and selectively measures sweat metabolites and electrolytes. Dobkin et al. [17]
used gyroscopes, accelerometers, and other physiologic sensors to monitor distance, gait asymmetry,
and smoothness of human movements. Wang et al. [18] developed flexible pressure sensors based
on polydimethylsiloxane (PDMS) films for monitoring physiological signals. Many other studies on
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stretch sensors [19–21], e-skins [12,13], temperature sensors [21,22], pressure sensors [2,13,23] used
graphene [23,24], or carbon nanotubes (CNTs) [11,12,25] as sensing materials. The resulting sensors
were effectively proven to be highly sensitive materials good for wearable devices. On the other hand,
nanowires (NWs), such as gold NWs [1], Ge/Si-ZnO NWs [18], silver NWs [26,27] or compound
mixtures [28] also showed positive results. However, all the above studies have at least one of the
following disadvantages: hard electronic components which are inconvenient when feeling or moving,
complex fabrication methods or high-cost, or a lack of suitable signal processing algorithms to apply
in an actual product.

This research developed a complete combination of the wearable sensor fabrication based
on single-walled carbon nanotubes (SWCNT) [11,18,28,29], spandex fabric (PET/SP), and using
machine learning algorithms [30] for the analysis of sensing signals in order to apply to the real
products in human motion monitoring applications [31–35]. The conductive polyethylene terephthalate
(PET/Spandex) fabrics were prepared by padding conductive ink (SWCNT) in order to construct
textile fabric sensors. The performance of the fabricated textile sensors has been characterized in terms
of their mechanical and electrical performance along with stretch ratio or stretch percentage. Human
motion data signals obtained through the e-textile stretch sensor are processed by a specially designed
circuit, which digitizes and arranges signals into a custom format to be analyzed further. Then, the data
would be transmitted via Bluetooth to the mobile phone [36–39], tablet or desktop computer in real
time for display or analysis based on machine learning algorithms in order to get the best classification
of four predefined standardized human motions such as walking, running, sprinting, and jumping.

Machine learning (ML) algorithms have been applied frequently to a variety of fields in medical
diagnosis, natural language processing, online searches, smart cars, marketing personalization, etc.
In particular, within the field of data analytics, machine learning algorithms are one of the promising
methods used to devise complex models that lend themselves to high accuracy prediction and
classification tasks. Some useful ML algorithms for classification have been proposed such as random
forest (RD) [40], support vector machine (SVM) [41], neural network (NN) [42–44] and deep neural
network (DNN) [45]. The performance of the developed algorithms has been evaluated in terms
of mechanical properties of the sensors and the accuracy of the applied algorithms under actual
and realistic wearing test conditions. It has been proved that the textile sensors are extremely thin,
lightweight, sensitive, and thus highly flexible and cause no harm, irritation or allergies to the skin.

Through controlling the pressure on the squeezing machine, we obtained fabric sensors with
uniform final resistances and low migration of CNT powders on PET/SP fibers after stretching. Based
on that, we suggest the possibility of mass production of these fabric sensors with an easy combination
of sensor fabrication and machine learning algorithm models.

2. Materials and Methods

2.1. Materials

This research used a PET/SP fabric with a polyethylene terephthalate/spandex ratio = 76/24
(item 16043A, 341 g/YD, 262 g/SQM, from SNT Co. Ltd., Seoul, South Korea). The raw powder
single-walled carbon nanotubes (SWCNTs) were obtained from KH Chemical Co. Ltd. (Seoul, South
Korea). These SWCNTs were treated by a laboratory grade acid solutionn. The stirring machine,
ultrasonication machine, auto dipping padding machine and two-way drying machine were sourced
from Daelim Starlet Co. Ltd. (Seoul, South Korea). All other electronic components such as the
Bluetooth module, microprocessor, lithium battery, etc. were used as purchased.
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2.2. Methods

2.2.1. Textile Sensor Fabrication

PET/SP fabrics, known for their exceptional elasticity, were prepared by co-weaving spandex
with polyester. A small amount of spandex is used in the final fabric so that it may retain most of
the look and feel of PET fibers. The PET/SP fabric is very resilient and can withstand a good deal
of wear and tear, is waterproof and shows less wrinkling. These attributes make this spandex fabric
widely applicable in industry to produce products such as clothing, household furniture, industrial
fabrics, etc. The structure of the PET/SP fabric is composed of conventional PET/SP multifilament
yarns with high elasticity and recovery. These fibers could be converted into conductive fibers via
coating, padding, and surface treatment.

