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Abstract: Localization in wireless sensor networks (WSNs) is one of the primary functions of
the intelligent Internet of Things (IoT) that offers automatically discoverable services, while the
localization accuracy is a key issue to evaluate the quality of those services. In this paper, we develop
a framework to solve the Euclidean distance matrix completion problem, which is an important
technical problem for distance-based localization in WSNs. The sensor network localization problem
is described as a low-rank dimensional Euclidean distance completion problem with known nodes.
The task is to find the sensor locations through recovery of missing entries of a squared distance
matrix when the dimension of the data is small compared to the number of data points. We solve
a relaxation optimization problem using a modification of Newton’s method, where the cost
function depends on the squared distance matrix. The solution obtained in our scheme achieves
a lower complexity and can perform better if we use it as an initial guess for an interactive local
search of other higher precision localization scheme. Simulation results show the effectiveness of
our approach.

Keywords: Internet of Things; wireless sensor network; localization; Euclidean distance matrix
completion; semi-definite programming; modified Newton method

1. Introduction

1.1. Localization in Wireless Sensor Networks

Localization of sensor nodes is a challenging issue in wireless sensor networks (WSNs) for
intelligent Internet of Things (IoT). Localization systems are not only for location identification but
also provide information for routing, density control, tracking and a number of other communication
network applications which integrate in many technologies of IoT. In general, the sensor positioning
process has two steps. First, we choose the signal parameters to describe the location information
between sensors. Second, we use some parametric methods for estimating the sensor positions based
on the signal parameters in the first step. For the first step, GPS-based localization systems have
a high degree of accuracy and offer global location information. However, alternative solutions
for GPS are required, which are cost effective, rapidly deployable and can operate in diverse
conditions, especially for indoor or non-line-of-sight environments. For these reasons, more suitable
localization algorithms for WSNs need to be investigated. Some existing localization approaches such
as time-of-arrival (TOA), time-difference-of-arrival, and angle-of-arrival achieve accurate localization
results, but require high cost, complicated timing and synchronization. On the other hand, received
signal strength (RSS) measurements are quite simple to obtain [1–3].

In this paper, we study sensor network localization problems in embedding dimension, given
anchors and the RSS information between sensors. The anchors are located at fixed known
sensor positions, and distances between unknown sensors and anchors are estimated from RSS
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measurements. Our goal is to approximate all sensor locations by using only a partial Euclidean
distance matrix for the second step. Recently, many solution techniques for this problem have been
proposed, such as semidefinite programming relaxation (SDP) and solvers [4–6], multidimensional
scaling (MDS) and its improvements [7–9], heuristics [10], Euclidean distance matrix completion
(EDMC) [11], to name a few. However, most of previous approaches are not scalable and require high
computational complexity, so that we try to reduce computational complexity by using a modified
iterative Newton’s algorithm for a cost function.

Notations: The following notations are used throughout our paper. (·)T and (·)−1 denote the
transpose and the inverse operations. ◦ denotes the Hadamard product. || · ||2 and || · ||F denote the
`2-norm and the Frobenius matrix norm, respectively. The notation w ∼ N (µ, σ2) means that w is
distributed according to the normal Gaussian distribution with the mean µ and the covariance σ2. The
operator diag(A) returns a column vector of the main diagonal elements of the matrix A. For vectors,
arg min(x) returns the indices of the smallest elements in x. For two arbitrary symmetric matrices A
and B, A � B means A− B is positive semidefinite. grad f and Hess f denote the gradient and the
Hessian vectors representing the first and the second partial derivatives.

1.2. Euclidean Distance Matrix Completion

Consider a set of n points (or sensors) with locations x1, · · · , xn ∈ Rr (in practice, r = 2 or 3).
Denote D ∈ Rn×n as an Euclidean distance matrix whose entries are the squared pairwise distances
between n points by setting

Dij = ||xi − xj||22 (1)

It is easy to see that the rank of D is upper bound by r + 2 which is very small compared to the
number of data points n, especially when n becomes large. The set of all Euclidean distance matrices
in Rn×n is denoted as EDM(n). We associate a weighted undirected graph G = (V, E, W) with D,
where the vertex set V = {1, · · · , n}, the edge set E = {(i, j) : i 6= j, and D is specified}, and the
positive edge weight W = (wij) with wij =

