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Abstract: This paper presents a location-based interactive model of Internet of Things (IoT) and
cloud integration (IoT-cloud) for mobile cloud computing applications, in comparison with the
periodic sensing model. In the latter, sensing collections are performed without awareness of sensing
demands. Sensors are required to report their sensing data periodically regardless of whether or not
there are demands for their sensing services. This leads to unnecessary energy loss due to redundant
transmission. In the proposed model, IoT-cloud provides sensing services on demand based on
interest and location of mobile users. By taking advantages of the cloud as a coordinator, sensing
scheduling of sensors is controlled by the cloud, which knows when and where mobile users request
for sensing services. Therefore, when there is no demand, sensors are put into an inactive mode to save
energy. Through extensive analysis and experimental results, we show that the location-based model
achieves a significant improvement in terms of network lifetime compared to the periodic model.

Keywords: location interactive model; sensor cloud; IoT cloud; sensing as a service;
multiple applications

1. Introduction

Recently, the integration between Internet of Things (IoT) with the cloud (IoT-Cloud or
sensor-cloud) has received significant interest from both academia and industry [1–4]. The integration
is motivated by taking advantages of powerful processing and storage abilities of cloud computing
for sensing data. By enabling such an integration, sensing-as-a-service (SSaaS) enables the cloud to
provide sensing data to multiple applications at the same time. In addition, constrained sensor nodes
can transfer processing tasks to the cloud to save energy .

Some initial studies have been conducted toward detailed design for IoT-cloud as discussed
in detail in the next section. For example, in [1,2,5–7], the authors present architectural design for
IoT-cloud. Sensor virtualization and pricing model are discussed in [8,9], while the studies [10–12]
propose various approaches to optimize data delivery from physical wireless sensor networks to
the IoT-cloud.

Although the above studies discuss how to integrate sensors with the cloud and how to distribute
sensing data efficiently, few works are investigating how the sensor–cloud integration can help
improve energy efficiency for resource constrained sensor nodes. In the previous work [3], we design
a framework to enable the IoT-cloud to minimize the number of requests sent to shared physical sensors
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in the scenarios of multiple applications so that energy consumption of sensors are optimized while
their sensing services still meet requirements of applications. Although some methods like request
aggregation [3] or data caching [12] may help reduce data transmission, sensors are still required
to transmit their data regularly. For example, in the conventional periodic sensing data collection
model [3,13], sensors are required to report their sensing data periodically regardless of whether or
not there are demands for their sensing services. Such a continuous sensing report without awareness
of sensing demands leads to unnecessary energy loss due to redundant transmission.

In many mobile cloud computing applications such as networked robots, vehicular safety, e-health,
and personal cyber-physical systems, location of mobile users are normally known by the cloud
(i.e., by tracking using GPS or various location tracking schemes [14–16]). Therefore, when the mobile
users request for sensing services, the cloud can know their location of interest. As a result, the cloud
has knowledge for which location sensing services are required and in which locations sensing services
are not required. For such a promising application field, the location-based on-demand interactive
model between IoT and cloud can be applied, and thus need to be modeled.

This paper presents a location-based interactive model for IoT-cloud in which sensing data
collection of sensors is triggered only on-demand based on mobile users’ location of interest. The model
enables on-demand interaction between cloud and IoT, and exploits the cloud’s capabilities as
a coordinator to save energy for resource-constrained sensors through controlling scheduling of
sensors. The on-demand sensing services controlled by the cloud offer three main benefits: (1) sensors
only work when needed; (2) sensing data is gathered on demand based on applications’ interest,
so data redundant is reduced; and (3) sensing service quality (i.e., latency, sensing interval) can be set
on-demand based on requirements of application users. We provide a comprehensive analysis of the
model in comparison with the periodic sensing model under various parameters to explore when the
location-based model performs better than the periodic model.

In summary, this paper makes the following contributions:

• We model a location-based interactive approach for IoT-cloud to served mobile cloud
computing applications;

• We present an on-demand scheduling scheme for WSNs on the top of the model. In the scheme,
the cloud plays a role as a controller that schedules sensing operations of WSNs based on mobile
users’ location on demand;

• Through comprehensive analysis and experiments, we show that the location-based model
achieves a significant improvement in terms of energy efficiency and network lifetime compared
to the periodic sensing model.