In order to fabricate the fabric sensor (Figure 1), carbon powder ink was applied by water-based
single-walled carbon nanotube (SWNT) solution with nanotubes with 1.0–1.3 nm diameter and 0.1 wt.%
concentration. The SWCNT powder was treated by acid solution (HNO3:H2SO4 = 3:1), dispersed
in H2O, sodium dodecylbenzenesulfonate (SDBS), and ultra-sonicated (2 h, 19.990 Hz) in a stirring
machine (60–80 ◦C, 1000 rpm, 24 h). The PET/SP fabrics were prepared and immersed in SWCNT ink
within the bath of the automatic dipping padding machine. The impregnating process would maintain
the conditions that allow the SWCNT particles to penetrate well (pressure roll speed: 1.0 m/min, air
cylinder pressure: 3 bar (0.3 MPa) overpressure). This process would make the SWCNT particles
adhere to the fabric surface after dipping and squeezing. After that, the two-way drying machine was
used in order to get rid of the excess water in the fabrics. The drying conditions were optimized at
the time of drying: 1–3 min, the range of temperature: 180–200 ◦C, and the speed of circulation fan:
1500 rpm. Finally, the fabric was maintained for 3–5 h under normal room temperature conditions.
The fabric sensors were then cut to form smaller specimens for further experiments.
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Figure 1. Summary of the fabrication process and application of SWCNT stretch sensors.

2.2.2. Human Motion Analysis

Actual muscle pants equipped with the fabricated textile sensor have been prepared for wearing
test including motion analysis. During the test, three participants (Table 1) were asked to wear the smart
muscle pants while moving. Four types of predefined motions are shown in Figure 2. The processing
circuit digitized and sent motion data signals, and transmitted them via Bluetooth to a mobile phone
in real time.
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Table 1. Information about participants.

Age
(year) Gender Weight (kg) Height

(m)

28 Male 55 1.67
26 Male 62 1.70
32 Male 65 1.72
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Figure 2. Types of human motion signals.

The method used to monitor activities is based on the relationship between the mechanical and
electrical properties of the constituent conductive fabrics. Using a voltage divider circuit, the resistance
variation has been converted into a voltage variation. Data based on the voltage was sampled/digitized
and thus converted into the digital values. For resolution reason, mathematical mapping of voltage
values between 0 to 3.7 volts into digital values between 0 to 1023 (3.7/1023 = 0.0037 V or 3.7 mV per
unit) has been made by precalculating the actual data. It was calculated to take about 0.01 s (10 ms) to
read an analog signal input, so the maximum reading speed is about 100 times per second. Motion data
signals would be analyzed in order to generate three input parameters such as the average amplitude
(AMP), standard deviation of the amplitude (STD), and the average cycle (CYC) for further processing.

• Average amplitude: The average amplitude (AMP) is a commonly used term to indicate the
magnitude of a periodic signal and determined by the ratio between the sum of the magnitudes
of all instantaneous values and the number of considered instantaneous values. Considering a
real signal as shown in Figure 3, A1, A2, A3, etc. are the magnitudes of the signal at instants 1, 2, 3,
etc., respectively. The AMP is calculated as follows:

AMP =
A1 + A2 + A3 + . . . + An

n
(1)

• Standard deviation of the amplitude: Standard deviation (STD) is a measure of the dispersion of
data from its mean. It is calculated as the square root of variance by determining the variation
between each data point relative to the mean. A low STD indicates that the data points tend to
be close to the mean of the set data, while a high STD indicates that the data points are spread
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out over a wider range of values. Besides the average of amplitude, the STD evaluates the other
aspect of the signal:

STD =

√
∑n

i=1
∣∣Ai − A

∣∣2
n − 1

(2)

where Ai represents an individual value, A represents the mean value, and n represents the total
number of values.

