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Abstract: In wireless sensor networks, accurate location information is important for precise tracking
of targets. In order to satisfy hardware installation cost and localization accuracy requirements,
a weighted centroid localization (WCL) algorithm, which is considered a promising localization
algorithm, was introduced. In our previous research, we proposed a test node-based WCL algorithm
using a distance boundary to improve the localization accuracy in the corner and side areas.
The proposed algorithm estimates the target location by averaging the test node locations that
exactly match with the number of anchor nodes in the distribution map. However, since the received
signal strength has large variability in real channel conditions, the number of anchor nodes is not
exactly matched and the localization accuracy may deteriorate. Thus, we propose an intersection
threshold to compensate for the localization accuracy in this paper. The simulation results show that
the proposed test node-based WCL algorithm provides higher-precision location information than
the conventional WCL algorithm in entire areas, with a reduced number of physical anchor nodes.
Moreover, we show that the localization accuracy is improved by using the intersection threshold
when considering small-scale fading channel conditions.

Keywords: wireless sensor network; weighted centroid localization; distance boundary; intersection
threshold; distribution map; test node

1. Introduction

Wireless sensor networks (WSNs) have been rapidly developed, and show promise for a variety of
applications in next-generation networks. One of the main purposes of WSNs is real-time localization
to track and search for moving targets. Thus, the search for a cost-effective localization method which
guarantees high precision in real time is required in various WSN applications such as public safety,
industrial applications, and military surveillance [1,2]. In order to guarantee high-precision localization,
range-based localization methods have been proposed [3,4]. In range-based localization methods, the
system uses extra equipment that estimates the location of an unknown node by measuring the distance
or the angle between a number of anchor nodes and the unknown node. The representative schemes
for the range-based localization are time of arrival (ToA), time difference of arrival (TDoA), angle of
arrival (AoA), and received signal strength (RSS). However, since these schemes require a high-speed
analog-to-digital converter because of their high complexity as well as extra equipment for measuring
distances, they are not cost-effective schemes. On the other hand, since the range-free localization
method estimates the location without the measurement of the distance or the angle, the method
can reduce system complexity and create a cost-effective localization system which guarantees the
real-time operation more easily. The representative schemes for the range-free localization are centroid
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localization (CL), the approximate point-in-triangulation test (APIT), knowledge-based positioning,
distance vector (DV)-hop, and range-free AoA [3–5]. Since the sensor node must consider power
consumption as well as system complexity, almost all of the localization algorithms will require a
simple structure and a rapid processing speed. Thus, the CL algorithm is considered as an effective
method to meet the requirements of the localization system in WSNs among the various localization
algorithms.

Although the CL algorithm has the advantage of making localization systems cost-effective, it has
the disadvantage of reducing the location accuracy. Recently, a weighted CL (WCL) method which
combines the CL with the range-based localization method has been proposed to improve the location
accuracy by giving the weight according to the difference in distance [6–8]. Since the localization
operation is simply performed by using only the anchor node location (as in the case of the CL),
the WCL algorithm is also effective in terms of the processing speed and resource utilization.
Most range-based indoor localization research measures utilize the RSS to calculate the distance
between the unknown moving node and a number of anchor nodes. This is mainly due to the fact that
the RSS measurements can be obtained with minimal effort and do not require any extra equipment
(as occurs with the range-based localization methods), resulting in remarkable savings in the cost
and energy consumption of sensor nodes. Moreover, most transceivers in WSNs have built-in RSS
indicators (RSSIs) which provide the RSS measurement value depending on their infrastructure without
any extra cost.