The rest of this paper is organized as follows. Section 2 discusses related works. Section 3 presents
the location-based model. Section 4 describes analysis and shows experimental results. Finally,
Section 5 concludes the paper.

2. Related Work

IoT-cloud, in other words, the sensor-cloud, has been recently proposed as a promising approach
that has been receiving great interest [1–3,5–7] from researchers. Although there are several main
studies discussing architecture designs of IoT-cloud, their basic design is quite similar. In the IoT-cloud,
physical sensors are virtualized into virtual sensors on the cloud. Physical sensor nodes are responsible
for sensing and forward their sensing data to the cloud. The IoT-cloud provides sensing services
directly to multiple users/applications through virtual sensors. Users/ applications request for sensing
services on demand from the IoT-cloud. A number of initial studies have been conducted toward
detailed design for the IoT-cloud.

In [5], Madria et al. propose an architecture for the sensor-cloud based on virtual sensors that
are built on top of physical sensors. The purposes are for enhancing sensor management capability
and enabling sensing data shared across multiple applications. In [2], Fazio et al. propose two models
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for IoT-cloud including a data-centric model and a device-centric model. In the former, the IoT-cloud
offers only data to its users without exposing lower physical networks. In this model, the cloud
collects physical sensing information and structures them using a uniform format to deliver to end
users. In the latter, the IoT-cloud allows its users to customize virtual sensing infrastructure based on
their purposes.

To optimize sensing data delivery from physical wireless sensor networks to the IoT-cloud, several
studies have been investigating the issue. Misra et al. [10] design a framework using a zero-sum model
for sensors to select an optimal gateway to forward their data to the cloud. The gateway selection
model is mainly built based on the available bandwidth. Chatterjee et al. [11] discuss an optimal
decision rule to select intermediate nodes for sensors to forward sensing data to the cloud. The decision
rule is made based on different factors including Euclidean distance and energy budget. In another
work [12], the same authors propose using internal and external caching techniques to save energy.

For operations of the IoT-cloud, an efficient composition method for virtual sensors is required.
In [8], the authors propose two different approaches to efficiently virtualize physical sensors into
virtual sensors. An optimal pricing model for the IoT-cloud is also introduced in [9]. According to
the pricing model, the price of a sensing service is proportional to a number of resources it consumes.
As sensors are resource constrained devices, efficient usage of sensor resources is very important to
make sensing services competitive.

To further optimize resource consumptions of sensors, this paper discusses a location-based
interactive model for the IoT-cloud, which enables on-demand interaction between cloud and
WSNs-based location of mobile users, and exploits cloud capabilities to save energy for sensor nodes
by on-demand scheduling.

3. The Location-Based Interactive Model

In this section, we describe the interactive model. First, we define main entities and functions
used in the model, as shown in Figure 1.

Cloud

Application 1 Application 2 Application N

User 1 User 2

...

User M

Location L1 Location L2 Location Lm...

Physical WSNs

Figure 1. Location based IoT–cloud integration.
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3.1. Entities

Physical Wireless Sensor Networks: A wireless sensor network consists of physical sensor nodes.
Each sensor node is characterized by the following properties: ID, type iτ , location L, and the state.

Definition 1. Each physical sensor node i associates with a type iτ that describes its sensor type , with
iτ ∈ τ = {τ1, τ2, ..., τN}, where τ is a set of N registered sensor types.

Definition 2. After deployment, a physical sensor node registers its location with the cloud. Location
Li = {xi, yi} of a sensor node i describes the latitude and longitude of the node.

Definition 3. During the lifetime, a sensor node may be in an active state (denoted by 1) or inactive state
(denoted by 0). The state of a node i is denoted by iς.

By our definition, a physical sensor i is modeled as follows:

i = (iID, iτ , iL, iς), iτ ∈ τ, iθ ∈ Θ.