• Average cycle: This is the most important parameter for the motion classification method proposed
in this research. In the general fields of science and life, the cycle is defined by the shortest period
in which an action is repeated. Average cycle (CYC) includes process time, during which a unit
was acted upon to bring it closer to an output, and delay time, during which a unit of work was
spent waiting to take the next motion. The CYC could be calculated through a threshold as shown
in Figure 3.
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2.2.3. Machine Learning Models

The human motion dataset consists of 400 motion samples annotated in four classes such as
walking, jumping, running, and sprinting. Using the ‘cvpartition’ [46] function in the MATLAB
software, we split the dataset by assigning 75% to the training set and 25% to the testing set [31,47,48].
This research considered some machine learning models such as random forest (RD), support vector
machine (SVM), one-hidden layer neural network (ANN), multi-hidden layers neural network
(MANN), and autoencoders neural network. The main structure of these models is shown in Figure 4.
Because the target of the study is easy to construct and quick to apply in a realistic product,
we implemented the models based on MATLAB 2017b software, including: RD [49], SVM [50],
ANN [51], MANN [51], and AE [52]. RD constructs a multitude of decision trees during the training
time. Then, the final prediction is calculated by considering the high voted result predicted by each
outcome tree [53]. Figure 5 shows one tree in the RD model. Triangle nodes are used as the splitting
nodes and the bold dots are decisions of this tree. SVM looks for the optimal separating hyperplane
between the classes by maximizing the margin between the classes’ closest points [53]. Parameters of
the implemented multiclass model for SVM are shown in the Table 2. The implemented model used
SVM binary learners, and a one-versus-one coding design [50]. Artificial neural networks (ANNs) are
computing systems inspired by the biological neural networks that constitute the human brain. It is
composed of multiple nodes connected with coefficients (weights) which constitute the different neural
structures (one-hidden layer (ANN), multi-hidden layers (MANN), etc.) in order to perform certain
specific tasks [53]. AE is special neural network structure based on the efficient coding. The encoder
maps the input to a hidden representation and the decoder attempts to map this representation back to
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the original input [53]. As shown in Figure 6, the fabricated neural networks have different numbers of
hidden layers, but each hidden layer has 20 neurons. In particular, the AE model has a softmax layer
in order to get four predictions in the output.
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Figure 5. The graphical display of one tree in the RD model.

Table 2. Parameters of the multiclass model for support vector machines.

Name Characteristic

Response Name ‘Y’ (Output)
Categorical Predictors [none]

Class Names [‘Walking’ ‘Jumping’ ‘Running’ ‘Sprinting’]
Score Transform ‘none’
Binary Learners {6 × 1 cell}
Coding Name ‘onevsone’
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and (c) Autoencoder.

3. Results and Discussion

3.1. Structure of the Stretch Textile Sensor

Scanning electron microscopy (SEM) was employed to characterize the morphological changes of
the PET/SP fabric stretch sensors at different steps of the synthesis of the conductive fabric through
the present approach. Figure 7 shows SEM images of the standard PET/SP fabric with the magnified
view showing no coating on the fiber and the PET/SP fabric coated with SWCNT. The figure shows
the surface morphology of PET/SP fabric at high and low magnification, in its initial state and tension
state (30%), respectively. The diameter of the filaments is about 10 µm and appears loosely twisted
with ample free space between the microfiber bundles. The particles could be observed in the form of
a thin coating, and stuck randomly onto PET/SP fibers with a 80% coating rate.
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The method for recognizing specific motion is strongly based on the relationship between the
mechanical and electrical properties of the sensor fabrics. The resistance would change according
to stretching or releasing by a responsive crack propagation mechanism. The cracks originate and
propagate in the thin conductive layers coated on the PET/SP fibers during continuous mechanical
stretching. They are released under the accommodated stress at the stress-concentrated areas and
recover to their initial states after releasing the stretch force imposed on the fabrics. Edges of the cracks
would reconnect at this point, ensuring complete recovery of the electrical resistance. The performance
of the stretch sensor will be extremely sensitive and flexible based on this mechanism.