√
Dij for all (i, j) ∈ E. Let H be the matrix whose

entries are

hij = hji =

{
1 if (i, j) ∈ E

0 otherwise
(2)

Given the observation data D̃, the low-rank distance matrix completion problem states as

min
D∈EDM(n)

||H ◦ (D̃−D)||2F (3)

To find out the relationship between positive semidefinite matrices and Euclidean distance
matrices, let

P =

xT
1
...

xT
n

 and Y = PPT (4)

Then, we can observe that
Dij = Yii − 2Yij + Yjj (5)

Hence, D = κ(Y), where κ(·) is a linear map defined as

κ : Sn → Sn

Y 7→ κ(Y) = diag(Y)eT + e diag(Y)T − 2Y
(6)
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Here, Sn = {Y ∈ Rn×n : Y = YT} and e ∈ Rn is the vector of all ones. The problem Equation (3)
is equivalent to

min
Y�0,Y∈E

||H ◦ (D̃− κ(Y))||2F (7)

Since rank(D) ≤ r + 2, we can solve a sequence of non-convex problems as the following rank
constrained semidefinite optimization problem

min
Y�0,Y∈E

||H ◦ (D̃− κ(Y))||2F

subject to rank(Y) = ρ
(8)

By screening the value from ρ = 1 to ρ = r + 2, the solution presented in [12] guarantees a
monotonic convergence to the original solution of Equation (7).

1.3. Contribution of the Paper

In order to solve Equation (7), several approaches have been studied in [4–9]. The conventional
MDS method transforms the pairwise distance information into the relative coordinates of sensor
nodes [4–6]. Thus, the global solution only obtained when we use all pairwise distance measurements
of sensors, which is impractical. To overcome this problem, the authors in [7,8] proposed the
distributed weighted MDS (WMDS/dwMDS) method, while the authors in [9] proposed the
MDS-MAP. Both methods are basically based on either the linearized least square estimator for TOA
information or the biased RSS-based estimators, so that the estimated solutions can be obtained
explicit and much easier than the conventional MDS. However, their accuracy is not good when the
variance of the measurement noise is large.

In this paper, our goal is to design a numerical estimator especially for the RSS-based localization
systems. This estimator is based on the RSS measurements rather than pairwise distance information.
We first formulate the sensor localization problem as a relaxation of SDP, then the solution can be
numerically obtained via a modification of the Newton’s method as long as the RSS measurements
are valid. This result is mainly used for coarse localization strategy, i.e., reducing the region of
interest and computation time for the fine localization stage, where the estimated solutions can be
used as a starting point for other fine localization algorithms such as dwMDS and MDS-MAP, etc.
This localization scheme provides a low-cost, low-complexity, and easy-implementation solution,
thus there also exists tradeoff between the location accuracy and the computation complexity
compared with other techniques.

The organization of this paper is as follows. In Section 2, we formulate the sensor network
localization problem as a reduction of SDP. In Section 3, we describe our approach for node
localization in WSNs by using a modification of the Newton’s method. Then, numerical evaluation
results are presented in Section 4, followed by concluding remarks in Section 5.

2. Problem Formulation of Sensor Network Localization

Consider a sensor network consisting of n wireless sensors at the locations p1, · · · , pn ∈ Rr,
where r is the embedding dimension. As defined in the previous section, D represents the Euclidean
distances between sensors within given radio range R. The embedding dimension is the smallest
integer r satisfying

r = min{t : ∃p1, · · · , pn ∈ Rr : Dij = ||pi − pj||22, ∀i, j}

We denote the locations of m known anchor nodes as a1, · · · , am ∈ Rr. Let AT = [a1, · · · , am],
and XT = [p1, · · · , pn−m] represents the unknown sensor nodes. In the sensor network localization
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problems, we ignore the distinction between the anchors and the other sensors, hence we identify ai
with pn−m+i (i = 1, · · · , m) and set

PT = [XT AT ] ∈ Rn×r (9)

We also assume that there are a sufficient number of anchors, which makes our problem not be
realized in a smaller embedding dimension.