Cloud: A cloud c is characterized by the following properties: ID, resources, QoS, and price.
A cloud c may provide sensing service for a set of τ sensor types from Θ WSN owners. Note that this
paper does not consider selective model for clouds, so we do not cover properties of a cloud in detail.
In the IoT-cloud, sensors are virtualized into virtual sensors. We model a function that maps a physical
sensor or a set of physical sensors ζ to a virtual sensor or a set of virtual sensors γ as follows:

fphy−>vir(ζ) = γ. (1)

In our previous design [3], virtual sensors are managed by the virtual sensor manager and
mapped to physical sensors by the physical sensor manager. Note that with a huge storage capability,
a cloud can also act as a sensor database to provide historical sensor data services upon the demand
of applications. Such a historical sensor data service can be provided directly by the sensor cloud
to applications and can be built simply as a web service application. In this work, we focus on the
interactive model between WSNs and the cloud, and historical sensor data services are out of the scope
of this paper.

Application: Application α is characterized by the following properties: ID, a set of sensor data
of interest, the region of interest, and QoS requirements (i.e., delay, sensing interval).

Definition 4. An IoT-cloud application α may be interested in a set of sensor data types αSI for its operations.
These data may be requested by mobile users based on the user’s location. We later provide a function to map αSI
of an application to τ of a cloud.

Definition 5. An application α is deployed to work in a limited region, called a region of interest
αRI = L1, L2, L3, L4. The region of interest consists of locations of four points that bound the region.

Definition 6. Each application α may have different QoS requirements αQoS for sensing data such as delay or
sensing interval. Based on these requirements, an application may find an appropriate cloud service provider.
Note that the price is normally proportional to the sensing data quality.

As a result, an application α is modeled as follows:

α = (αID, αSI , αRI , αQoS).

Mobile User: A mobile user µ is characterized by the following properties: ID (i.e., device ID),
application IDs µAppIDs , current location Lcurrent

µ . Note that a mobile user may use one or multiple
applications. A mobile user is modeled as follows:
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µ = (µID, µAppIDs, µcurrent
L ).

We highlight that in one sensing area, there may be several mobile users who need the same
sensing information.

3.2. Mapping Functions

We model a set of functions that used to integrate the IoT and cloud based on the location of
mobile users.

Function 1: When an application α is registered with an IoT cloud, a function f (αSI) to map
sensors of interest of the application to a set of actual sensor types τ∗α ⊂ τ within its region of interest
αRI is modeled as follows:

f1(αSI) = τ∗α = (τj : τj ∈ τ). (2)

Function 2: The IoT-cloud then allocates a set of virtual sensors with the same types of τ∗α that
are responsible for providing sensing data of the types of τ∗α in αRI . An allocation function is defined
as follows:

f2(αRI , τ∗α ) = γ∗α(γj : γj−>type ∈ τ∗α andγj−>location ∈ αRI). (3)

These virtual sensors are assigned to provide sensing services for the the application α.
Sensing services in our IoT-cloud paradigm for mobile computing applications are provided

based on the location of mobile users. Based on the location of mobile users, specific virtual sensors
and physical sensors will be assigned on-demand. Assume a user µ is using an application α provided
by the cloud. The application sends a request to the cloud for sensing data. The cloud first checks
whether or not the current location of the mobile user µ is within the registered location of interest of
the corresponding application αRI .

Function 3: If µcurrent
L ∈ αRI , a specific subset of virtual sensors that are responsible for that area

will be determined to serve the user:

f3(µRI , γ∗α) = γ∗µ(γ
∗
µ ∈ γ∗α&γj−>location ∈ µRI), (4)

where µRI is the region of interest of the user µ with a radius of R around his location. The specific
range R around the current location of µ depends on applications, which is not covered in this paper.

The cloud can reversely map the set of virtual sensors γ∗µ to a set of corresponding physical
sensors ζµ. We model the reserved mapping function as follows:

fvir−>phy(γ) = ζ = f−1
phy−>vir(ζ). (5)

We now discuss two interactive models for physical WSNs with the cloud. In the first model, the
sensor periodically reports sensing data to the cloud. In the second model, sensors are scheduled to
report sensing data on-demand based on the location of mobile users.