However, the localization accuracy of the WCL algorithm deteriorates significantly at the corners
and sides of the square space due to the centroid property [9]. One simple approach to improve the
localization accuracy for these areas is to increase the number of anchor nodes. However, the number
of anchor nodes is limited because of the system restrictions such as hardware installation cost and
resource (frequency, energy) consumption. In order to overcome the limitations, many authors have
used virtual concepts [10–12]. In [10], the authors proposed a novel indoor localization approach named
virtual reference elimination (VIRE). This method calculates the RSS values of the virtual reference tags
using a linear interpolation algorithm. In [11], the authors proposed an improved CL combined with
the VIRE system using the RSS of the virtual reference tags. However, this algorithm considered only
a path-loss model without small-scale fading. In [12], the authors proposed a novel algorithm with the
small extra logical overhead which used the shortest-hop path scheme to upgrade the virtual anchor
nodes, whereas the number of physical anchor nodes was kept the same. However, this algorithm
was studied in another range-free localization method: the DV-hop. Moreover, in [13,14], we have
already studied the WCL using a test node similar to the conventional virtual anchor node. However,
in these previous papers, we did not consider the inconsistency of the number of anchor nodes in a
real channel condition nor did we evaluate the localization accuracy of the deployment of test nodes.
Moreover, since the RSS has large variability due to the degrading effects of reflection, shadowing,
and fading in indoor wireless channel environments [15], the test node-based WCL (T-WCL) algorithm
may reduce the localization accuracy because the numbers of anchor nodes in the distance boundary
of the unknown node and in the test nodes are mismatched.

In this paper, we propose the T-WCL algorithm with an intersection threshold to improve the
localization accuracy. The contributions of this paper are summarized as follows. First, the test node as
the virtual node can be considered as a means of improving the localization accuracy and reducing
the hardware installation cost of the conventional WCL (C-WCL) algorithm [9]. Second, in order to
evaluate the performance in a situation similar to real channel conditions, we consider a path-loss
channel model with log-normal shadowing. Third, the intersection threshold can be considered
as an important factor to improve the localization accuracy for the WCL algorithm in small-scale
fading channels.

The rest of the paper is organized as follows. The characterization of the indoor propagation
channel is described in Section 2, which deals with the adopted channel model and the conventional
WCL algorithm. Section 3 presents our proposed test node-based WCL algorithm. Section 4 evaluates
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the algorithmic performance of each WCL algorithm by computer simulations. Finally, conclusions are
given in Section 5.

2. System Model

We consider a WSN with N anchor nodes located in a square area of side length S, and a moving
unknown node located within the area at Lp =

[
xp, yp

]T, where [·]T denotes the transpose operation.
The location of the i-th anchor node is defined as Li = [xi, yi]

T, i = 1, · · · , N. Then, the WCL estimates
the unknown node location L̂p as

L̂p =
∑N

i=1 wiLi

∑N
i=1 wi

, (1)

where wi is the weighting coefficient which implies the influence deciding the extent of the unknown
node close to the i-th anchor node. Most of the localization algorithms require the distance measurement
to estimate the location of the unknown moving node accurately. As mentioned in Section 1, one of
the efficient methods for measuring the distance is the RSS method. There are three representative
wireless propagation models for the RSS method: the free-space model, the two-ray ground reflection
model, and the shadowing model. In Friis’ free-space model, the detected RSS decreases quadratically
with the distance to the transmitter which is given as [16]

RSS(di) = PtGtGr

(
λ

4πdi

)2
, (2)

where Pt is the transmitting power at the anchor node, Gt is the gain at the anchor node, Gr is the gain
at the unknown node, λ is the wavelength, and di = ‖Li − Lp‖2 is the distance between the i-th anchor
node location Li and the unknown node location Lp. However, since the RSS at a certain distance is
a random variant due to the multi-path fading effects in real channel conditions, we assume that the
RSS follows the log-normal shadowing path-loss model. The log-normal shadowing path-loss model
is expressed in decibels as [16]

RSS(di) = Pt + K− 10η log
(

di
d0

)
+ ψ. (3)

Here, d0 is the reference distance, K is the attenuation factor at the reference distance d0, η is
the path-loss exponent (commonly 2–4 for indoors), and ψ is a zero-mean Gaussian random variable
with variance 1. Usually, wi is defined as a function of estimated distance and the relation is inversely
proportional to estimated distance as 1/di. To make the farther anchor node with lower weights,
g is used as the power of distance as w = 1/(di)

g. However, the RSS has some fluctuation; the accuracy
of localization is significantly improved when the weight of the anchor node is set to 0 or 1 instead of
1/di [9]. Thus, in order to improve the performance of the WCL algorithm, we assume that the anchor
nodes within the circle have the same weight as 1.

