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Abstract: The single molecular conductance of amino acids was measured by a scanning tunneling
microscope (STM) break junction. Conductance measurement of alanine gives out two conductance
values at 10−1.85 G0 (1095 nS) and 10−3.7 G0 (15.5 nS), while similar conductance values are also
observed for aspartic acid and glutamic acid, which have one more carboxylic acid group compared
with alanine. This may show that the backbone of NH2–C–COOH is the primary means of electron
transport in the molecular junction of aspartic acid and glutamic acid. However, NH2–C–COOH is
not the primary means of electron transport in the methionine junction, which may be caused by the
strong interaction of the Au–SMe (methyl sulfide) bond for the methionine junction. The current
work reveals the important role of the anchoring group in the electron transport in different amino
acids junctions.
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1. Introduction

Understanding the electron transport of biomolecules, including peptides, DNA, and RNA, has
received much attention for its relation to daily life activities and potential applications in molecular
devices [1–6]. Such electron transport has been proved to play an important role in the function of
metabolic cycles, enzymatic processes, photosynthesis, DNA damage, and so on [1,3,7–9].

Much attention has been paid to the electron transport of peptides, which join electron acceptors
and donors with each other and can contribute to the redox reaction between them [3]. Electrochemical
methods or scanning tunneling microscopes (STMs) have been used to explore the electron transport
properties of peptides, as well as the effect of length, hydrogen bonding, molecular dipole moment,
electric field, metal ion binding, and pH on the electrical characterization of peptides [1,3,10–12].
Moreover, peptides are formed by amino acid through peptide bonds [2], and the electron transport
property of amino acid should have an impact on peptides. Thus, it is also important to study the
electron transport of amino acid, which would be helpful in further understanding electron transport
behavior in peptides. The tunneling current of amino acid molecules between two electrodes has
been measured [13,14], but there is less report on the direct conductance measurement of amino acids
junctions [15].
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The break junction approach has been demonstrated to be an efficient method to measure the
electron transport of molecular junctions [16–21]. In this article, we measure the conductance of amino
acids by using an STM break junction [17,22–27]. Amino acids with different kinds of anchoring
groups, including L-alanine, L-methionine, L-aspartic acid, and L-glutamic acid, were measured and
compared. Especially, the influence of anchoring groups in electron transport will be discussed.

2. Materials and Methods

L-methionine, L-aspartic acid, and L-glutamic acid were purchased from Alfa-Aesar, and L-alanine
was purchased from Aladdin. Those molecular structures are shown in Figure 1. Au(111) and
mechanically cut Au wire were used as the substrate and tip, respectively. Au(111) electrode was
annealed by butane flame before each experiment, which was followed by cooling to room temperature
under pure N2. The electrode was immersed into an aqueous solution containing 0.1 mM target
molecule and washed with ultrapure water (18.2 ΩM cm).
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Figure 1. Molecular structures of alanine, aspartic acid, glutamic acid, and methionine.

Conductance measurement was carried out using a scanning tunneling microscope break junction
(STM-BJ) on the modified Nanoscope IIIa STM (Veeco, Plainview, NY, USA) [28,29]. The STM tip was
continually controlled to approach and withdraw the substrate at a constant bias of 100 mV, while the
tip current was recorded during the withdrawing progress. The tip withdrawing and current recording
speed were 20 nm/s and 20 kHz, respectively. The current curves were treated by the logarithm and
binning, and a conductance histogram was constructed. More details can be seen in our previous
reports [30–33].

3. Results and Discussion

3.1. Amino Acid Only with Anchoring Groups of Amine and Carboxylic Acid

We firstly measured the single molecular conductance of alanine, which has only two anchoring
groups: amine and carboxylic acid. The conductance value of alanine is shown in Figure 2. Conductance
steps around 10−0.85 G0 (10947 nS), 10−1.85 G0 (1095 nS), and 10−3.7 G0 (15.5 nS) can be seen in Figure 2a,
while the same values can also been observed in the conductance histogram (Figure 2b). The peak at
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10−0.85 G0 has a much larger conductance value, and such large conductance values can also be found
in the literature. This peak might be explained by the conductance of atomic contact influenced by an
adsorbed molecule [34,35] or an electrode/π/electrode junction [36–38]. Since there is no aromatic
ring in the current molecular system, the formation of an electrode/π/electrode junction can be ruled
out. Thus, this conductance value can be attributed to the conductance of atomic contact influenced
by an adsorbed molecule. The adsorption of O (with Ag) or CO (with Au) can also cause a similar
conductance value with respect to Ag [39,40] and Au [41], respectively. However, the exact reason
for this peak needs further experiment and calculation. We will not discuss this value since it can
be seen in the other systems. The two sets’ conductance values of 10−1.85 G0 (1095 nS) and 10−3.7 G0

(15.5 nS) can be attributed to the different contacting configurations between the anchoring group and
the electrode [42]. More than 90% of traces show the plateaus, while around 10% of curves have high
and low conductance steps in the same conductance trace.
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Figure 2. Typical conductance (a) curves and (b) histogram of alanine (from 1000 curves) contacting
with Au electrode at a bias of 100 mV.

By comparing the conductance values of 2093 nS and 581 nS reported using a conductance
screening tool for molecules [15], it may be stated that the different conductance values in the
current study may be attributed to the different measurement methods and statistical methods
for the histogram. Moreover, the current study was carried out under ambience in air, while an
aqueous solution was used for the conductance measurement in the literature [15]. A solvent can also
influence the work function of the electrode and change its Fermi energy [43,44], which would alter the
conductance value of single molecular junctions. This may cause the difference in the results between
the literature and the current study.