Function 1: When an application α is registered with an IoT cloud, a function f (αSI) to map
sensors of interest of the application to a set of actual sensor types τ∗α ⊂ τ within its region of interest
αRI is modeled as follows:

f1(αSI) = τ∗α = (τj : τj ∈ τ). (6)

Function 2: The IoT-cloud then allocates a set of virtual sensors with the same types of τ∗α , which
are responsible to provide sensing data of the types of τ∗α in αRI . An allocation function is defined
as follows:

f2(αRI , τ∗α ) = γ∗α(γj : γj−>type ∈ τ∗α andγj−>location ∈ αRI). (7)

These virtual sensors are assigned to provide sensing services for the application α.
Sensing services in our IoT-cloud paradigm for mobile computing applications are provided

based on the location of mobile users. Based on location of mobile users, specific virtual sensors and
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physical sensors will be assigned on-demand. Assume a user µ is using an application α provided
by the cloud. The application sends a request to the cloud for sensing data. The cloud first checks
whether or not the current location of the mobile user µ is within the registered location of interest of
the corresponding application αRI .

Function 3: If µcurrent
L ∈ αRI , a specific subset of virtual sensors that are responsible for that area

will be determined to serve the user:

f3(µRI , γ∗α) = γ∗µ(γ
∗
µ ∈ γ∗α&γj−>location ∈ µRI), (8)

where µRI is the region of interest of the user µ with radius of R around his location. The specific range
R around the current location of µ depends on applications, which is not covered in this paper.

The cloud can reversely map the set of virtual sensors γ∗µ to a set of corresponding physical
sensors ζµ. We model the reserved mapping function as follows:

fvir−>phy(γ) = ζ = f−1
phy−>vir(ζ). (9)

We now discuss two interactive models for physical WSNs with the cloud. In the first model, the
sensor periodically reports sensing data to the cloud. In the second model, sensors are scheduled to
report sensing data on-demand based on the location of mobile users.

3.3. Periodic Sensing Model

In the current IoT-cloud model [3], sensors periodically report sensing data to the cloud without
awareness of location and demand of mobile users. The advantage of this model is that sensing data
can be updated to the cloud periodically so that sensing data are highly available to users.

However, we argue that this approach has the following limitations: (1) sensors report sensing data
periodically without knowledge about demand of users, so a high volume of data may be redundant;
(2) waste storage in cloud; (3) high energy consumption required by sensors; and (4) sensing data are
collected with a predefined fixed QoS metrics only (i.e., delay, sensing rate). The type of model may
be suitable for applications having fixed QoS requirements only while in practical applications and
users may have different requirements. In many applications, sensing data are requested on demand
in the context of users. When there is no demand from users, continuous sensing report is obviously
unnecessary and inefficient for resource-constrained sensors.

3.4. Location-Based On-Demand Sensing Model

Based on the proposed model above, we propose a location-based on-demand sensing model
to enable the cloud to interact with WSNs on demand based on mobile users’ location. In particular,
this model schedules a sensing data report of sensors based on demand and location of mobile users.
When there is no request from mobile users, inactive transmission mode is set to sensors to save energy.
When there is a mobile user request from a specific area, only sensors in the area belonging to the
user’s region of interest are activated to provide sensing services. As sensors are activated on demand,
specific requirements of applications and users can be triggered.

The model exploits the cloud’s capability to trigger sensing in sensor nodes on demand.
We assume that in mobile computing applications, the cloud has the ability to track location of
users and knows when a user needs sensing data as well as at which location (i.e., by tracking using
GPS or various location tracking schemes [14–16]), we propose to use the cloud as a coordinator
to control scheduling of physical sensor nodes on demand. In particular, based on requirements
of applications and current location of a mobile user, the cloud makes a scheduling request to a
sensor network near the user to serve. The detail of the on-demand location-based scheduling scheme
(Algorithm 1) is presented below.
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Algorithm 1 On demand location-based scheduling scheme for WSNs
Step 1: cloud c− > current location of mobile user µ
Step 2: cloud c− > allocates a set of virtual sensors and reversely map to a set of physical sensor
nodes ξµcurrent

L
which matches with interest of the application and the user, using the above functions

Step 3: cloud c− > makes a schedule for the sensor nodes based on current location and requirements
of the mobile user
Step 5: cloud c− > sends a scheduling request to a corresponding base station BS
Step 6: BS− > broadcasts the scheduling request to corresponding sensors.
Step 7: nodes that receive the scheduling request set their own schedule based on the request.
Step 8: when the user moves out of the area, cloud c sends a request to cancel the scheduling request
for the set of sensors.