3.2. Stretchability (Yield Point) and Sensitivity (Gauge Factor)

The stretchability of a stretch sensor depends on the material of construction used,
micro/nanostructures, and the fabrication process used in the study. Figure 8a shows the resistance-
stretch relationship of three sensor samples. The structure of the PET/SP fabric is one of the main
reasons for the high stretchability (yield point, εy ≈ 50%) of the resistive type sensor reported in this
research. If the stretch is applied beyond a certain amount (ε > 50%), the PET/SP fabric would yield
and the fabric will lose its sensing capability. The stretchability ensures a wide range of stretch sensing,
enough for realistic applications. As shown in Figure 8b, the sensitivity or gauge factor (GF) of the
three stretch sensors is defined as the ratio of a relative change in resistance (∆R/R) and stretch (ε),
and could be written as GF = (∆R/R)/ε and ε = ∆L/L. It is clear that the resistance increases as the
stretch increases, and viceversa. For the fabricated stretch sensor, the value of GF depends mainly on
the SWCNT nanostructure. The results show that the GF ranges from 4.1 to 8.5, and depends on the
stretch ratio (%). Based on the calculated GF values, the stretch sensor is sensitive and suitable for the
applications in this research.
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3.3. Current-Voltage (I-V) Curves

The I-V curve is one of the important parameters for characterizing stretch sensors. Figure 8d
shows a set of graphical curves which are used to define the operation of the sensor under different
static stretches from 0–37.5% within the system. The applied voltage from −2 V to 2 V indicated the
resistance of stretch sensor was constant with an Ohmic behavior. The slope of the I-V curves reduces
with an increase of applied stretch, from 0%–12.5%–25% and 37.5%, indicating that an increase in
applied stretch led to an increase in the sensor’s resistance.

3.4. Hysteresis

Hysteresis is defined as a behavior whose output does not only depend on the current input
but also on the history of the input. The hysteresis becomes important when the stretch sensor is
used in dynamic applications such as human motion monitoring, ECG monitoring, healthcare, etc.
Hysteresis behaviors are mainly caused by the elastic properties of PET/SP fabric, the interaction
between SWCNT and PET/SP fibers, as well as the reconnectability of the thin coatings after release of
the applied stretch. Strong interfacial binding between the SWCNT nanostructures and PET/SP fibers
gave the good stretch sensing performances. The hysteresis behaviors of three frequencies are shown
in Figure 8c, indicating a linear rise in resistance when applying stretch and a small hysteresis.

3.5. Response and Recovery Time

Response time is the time taken to initially react to a given input. The response delay in the
sensors is mainly caused by the viscoelastic nature of the PET/SP fabric. The experimental results
showed a response time of 200 ms at ε = 30%. Recovery time is another important parameter of the
stretch sensor in order to evaluate the performance in dynamic applications. The recovery time of this
fabricated stretch sensor is 220 ms at ε = 30%. The recovery time is affected by the friction force and the
reconnectability between the SWCNT coatings and the PET/SP fibers. The fast self-recovery process
of the SWCNTs ensures rapid recovery of the electrical property of the stretch sensor and avoids the
degradation of the device performance during large deformations.

3.6. Durability

The dynamic durability is the stable electrical functionality and mechanical integrity of the stretch
sensor during its stretching/releasing cycles. This parameter depends on the fatigue and plastic
deformation of the PET/SP fibers under high stress which causes damage to the fibers (PET) and the
sensing nanomaterials (SWCNTs). The durability was tested in the laboratory using a customized UTM
for the tension tests. The resulting fabric surface was intact after 30,000 stretching/releasing cycles,
that means repeated stretch under 30% would not affect the sensor performance within 30,000 cycles.
Through controlling the pressure on the squeezing machine, the uniform resistance of samples is
shown in Figure 9b–d. All samples have resistance changes of less than 10% after 30,000 cycles of
30% tension. Especially, Figure 9c showed a low migration of CNT powders on PET/SP fibers during
the stretch/release cycles. That result clearly reveals that the dynamic durability was enough for
practical applications.