3.2. Amino Acid with Additional Carboxylic Acid Anchoring Group Besides Amine and Carboxylic Acid

It is also interesting how the electron transport of the molecular junction would change if there
were another carboxylic acid in the molecule chain. Thus, the amino acid of aspartic acid and glutamic
acid were also studied. Aspartic acid has one more carboxylic acid than alanine, while glutamic acid
has one more –CH2 unit than aspartic acid. It is expected that these molecular junctions would have
many contacting configurations between molecule and electrode, since those molecules have one more
carboxylic acid group than does alanine.

The conductance measurement of aspartic acid is shown in Figure 3a,c, and conductance values
of 10−1.85 G0 (1095 nS) and 10−3.7 G0 (15.5 nS) can be found. This shows that the main contacting
configuration between aspartic acid and Au is the same as that for alanine and Au, since similar
conductance histograms are found for alanine and aspartic acid. In other words, the aspartic acid
junction should have the same electron transport as that of alanine junction, and the backbone
of NH2–C–COOH, not NH2–C–C–COOH, is the primary means of electron transport for aspartic
acid–Au junctions.
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We also carried out an experiment on glutamic acid. Interestingly, 10−1.85 G0 (1095 nS) and
10−3.7 G0 (15.5 nS) were also found for this amino acid (Figure 3b,d). This result further demonstrates
that such amino acids contact the electrode through the backbone of NH2–C–COOH. The configuration
of the two carboxylic acid groups binding to both ends of the electrode is not favored. The chain
of NH2–C–COOH is the main configuration for the formation of junctions with aspartic acid and
glutamic acid.
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Au as electrode.

3.3. Amino Acid with Methyl Sulfide (–SMe) Anchoring Groups Besides Amine and Carboxylic Acid

Now, we focus on the amino acid with additional methyl sulfide linker to explore the binding site
of the molecular junction. Methionine was chosen for its methyl sulfide group, which can bind to the
Au electrode [45].

A conductance value at 10−3 G0 (77.5 nS) was found for methionine, while no peaks at 10−1.85

G0 (1095 nS) and 10−3.7 G0 (15.5 nS) were observed (Figure 4). These conductance values together
with other amino acids are summarized in Table 1. The difference between methionine and other
amino acids may be caused by the strong interaction of Au–(SMe) in methionine. The breaking force
for Au–(SMe) is 0.7 nN, while 0.6 nN is found for Au–(NH2) and Au–(COOH) [46,47], which shows
that the Au–(SMe) bond is stronger than the other two. Comparing the different breaking forces
among Au–(SMe), Au–(NH2), and Au–(COOH), it is favorable to form Au–(SMe) contact during the
self-assembly monolayer. Thus, the formation of single molecular junctions may be between Au–(SMe)
and Au–(NH2) or between Au–(SMe) and Au–(COOH), and fewer junctions are formed between
Au–amine and Au–carboxylic acid. The current result with no conductance peak at 10−1.85 G0 (1095 nS)
or at 10−3.7 G0 (15.5 nS) also supports this suspecting. Furthermore, the conductance of methionine
(77.5 nS) is lower than the high value of alanine, aspartic acid, and glutamic acid (1095 ns). This may
be caused by the longer electron transport (MeS–C–C–NH2 or MeS–C–C–C–COOH) for methionine
compared to that for the other amino acid (NH2–C–COOH).



Sensors 2017, 17, 811 5 of 8

Sensors 2017, 17, 811 4 of 7 

 

We also carried out an experiment on glutamic acid. Interestingly, 10−1.85 G0 (1095 nS) and  
10−3.7 G0 (15.5 nS) were also found for this amino acid (Figures 3b,d). This result further demonstrates 
that such amino acids contact the electrode through the backbone of NH2–C–COOH. The 
configuration of the two carboxylic acid groups binding to both ends of the electrode is not favored. 
The chain of NH2–C–COOH is the main configuration for the formation of junctions with aspartic 
acid and glutamic acid. 

 

Figure 3. Typical conductance curves for (a) aspartic acid and (b) glutamic acid. Conductance 
histograms of (c) aspartic acid (from 1380 curves) and (d) glutamic acid (from 3000 curves) using Au 
as electrode. 

3.3. Amino Acid with Methyl Sulfide (–SMe) Anchoring Groups  Besides Amine and Carboxylic Acid 

Now, we focus on the amino acid with additional methyl sulfide linker to explore the binding 
site of the molecular junction. Methionine was chosen for its methyl sulfide group, which can bind to 
the Au electrode [45]. 

 
Figure 4. Typical conductance (a) curves and (b) histogram of methionine (from 1150 curves) 
contacting with Au electrode. 
Figure 4. Typical conductance (a) curves and (b) histogram of methionine (from 1150 curves) contacting
with Au electrode.

Table 1. Summary of single molecular conductance of alanine, aspartic acid, glutamic acid, and methionine.

Molecules Conductance (nS)

Alanine 1095, 15.5
Aspartic acid 1095, 15.5
Glutamic acid 1095, 15.5

Methionine 77.5

4. Conclusions

We have measured the single molecular conductance of amino acids, including alanine,
methionine, aspartic acid, and glutamic acid. The results show that those amine acids with only
anchoring groups of amine and carboxylic acid bind to the electrode through the backbone of
NH2–C–COOH. For a strong interaction between Au–(SMe) bond, NH2–C–COOH is not the primary
means of electron transport in the methionine junction. The current work shows the important role of
the anchoring group in electron transport in the amino acid junctions.
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