In our algorithm, if a node is set to be active, its parent nodes on the route to the cloud through
the sink must be active too to enable the node forward sensing data. It does mean that the scheduling
algorithm above has to maintain a connected graph of active sensors and the sink. We assume that
locations of sensors are known and managed by the cloud. Based on location information, request
packets can be forwarded from the sink to sensors efficiently using region and location-based routing
protocols [17–19].

3.4.1. Selective Nodes for Transmission

In wireless sensor networks, sensors are normally deployed densely and some nodes may obtain
similar information. If the cloud requests all nodes within the region of interest to report sensing
data, a great amount of data may be redundant. In our model, homogeneous virtual sensors from the
same geographic region with similar sensing patterns are grouped into one cluster (i.e., corresponding
to the same cluster for physical nodes) by the cloud. The similarity depends on the requirement
of applications. We assume applications allow a sensing data error of err. The cloud then groups
sensors whose sensing values’ difference is lower than or equal to err, into a cluster. For example, two
temperature sensors having similar sensing patterns with the difference of temperature values of 0.2 ◦C
can be grouped into one cluster if the requirement of applications for err is greater than 0.2 ◦C. In this
case, only one of the two nodes is required to report sensing data at a time to eliminate data redundancy.
Sensors within a cluster produce similar data, so if they all report their data, a high redundancy will
occur. Therefore, in each round, the cloud selects only one virtual sensor (i.e., corresponding to one
physical node) within a cluster to serve mobile users to eliminate redundancy. Other sensors of the
same cluster can sleep to save energy. For energy balancing, each node in a cluster is responsible as the
active node for reporting data in one round if there are sensing demands. The role of active node is
switched after each round (i.e., the length of one round is normally quite long, and equals a number of
request intervals). For example, we assume that there is a cluster of four nearby temperature sensors
that produce similar sensing data. It is inefficient when all four of the sensors are required to be active
and transmit their data to the sensor cloud. In our model, only one of the four nodes is required to
be active and report its sensing data to the cloud at a time when there are demands. The other three
nodes can sleep to save energy. For energy balancing, in each round, a sensor with the highest residual
energy among the four nodes is selected as the active node.

Note that all operations are executed on the cloud, so no complexity is put into
resource-constrained sensors. We model the cluster discovery of a virtual sensor ν using network
community discovery theory [20]. According to [20], we can define constraints so that the difference
between sensing data ν and other virtual sensors is minimized. Given a set of n virtual sensors
N = 1, 2, ..., n within a geographical region, a virtual sensor ν, determines a cluster Cν and a regression
function ω so that the difference, expressed through the loss function Φ(ν, ω) = Loss(dν, ω(dCν

)),
where d are sensing values, is minimized.
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We assume that ω is linear and Φ is mean square error (MSE). For lowering the difference, we need
to find a group of node Cν ν so that a decision ζ is minimized:

E[Φ(D, ζ)] = E[(Dν − ζT DCν
)2]. (10)

In the formula, Dx is a random vector consisting of Dν. The cluster discovery relies on a given
historical data set consisting of h samples D = [d1d2...dm]. As correlations of nodes may change over
time, the cluster discovery is updated periodically every round. We can apply a heuristic solution to
discover a decision ζν based on the given data set so that it can obtain the number of zero entries of ζ

as high as possible. In other words, we should look for a sparse decision ζν that minimizes the mean
square error (MSE) and the L1 norm. This is a typical Least Absolute Shrinkage and Selection Operator
(LASSO) problem [21], which can be solved easily by using a LASSO parameter ρ as follows:

minimize{ρ ‖ ζk ‖1 +1/2 ‖ d[−ν]ζν − dν ‖2
2}. (11)

As a result, the cluster Cν is discovered as a set of virtual nodes with non-zero entries of ζν.
The parameter ρ is used to control the expected error as well as the sparsity of ζ—in other words,
the size of Cν. To meet the requirement of applications and to find the largest cluster, ρ is actually the
allowed error err.

3.4.2. Multiple Mobile Users within a Geographical Region

The IoT cloud tracks all mobile users who are currently using sensing services in a geographical
region. When the cloud receives a request from a new user, it first checks if there are available data
from the region of interest requested by other users. If there are available data meeting requirements
of new users, the cloud reuses the data for later coming users.