Denoting the distance between the unknown node i and the anchor j as τij, the corresponding
RSS measurement can be expressed according to the following radio propagation path loss model
in dB’s [13].

Lij = L0 + 10γ log10
τij

τ0
+ νij (10)

where Lij = PT− Pij is the path loss, PT is the transmission power, L0 denotes the path loss value at the
reference distance τ0, γ is the path loss exponent, and νij is a Gaussian random variable representing
the log-normal shadowing effect, νij ∼ N (0, σ2

ij). The distance τij can be computed through the RSS
measurement by the maximum likelihood (ML) estimation. Then, the corresponding ML estimator
τ̂ij is given by [5]

τ̃ij = arg min
τij

[
10γ log10

τij

τ0
− (Lij − L0)

]2

(11)

= τ010(Lij−L0)/10γ (12)

Note that if we define ξij = exp
{

νij
10 log10 e

}
, where e is the Euler’s number, then

10 log10 ξ ∼ N (0, σ2
ij). The Equation (12) can be rewritten as

τ̃ij = τijξ
1/γ
ij = τij

(
exp

{
νij

10 log10 e

})1/γ

(13)

By using the Gaussian moment generating function, we can derive

E(τ̃ij) = τij exp

{
σ2

ij

10γ2 log2
10 e

}
, Var(τ̃ij) = τ2

ij

[
exp

{
σ2

ij

50γ2 log2
10 e

}
− exp

{
σ2

ij

100γ2 log2
10 e

}]
(14)

which shows that the estimator is biased. In order to obtain the unbiased estimator, we let

τ̂ij =
τ̃ij
v where v = exp

{
σ2

ij

200γ2 log2
10 e

}
, which yields the following variance of Var(τ̂ij) =

τ2
ij

[
exp

{
σ2

ij

100γ2 log2
10 e

}
− 1
]

.

After obtaining the estimated distance τ̂ij, we can apply the SDP estimator [6] or its
relaxation [5,14] to reconstruct the distance matrix D from the RSS measurements. By partitioning,
the n× n Euclidean squared distance matrix can be expressed as follows.

D =

[
D11 D12

D21 D22

]
(15)

where D11 is the (n−m)× (n−m) distance sub-matrix between the unknown locations, D21 = DT
12

is the distance sub-matrix between the anchor locations and the unknown locations, and D22 is the
distance sub-matrix between the anchor locations.

However, since at any time an unknown node i is only in the communication range of small
subset of the anchor nodes, the matrix of RSS measurements is partially known. Thus, the matrix D
in Equation (8) is incomplete and is affected by noises, i.e., D̃ = D + N. Our goal is to reconstruct
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the complete distance matrix D from the RSS measurements. From this matrix, we can recover the
unknown node locations. The problem formulation is briefly described as follows. Given A ∈ Rm×r

and n× n distance matrix D̃ with corresponding adjacency matrix H, we need to solve

min
D∈EDM(n)

||H ◦ (D̃−D)||2F (16)

3. Main Results

The problem in Equation (16) cannot be solved easily due to its non-convex nature and high
computational complexity. Then, we try to reformulate it into another form without leaving the
minimum. We suppose that P ∈ Rn×r satisfies Pe = 0 (centroid) and H ◦ (PP)T = H ◦D. Based on
the fact that any rank-r positive semidefinite matrix admits a factorization Y = PPT [11], we rewrite
Equation (16) as

min
D∈EDM(n)

||H ◦ (D̃− κ(PPT))||2F

subject to P =

[
X
A

]
∈ Rn×r, Pe = 0

(17)

For simplicity, let pi = [p(1)i , · · · , p(r)i ], D = [dij], H = [hij], D̃ = [d̃ij], and Y = [yij]. Therefore,
we denote the objective function as

f (P) = ||H ◦ (D̃− κ(PPT))||2F

=
n

∑
i=1

n

∑
j=1

hij(d̃ij − dij)
2

=
n

∑
i=1

n

∑
j=1

hij(d̃ij − ||pi − pj||2)2

(18)