Figure 1 shows the operation of the C-WCL algorithm with a distance boundary. In Figure 1,
a distance boundary dm from the unknown node becomes a radius of the circle and is indicated as
a threshold to choose the considered anchor nodes. Generally, in order to estimate the unknown
node, the C-WCL algorithm considers the anchor nodes within the distance boundary only and
averages the locations of these anchor nodes. Thus, the distance boundary dm plays an important
role in C-WCL, improving the localization accuracy. Then, the localization error is defined as ξ ,
L̂p − Lp = [X̂p − xp, Ŷp − yp]T, where X̂p and Ŷp are the one-dimensional location estimates along the
x-axis and y-axis, respectively. Finally, the distance error is given by

ξ ,
√
(X̂p − xp)2 + (Ŷp − yp)2 = ‖ξ‖2. (4)
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Figure 1. Operation of the conventional weighted centroid localization (C-WCL) algorithm with a
distance boundary [9,14].

3. The Proposed Test Node-Based WCL Algorithm

In order to improve the localization accuracy in the corner and edge areas and solve the mismatch
problem due to the small-scale fading channel, we propose a T-WCL algorithm with an intersection
threshold. The proposed T-WCL algorithm consists of five steps. The detailed procedures are
introduced below.

3.1. Test Node Generation

In the first step, the proposed T-WCL algorithm deploys the test nodes between the anchor nodes
during the off-line phase. Since the test node is a virtual node made from the algorithm, we can
systematically calculate the exact distance between each virtual test node and a number of real anchor
nodes. We consider a WSN with M test nodes and assume that there are M sensors deployed uniformly
in an n by k sensor field grid.

3.2. Distribution Map Construction

In the second step, after generating the test nodes, the T-WCL algorithm constructs
a distribution map. The main operation of the distribution map is to store the number of anchor
nodes Ctest(Tj) and their coordinates Li within the distance boundary dm made from each test node.
This process is conducted by comparing the distance between each test node and a number of
anchor nodes with distance boundary dm virtually. For the j-th test node location Tj =

[
xj, yj

]T,
where j = 1, · · · , M, we denote the Euclidean distance between the i-th anchor node location Li

and j-th test node location Tj as d(Li, Tj) =
√
(xi − xj)2 + (yi − yj)2. Then, the algorithm counts the

number of anchor nodes Ctest(Tj) within the distance boundary of j-th test node as

Ctest(Tj) =
N

∑
i=1

ai, ai =

{
1, if d(Li, Tj) < dm

0, otherwise
. (5)

Finally, we can construct the distribution map DM =
{
[T1, · · · , TM]T, [Ctest(T1), · · · , Ctest(TM)]T

}
.

Here, the distribution map DM contains the coordinates Li of considered anchor nodes corresponding
to Ctest(Tj).

3.3. Test Node Detection

The key point of the proposed T-WCL algorithm to estimate the location of the unknown node is
to compare the difference in the number of considered anchor nodes. In the on-line phase, the unknown
node receives the RSS from specific anchor nodes in real time. Then, the unknown node transmits the
RSS and anchor identification (ID) to the localization system. In the system, the algorithm calculates
the distance dr from the RSS by using Equation (3) except ψ and compares each calculated distance
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with the distance boundary dm to obtain the number of considered anchor nodes. The algorithm counts
the number of considered anchor nodes Cunknown(Lp) at the unknown node as

Cunknown(Lp) =
N

∑
i=1

ai, ai =

{
1, if dr < dm

0, otherwise
. (6)

Then, the proposed T-WCL algorithm detects the matched test node that satisfies the condition
Ctest(Tj) = Cunknown(Lp). For example, if the number of anchor nodes Cunknown(Lp) at the unknown
node is 5, the algorithm compares 5 with the number of considered anchor nodes Ctest(Tj) at the test
node in the distribution map DM.

3.4. Intersection

In real channel conditions, there are many identical numbers that exist in other regions.
Thus, in this step, the algorithm compares the coordinates Li of the anchor nodes obtained from
the unknown node with the coordinates of the anchor nodes obtained from each test node within
the area. However, since the RSS has large variability in real channel conditions, the number of anchor
nodes may not be exactly matched and the localization accuracy deteriorates. Thus, we consider the
intersection threshold Ath, and then the comparing factor is expressed as

Tth = Ctest(Tj)− Ath. (7)

The test nodes must be within the range Tth 6 Cintersect(Tj) 6 Ctest(Tj) to be assigned the weights,
where Cintersect(Tj) is the number of intersected coordinates Li of considered anchor nodes at the j-th
test node.