4. Performance Evaluation

This section presents analysis and evaluation for the model. We compare the performance of the
location-based model with traditional periodic sensing WSNs. In our evaluation, we focus on energy
efficiency and network lifetime of WSNs. In both cases, we assume that WSNs operate in duty cycle
mode using a low power listing (LPL) protocol [13] and the base station is always on.

4.1. Performance Analysis

A sensor node mainly consumes energy for transmitting (tx), receiving (rx), listening (lx), sensing,
and computing. The analysis for energy consumption is as follows:

E = Elx + Etx + Erx + Esensing + Ecomputing.

We translate the energy consumption metric to average duty cycle DC as an indicator for energy
efficiency. The reason is that duty cycle is mostly hardware independent and easier to reproduce results:

DC = DClx + DCtx + DCrx + DCsensing + DCcomputing,

where DClx, DCtx, DCrx, DCsensing, and DCcomputing are ratio of amount of time per a second a sensor
node spends for listening, transmitting, receiving, sensing, and computing. The detailed medium
access control (MAC) configuration and traffic model for sensors are presented in our previous
work [13].

To keep the analysis tractable, we use a concentric circular ring network (CCR) model [13] with
the sink as the center for the network deployment in each region. The sink node interconnects sensors
to the cloud. Nodes communicate with each other based on a unit disk graph model. Sensors are
uniformly deployed to achieve the same density with D + 1 nodes per a unit disk (i.e., D neighbors
per node).



Sensors 2017, 17, 489 9 of 15

Each CCR h consists of sensor nodes with the same minimum hop count h to the sink. The number
of sensors in the first CCR is equal to the number of sink’s neighbors. Based on that, we calculate the
number of nodes Nh on the CCR hth as follows:

Nh =

{
1, if h = 0,
Dh2 − D(h− 1)2 = D(2h− 1), otherwise.

(12)

Nodes on the hop (h + 1) are children of nodes on the hop h. As each node determines one parent
node, we can calculate the average number of child nodes |Ch| of a node in hop h:

|Ch| =


0, if h = hmax,
D, if h = 0,
Nh+1/Nh = (2h + 1)/(2h− 1), otherwise,

(13)

where hmax indicates leave nodes.
We call Fsel f as traffic generated by a node, and Fin(h) as the average input traffic rate of a node at

hop h. The average output traffic rate of the node Fout(h) can be computed by adding Fsel f and Fin(h):

Fout(h) =

{
Fsel f , if h = hmax,

Fin(h) + Fsel f , otherwise.
(14)

The input traffic rate at a node in CCR h is the total of output rate at its input links produced by
its child nodes. Therefore, we can calculate the output traffic rate of a node Fout(h) at hope h as the
cumulative traffic of nodes from leaves to nodes at level h + 1 on its route and its self-generated traffic
as follows:

Fout(h) = Fsel f (h2
max − h2 + 2h− 1)/(2h− 1). (15)

It does mean that a node at hop h is responsible for carrying out traffic for C = (h2
max − h2 + 2h−

1)/(2h− 1) nodes under its route.
Duplicate sensing data depends on the deployment of sensors. We assume that the average size

of a cluster is X (i.e., each node has similar sensing pattern with (X − 1) other nodes). Each node
has an initial energy of E0. Periodic sensing interval of a node used in the periodic sensing model
is Iperiodic while we denote Irequest as the average request interval of mobile users for a specific node.
The main difference of energy consumption between the two models comes from packet transmitting
and receiving. To keep the analysis tractable, we mainly focus on these two factors in calculating the
energy consumption of sensors in the two models for comparison. Note that, for a fair comparison,
we do not assume any type of aggregation applied for both of the models.

Energy consumption rate of a node in the periodic model is:

Eperiodic =
1

Iperiodic
(C + 1)Tx + CRx, (16)

where Tx and Rx are energy consumption rate for each transmitting and receiving time.
The estimated network lifetime L for a node using the periodic model is

L =
E0

Eperiodic
=

E0 × Iperiodic

(C + 1)Tx + CRx
. (17)

Energy consumption rate of a node in the location-based model is:

Elocation =
1

Irequest

1
X
{(C + 1)Tx + CRx + Es}, (18)



Sensors 2017, 17, 489 10 of 15

where Es is the scheduling cost if the node has to relay scheduling requests. This cost also depends
on Irequest.