Following Equation (5), we have

dij = yii − 2yij + yjj

=
r

∑
k=1

(p(k)i )2 +
r

∑
k=1

(p(k)j )2 − 2
r

∑
k=1

p(k)i p(k)j
(19)

where i, j = 1, · · · , n. This problem is now reformulated as an constrained optimization for the cost
function Equation (18), which can be solved efficiently by using the Newton’s method [15–17]. One of
the motivations behind this method for optimization is to describe it as a sequence of second-order
Taylor expansions and minimization.

f (P) ≈ f (Pk) + grad f (P(k))Tξ +
1
2

ξT Hess f (Pk)ξ (20)

where ξ = P− Pk. The iteration that computes an approximate solution to the system of equations
grad f (P) = 0, is updated as

Pk+1 = Pk − [Hess f (Pk)]
−1 grad f (Pk) (21)

In practice, one does not compute Pk+1 by explicitly computing [Hess f (Pk)]
−1 and then

multiplying by grad f (Pk), since it is computationally inefficient. Instead, it is more practical to solve
the system of linear equations

Hess f (Pk)ξk = − grad(Pk) (22)
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for unknown ξk. There are also many approaches such as matrix decompositions or other algebra
techniques [18] in calculating [Hess f (Pk)]

−1 to reduce its complexity when computing matrix
operators. In general, the Newton’s method will find the minimum in one iteration and has extremely
fast convergence, if Hess f (·) is positive definite at the minimum and the initial guess for P is close
enough to this point. However, in some cases it may return any critical points of f , that is, minima,
maxima, or saddle points. To avoid these situations, we make some modifications to the Newton’s
method, so that it finds the critical points which are actually the minima.

For search direction, we perform a line search, i.e., for each iteration we solve Equation (22)
and update

Pk+1 = Pk + tξk (23)

where t is small enough to get fast convergence. It can be 1, 1
2 or 2−j, j = 0, 1, 2, · · · for some special

cases [19].
It is also necessary to find an effective method to solve Equation (22). The Cholesky factorization

is one of standard effective methods for solving linear systems compared to the Gaussian elimination
or the LU decomposition. Note that any symmetric and positive definite matrix A can be expressed
as A = LΣLT for some unit lower triangular matrix L and diagonal matrix Σ with positive entries
on the diagonal. For each step, we decompose Hess f (Pk) as Hess f (Pk) = LkΣkLT

k , then solve the
following three sub-equations.

Lkξ
′
k = − grad f (Pk) (24)

Σkξ
′′
k = ξ

′
k (25)

Lkξk = ξ
′′
k (26)

so that ΣkLT
k ξk = ξ

′
k, and LT

k ξk = ξ
′′
k . However, when Hess f (Pk) is not positive definite, a Cholesky

decomposition cannot be performed since its eigenvalues are sometimes very small negative numbers
caused by rounding in computing and noise in the data. To overcome this kind of problems, we
define a positive integer number p to avoid the computation error by replacing Σk by p when Σk is
non-positive definite, and continue the factorization. If the absolute value of grad f (Pk) is small or
Pk+1 is close to Pk, then we terminate Pk+1 as the minimum, otherwise we continue the iteration.
We always wish to construct Pk with the convergence to the minimum at a rapid rate, so that few
iterations are needed until the stopping criterion is satisfied. However, this has to be counterbalanced
with the computation cost per iteration because of the trade-off between fast convergence and higher
computational cost per iteration.

In Equation (17), we can discard the constraint Pe = 0 during the computational process.
The reason is explained as follows. Let us assume that P ∈ Rn×r is partitioned as

P =

[
P1

P2

]

where P1 ∈ R(n−m)×r and P2 ∈ Rm×r. Since H ◦ (PP)T = H ◦ D, we have κ(P2PT
2 ) = κ(AAT).

If ATe = P2e = 0, it imples that P2PT
2 = AAT , i.e., there exists an orthogonal transformation

Q satisfying P2Q = A. It was well-known as the ProCrustes problem [4]. Hence, the problem
Equation (17) becomes an unconstrained optimization and it can be solve efficiently by the modified
Newton’s method. However, the equality constraint Pe = 0 reduces the flexibility of P and can help
the convergence to the global minimum in some cases.