3.5. Estimation

The last step is the location estimation of the unknown node by allocating the weight wj. Finally,
the algorithm estimates the coordinates of the unknown node as

L̂p =
∑L

j=1 wjTj

∑L
j=1 wj

. (8)

Here, L denotes the number of intersected test nodes (L < M). As this is identical to (1), it is
assumed that the test nodes only match with the number and the coordinates of the anchor nodes
obtained from the unknown node, which have a weight equal to 1.

4. Simulation Results

4.1. Simulation Environments

In order to evaluate the localization accuracy of the proposed T-WCL algorithm according to the
distance boundary dm and the number of anchor nodes, we performed the simulations using MATLAB.
For the simulations, we considered a 90× 90 (m2) ideal square space, and the anchor nodes were
distributed on the same horizontal area with the exact coordinates. The test nodes generated virtually
by the proposed T-WCL algorithm were deployed equally on the above square space. The distribution
map contained the information (number and coordinates of considered anchor nodes) after calculating
the coordinates of the anchor nodes in the circle and comparing the distance boundary dm from each
test node. The unknown nodes were randomly disposed of, and transmitted the RSS and anchor ID to
the localization system. We assumed that all physical nodes were equipped with one isotropic antenna,
and the receiver sensitivity was −110 (dBm). The path-loss model with log-normal shadowing was
considered as the localization channel model. In this paper, the path-loss exponent η was considered
as 4 for the indoor environment, and the shadowing effect ψ was considered as a log-normal random
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variable with a mean of 0 and the standard deviation of 4 (dB). Finally, we changed the distance
boundary dm, the anchor node deployment interval Ad, the test node deployment interval Td, and the
intersection threshold Ath to evaluate each WCL algorithm. We calculated the mean distance error
(MDE) which is the average distance between the actual location Lp of unknown nodes and their
estimated location L̂p to evaluate the localization accuracy for each WCL algorithm.

4.2. Effects of Test Node

The test node was introduced to improve the localization accuracy of the corner and side areas.
In order to compare the localization accuracy of each area, we classified the WSN areas into one center
region, four corner regions, and four side regions. Here, the size of the center region was 70× 70 (m2),
the sizes of the four corner regions were each 10× 10 (m2), and the sizes of the four side regions were
each 10× 70 (m2). We assumed the anchor node deployment interval Ad = 10 (m), the test node
deployment interval Td = 1 (m), and the distance boundary dm = 30 (m). Each simulation result is
averaged over 10,000 runs.

Figure 2 shows the distance error of each region by coloring with ranges from 0 to 20 (m).
From Figure 2a, in the C-WCL algorithm case, we can observe that the distance errors at the corner
and side areas were relatively larger than at the center area. The reason is that the corner and side
areas have the insufficiently symmetric coordinates of the anchor nodes, that differ from the center
area. On the other hand, in Figure 2b we can observe in the proposed T-WCL algorithm that the
localization accuracy obtained at the corner and side areas was the same as at the center area, by
densely deploying the virtual test nodes.
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Figure 2. Top view of the distance error using each algorithm. (a) C-WCL; (b) test node-based WLC
(T-WCL).

4.3. Effects of Distance Boundary

The distance boundary dm is an important factor for improving the localization accuracy and
reducing the hardware installation cost of the WCL-based localization systems. In particular, a longer
distance boundary dm is required to transmit the localization signal in the sparsely deployed anchor
nodes without any performance degradation. In order to observe the effects of the distance boundary
dm in each WCL algorithm, we calculate the MDE according to the distance boundary dm. In order to
simulate, we assumed the anchor node deployment interval Ad = 10 (m), the test node deployment
interval Td = 1 (m), and the distance boundary dm ranging from 10 to 30 (m). Each simulation result is
averaged over 10,000 runs.
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Figure 3 shows the MDE performance of each area according to the distance boundary dm.
From Figure 3, we can observe that the MDE of the C-WCL algorithm is deteriorated by increasing the
distance boundary dm due to significant localization errors in the corner and side areas. However, it is
obvious that the proposed T-WCL algorithm which uses the virtual test nodes always outperforms
the C-WCL, even though we increase the distance boundary dm. Moreover, the proposed T-WCL
algorithm with the distance boundary dm = 30 (m) can improve the localization accuracy by almost
74.2% compared to the C-WCL algorithm for the whole area.
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T-WCL (Center Area)

Figure 3. Mean distance error (MDE) performance of each area according to distance boundary.