The estimated network lifetime L for a node using the location-based model is

L =
E0

Elocation
=

E0 × Irequest × (X)

(C + 1)Tx + CRx + Es
. (19)

The packet delivery latency L regarding to LPL protocol [13] is analyzed as follows:

Lh = (h− 1)(IW/2 + Tpkt) + Tpkt, (20)

where h is the number of hops to the sink, IW is sleep interval, and Tpkt is the time period to transmit a
data packet. The detailed analysis and results for latency can be found in [13]. We calculate the above
parameters based on default values of the TOSSIM radio model for CC2420 used in [13].

Each model has a different policy for periodic wakeup, sensing, and packet transmitting
as follows.

The Periodic Model: In the periodic model, a node periodically wakes up, performs sensing,
processing, and transmits sensing packets to the cloud. In this model, WSNs may be deployed without
prior knowledge of where and when a user may request sensing data. They are set beforehand with a
reasonable wakeup interval IW and sensing data report interval IS for the trade-off between energy
efficiency and requirements of general applications (i.e., in default LPL setting, IWSN

W = 0.5 s is used
and IWSN

S = 10 s is popularly used).
The Location-Based Model: In the location-based model, because the cloud is aware of the

location of users and when sensing data is requested in a region of interest of an application, it can
control when a sensor needs to provide sensing service and at which rate to meet requirements of
served applications. According to state-of-the-art localization and prediction algorithms, the cloud
can track and estimate the near future (i.e., a few seconds or even more) locations of mobile users.
The cloud sends scheduling requests to WSNs to enable them to be available to serve mobile users
when the users enter their region of interests. For example, when there is no user demand, WSNs
can be set with Iquiet

W = 1 s and Iquiet
S = ∞. With a longer sleep interval and without a need for data

packet transmission when there are no serving requests, the model helps save energy for constrained
sensor nodes. When a mobile user requests sensing data from a WSN, sensors can be scheduled to
wake up more frequently (i.e., Iserving

W = 0.25 s or even always on) and perform high sensing rate

(i.e., Iserving
S = 1 s or even lower) depending on requirements of the application, to serve mobile

users. With lower sleep interval and higher sensing rate settings on demand, the model can provide a
better quality of sensing information to applications and users. In summary, the main benefit of the
proposed work is that based on knowledge of the cloud about where and when sensing services are
required, WSNs are scheduled to (1) save as much energy as possible during quite time periods and
(2) be available to serve users on demand with a high quality of information based on requirements
of applications.

4.2. Numerical Results

In this section, we present the analysis and experimental results of the two models. Detailed
parameter specification is given in Table 1. Other parameters are set to the default values of the
TOSSIM simulator radio model for CC2420, inherited from our previous work [3]. To measure the
duty cycle, we record changes in the radio’s states and use a counter to accumulate the time period
used in each state.
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Table 1. Parameters.

Parameter Value Parameter Value

Data packet length 32 bytes Nodes 100
Carrier sensing 2.5 ms Sensing 2 ms

IWSN
W 0.5 s IWSN

S 10 s
Iserving
W 0.25 s Iserving

S 1 s
Iquiet
W 1 s Iquiet

S ∞
Θ 1–5 # of apps 1–5

Irequest 10 s–10 min Trequest 4 s
h 5 # of nodes 126
ρ 0.5 Tpkt /byte 0.032 ms

Figure 2 shows average duty cycle results in various request interval values. While the duty cycle
result of the location-based model highly depends on the request interval value, that of the periodic
model is independent to the request interval. In the periodic model, sensors keep reporting their
sensing data regardless of whether or not there are demands. On the contrary, energy consumption
in the location-based model is proportional to the request frequency of mobile users. When there are
high demands (i.e., short request interval), sensors have to transmit their sensing data more frequently.
Therefore, higher duty cycle results are observed. If a high frequency of requests is sent (i.e., request
interval of 10 s), average duty cycle of the location-based model is even higher than the periodic model
(i.e., with periodic interval of 20 s). In this case, using a periodic model may be more beneficial in terms
of energy consumption for sending requests. When the request interval increases, average duty cycle
result of the location-based model is inversely proportional. At the request interval of 30 s, duty cycle
result of the location-based model is considerably lower than that of the periodic model. After that,
the average duty cycle result of the location-based model significantly drops to around 3% when the
request interval is increased to 6 min, compared to 8% of the periodic model.
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Figure 2. Average energy consumption under various request intervals.