3.7. Human Motion Classification

The application capability of the fabricated stretch sensor would be evaluated by the testing on
four human motions such as walking, jumping, running, and sprinting. The experimental environment
of motions is in a straight corridor. Participants was asked to wear the smart muscle pants while
moving in the straight corridor (a total length of 50 m). Characteristics of motions are shown in Table 3,
included: velocity (m/s), step size (m), and frequency (Hz).
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Table 3. Characteristics of motions.

Characteristic Velocity (m/s) Step Size (m) Frequency (Hz)

Walking 1.2 0.35 1.7
Running 3.2 0.45 2.4
Sprinting 5.0 0.7 3.0
Jumping 1.5 0.75 2.0

The result of the experiments are shown in the comparison between the output of the system
and the actual motion. Statistical indices, including percent accuracy and confusion matrix are
two important elements to evaluate the computational efficiency of this research. The accuracy is
determined by Equation (3):

A =
TP + TN

TP + TN + FP + FN
(3)

where TP, TN, FP, and FN represent the number of true positives, true negatives, false positives,
and false negatives, respectively. In Figure 10, the five algorithms obtained a mean performance
accuracy of 90% with the random forest, 84% with the support vector machine, 85% with one hidden
layer neural network, 88% with multi-hidden layers neural network, and 87% with autoencoder.
The accuracy of the random forest algorithms (90%) shows that there is a good agreement between the
measured and classified values.
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The confusion matrix or error matrix is a specific parameter in the field of statistical classification
of machine learning. This is a specific table layout that allows visualization of the performance of
algorithms. Each row of the matrix represents the instances in a classified value while each column
represents the instances in an actual value. The confusion matrices of the algorithms are shown in
Figures 11–15. Here number 1 represents walking, number 2 represents jumping, number 3 represents
running and number 4 represents sprinting. The diagonal elements represent the number of cases for
which the classified motion is equal to the actual motion, while off-diagonal elements are those that are
mislabeled. The higher the diagonal values of the confusion matrix the better, it indicates many correct
classifications. Accordingly, it is clear that the walking and sprinting motions are easy to classify
with all algorithms such as RD(100–88.9%), SVM(100–100%), ANN(100–95.5%), M-ANN(100–92.3%),
and AE(100–95.8%), respectively.Sensors 2018, 18, x FOR PEER REVIEW  12 of 16 
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However, the jumping and running motions are easy to confusing such as RD(88–82.6%),
SVM(77.3–64.5%), ANN(82.6–66.7%), M-ANN(83.3–76%), and AE(80–73.1%). Especially, the precision
of the running motion in the support vector machine and the one hidden neural network algorithms
are lowest. From the matrices, the running motion was confused with the jumping motion in SVM
model (25.8%), ANN and M-ANN models (20%). The ratio of this confusion is still high in AE model
(19%). The best ratio is 13% of the RD model. Besides that, the jumping motion was easy confused
with the running motion in SVM model (22.7%) and AE model (20%). This ratio in the ANN model
and M-ANN model are almost same (16–17%).

The research has demonstrated that the random forest, multi-hidden layers neural network and
the autoencoders algorithms were superior to the support vector machine and the one hidden layer
neural network in terms of classification accuracy in this realistic application. The results obtained
from the random forest and the multi-hidden layers neural network algorithms were similar in terms
of classification rate, and the random forest was marginally better than the multi-hidden layers neural
network. Based on that result, we suggest the RD model be applied in real applications for mass
production. The main reason is the high accuracy of the RD model. In addition, the algorithm of the
RD model is easy to understand and it is supported in the MATLAB tools.

4. Conclusions

This research has developed a complete combination of the wearable application based on
SWCNT-PET/SP and machine learning models to analyze sensing signals from a real product.
The research emphasized the possibility to bring the product from experimental concept to daily
life with high economic efficiency, simply and quickly. The fabrication process of the stretchable
and flexible stretch sensor is simple and the performance of the monitoring model was enhanced by
machine learning algorithms. Based on the statistical indices, the high accuracy demonstrated that this
system could be applied as an intelligent device for recognizing human motions in real time. However,
the research still has some limitations. The high variation of the sensor response causes bias in the
final results. We suggest using vacuum drying in the fabrication of the sensors. This process can create
a strong connection between SWCNTs and PET/SP fibers. These are future directions of the project.
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