4.4. Effects of Anchor Node Deployment Interval

In WSNs, the density of physical anchor nodes has significant effects on the localization accuracy.
However, the high density of physical anchor nodes implies the additional costs of hardware
installation and maintenance [9]. In order to make WSNs cost effective, we have to consider the
trade-off between the localization accuracy and the hardware installation cost. Since the test node is
also introduced to reduce the installation cost of the indoor localization systems, we can estimate that if
we can reduce the physical anchor nodes and replace them with the virtual test nodes, the localization
systems can be improved significantly in terms of the localization performance as well as the system
installation and maintenance costs. In order to evaluate the localization accuracy and cost effectiveness
of the proposed T-WCL algorithm, we calculate the MDE according to the distance boundary dm with
the anchor node deployment interval.

We assumed the physical anchor node deployment interval Ad to be 10, 15, 18 (m; the number of
anchor nodes was 100, 49 and 36). The virtual test node deployment interval was assumed to be Td = 1
(m; the number of test nodes was 8281). The latter is an interval to improve the localization accuracy
by densely deploying the virtual nodes rather than the physical nodes. Note that the physical nodes
were sparsely distributed with the regular intervals, and the unknown node was located between
these physical nodes. Figure 4 shows the MDE performance according to the distance boundary with
anchor node deployment interval Ad. In Figure 4, we can observe that the MDE performance of the
C-WCL algorithm is deteriorated by increasing the anchor node deployment interval Ad according to
the distance boundary dm. However, in spite of the lower-density condition of the anchor nodes, the
proposed T-WCL algorithm can improve the localization accuracy. From the simulation results, we
can conclude that the proposed T-WCL algorithm makes the localization system very cost effective by
reducing the number of physical anchor nodes by up to 64%.
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Figure 4. MDE performance according to the distance boundary with the anchor node
deployment interval.

4.5. Effects of Test Node Deployment Interval

Figure 5 shows the MDE performance according to the distance boundary with the test node
deployment interval Td. From Figure 5, we can observe that the proposed T-WCL algorithm using the
intersection threshold Ath can improve the localization accuracy in the real environment. In particular,
in the case of the test node deployment interval Td = 2 (m), the localization accuracy was improved,
in spite of the number of test nodes being reduced by almost 73.2%. Therefore, we can conclude that
the complexity can be reduced considerably and the localization accuracy improved. However, in the
case of the test node deployment interval Td = 4 (m), since the number of test nodes was reduced by
almost 92.4%, the localization accuracy was reduced. The reason is that the proposed T-WCL algorithm
estimates the unknown node location by averaging the location of the test nodes.
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Figure 5. MDE performance according to the distance boundary with the test node deployment interval.
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4.6. Effects of Intersection Threshold

Figure 6 shows the MDE performance according to the distance boundary with the intersection
threshold Ath at Td = 2 (m). From Figure 6, we can observe that the proposed T-WCL algorithm
with large intersection threshold Ath can improve the localization accuracy in the real environment.
However, when the intersection threshold Ath is set too low, a weighting value is given to a test node
with a low correlation, so that the localization error becomes large. Finally, we can conclude that the
proposed intersection threshold Ath can improve the location accuracy for the variation of the RSS
value in real channel conditions.
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Figure 6. MDE performance according to the distance boundary with the intersection threshold.

5. Conclusions

In WSNs, the C-WCL algorithm exploiting the distance boundary has been considered as
an important algorithm for improving localization accuracy and system complexity. However, since the
corner and side areas do not have enough symmetrically-placed anchor nodes (unlike the center area),
the localization accuracy deteriorates in those areas of the square space. In order to overcome the
drawbacks of the C-WCL algorithm, we proposed the T-WCL algorithm. From the simulation results,
the proposed T-WCL algorithm guarantees the equal localization accuracy in each area and significantly
improves the localization accuracy. We can observe that the proposed T-WCL algorithm can construct
cost-effective localization systems by reducing the number of real anchor nodes. Furthermore, we can
conclude that the localization accuracy is improved by using the intersection threshold in small-scale
fading channels.
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