Figure 3 presents the performance behavior of the two models under different average cluster
sizes—in other words, under different correlation levels of sensing data among nodes. In the periodic
model, every node periodically reports its data to the cloud without knowing there are demands or
not. In the location-based model, the cloud plays a role as the controller who controls which nodes are
required to report their data under specific requests of mobile users. Therefore, the cloud can reduce
data redundancy by minimizing the number of nodes that produce similar sensing data required to
report their data at the same time. In this way, the model can achieve more energy savings compared to
the periodic model under equivalent conditions (i.e., request interval, packet size, low power listening
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mode, etc.). Energy efficiency of the location-based model is proportional to the average cluster size.
At a cluster size of 1, the two models witness a small difference in the average duty cycle results.
The energy efficiency of the location-based model is increased significantly when we increase the
average cluster size from 1 to 3. This result indicates that the location-based model is more effective in
cases of dense network deployment with high redundancy.
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Figure 3. Average energy consumption under various cluster sizes.

Figure 4 provides how much improvement in terms of the network lifetime that the location-based
model achieves compared to the periodic model. Note that the network lifetime in this paper is defined
as the lifetime of the network until there is at least one node out of battery. The network lifetime
improvement of the location-based model compared to the periodic model is proportional to the
request interval. In particular, the improvement increases from only 4% to more than two times when
the request interval increases from 10 s to 6 min.
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Figure 4. Network lifetime improvement vs. request intervals.

Similar to Figure 4, Figure 5 shows the network lifetime improvement of the location-based model
under various cluster sizes. The stronger the data correlation among sensors in a network, the greater
the network lifetime improvement that the location-based model can achieve.
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Figure 5. Network lifetime improvement vs. cluster sizes.

Scenarios with High Error Localization Systems: In this paper, we assume mobile devices have
GPS or use location tracking services like StarTrack. The accuracy of the current localization techniques
is good enough for our model as well as similar existing location-based applications like mobility
pattern monitoring of moving objects in large cities [22], continuous multi-dimensional context and
activity recognition [23], criminal tracking, autonomous car navigation and obstacle avoidance [24,25].
Real-world data from the Federal Aviation Administration show that their GPS attains better than
2.168 m accuracy with a 95% confidence level [26]. Higher accuracy is attainable by using GPS in
combination with augmentation systems that enable real-time positioning to within a few centimeters.

In cases of a high error localization system, the model can still ensure the region of interest of a
user by compensating for the localization error into the region of sensor data collection. We conduct
a simple analysis for illustration. Given a sensor network deployment area has a number of sensors.
The average distance between two sensors is 8 m and the transmission range is 10 m. The average
cluster size is 3. The region of interest of a user has a radius of 50 m.

We assume the error of the used localization technique is 10 m. To ensure the user’s region of
interest, the model collects sensor data in a region of 60 m (i.e., 50 m + 10 m). In this case, more nodes
are required to be involved in providing sensing data collection. As a result, energy efficiency of the
proposed model is reduced by 12%, compared to the case of an accurate localization system. Although
the improvement ratio is reduced due to a high localization error, energy efficiency of the proposed
model is still significantly better than the conventional model.

5. Conclusions

This paper proposes a location-based sensing model for mobile cloud computing applications,
in comparison to the conventional periodic sensing model. In the proposed location-based model,
the IoT-cloud provides sensing services on demand based on interest and location of mobile users.
Based on mobile user location tracking, the IoT-cloud plays a role as a controller, which makes
schedules for physical sensor networks on-demand. In this way, resource-constrained sensors are
required to report their sensing data only when there is a mobile user entering their region and
requesting for sensing data. Otherwise, they are set in power saving mode to save energy. Through
analysis and experimental results, we show that the proposed location-based model improves the
network lifetime of wireless sensor networks significantly.
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