In summary, we use the following procedures to solve the localization problem Equation (17) as
illustrated in Figure 1.
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Initialize
P0, t, ε

Calculate
Hess f (Pk),
grad f (Pk),
and ξk by

solving
(24), (25),
and (26)

Positive number p

Update
Pk+1 by

using (23)

Check tolerance
| f (Pk+1 − f (Pk)| ≤

ε||Pk+1 − Pk||
Stop

Set
k = k + 1

Yes

No

Figure 1. Procedures to solve the localization problem Equation (17).

Remark 1. The modification of the Newton’s method is illustrated by the solution path on the function in [19],
which is able to follow the shape of the U-valley and converges to the minimum using only finite difference
gradients. For the deployment of other adaptive methods for the mesh refinement or the discrete Newton-like
method, we will consider these methods as well as their convergence issues in the future work.

Remark 2. It has been shown that the conventional MDS has the time complexity of O(n3), while the
WMDS [7] performed well for sparse networks but it is about two orders of magnitude slower than the MDS for
larger networks (more than 100 node-networks). This is because the refinement strategy in [7] leads to a tradeoff
between solution quality and computation cost. For the dwMDS algorithm [8], the authors proved that it takes
O(nL + n2LdthredwMDS) time, where L is the number of iterations required until the stopping rule is satisfied,
dthr = O(n1/r) is the threshold distance, and edwMDS depends on dthr in a nonlinear way. A drawback of
the dwMDS is that complexity, convergence time and initial estimate requirements for each transmission time
depend sensitively on heavy weights and range measurement accuracy. For our approach, it can be verified that
the computing for matrix decomposition takes O(nκ), where 1 ≤ κ < 3, thus the total cost can be computed
as O(Knκ), where K is the number of iterations. Thus, our approach compares favorably to the conventional
methods in terms of the complexity.

4. Numerical Evaluation

In this section, the effectiveness of the proposed localization approach based on the modified
Newton’s method is numerically investigated. Moreover, its location estimator is employed and
compared. We consider a WSN consisting of 20 nodes placed in an area [−20, 20]× [−20, 20] m2 with
8 of them are anchors and its geometry is illustrated in Figure 2, i.e., n = 20, m = 8 and n−m = 12.
The anchor locations are (20,20), (−20,−20), (20, 0), (−20, 0), (20,−20), (20,−20), (0, 20), (0,−20). The
unknown sensor locations are randomly placed in this area. The maximum communication range
between the nodes is set to be 25 meters. For the parameters in the path loss model of Equation (10),
L0 = −36.029 dB, γ = 2.386, d0 = 1 meter and σij = σ for i, j = 1, · · · , n. We define the root mean
square error (RMSE) by

RMSE =

(
1

n−m

n−m

∑
i=1
||pactual

i − pestimated
i ||22

) 1
2

(27)
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Figure 2. Geometry of a wireless sensor network for numerical evaluation.

In the first experiment, we investigate the performance of the proposed algorithm as shown
in Figure 3. It shows the effectiveness of the location estimation of our proposed scheme for a single
trial with σ = 3.98 dB [13] in two cases: (a) presence of anchor locations and (b) absence of anchor
locations. By ‘’presence of anchor locations”, we mean that these locations are used in the initial
guess for P, and inverse for ‘’absence of anchor locations” case. A maximum RMSEs of 1.4854 meter
and 1.8833 meter are observed over 100 simulations in Figure 3a,b, respectively. It indicates that better
initial points leads to better final results for our proposed scheme.
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Figure 3. Cont.



Sensors 2016, 16, 722 9 of 11

x (meters)

-25 -20 -15 -10 -5 0 5 10 15 20 25

y
 (

m
e

te
rs

)

-25

-20

-15

-10

-5

0

5

10

15

20

25

actual anchor

actual sensor

estimated anchor

estimated sensor

(b)

Figure 3. Single trial localization performance of the proposed scheme with σ = 3.98 dB. (a) Presence
of anchor locations (See text for details); (b) Absence of anchor locations (See text for details).

For the purpose of comparison, the RMSEs of our scheme and several schemes versus σ are
shown in Figure 4. Each result is collected after 1000 independent runs. After obtaining the distance
information in Equation (12), we get the standard SDP estimator (SDP is used in the context of linear
matrix inequalities and can be efficiently solved by interior point methods, which has the complexity
of O(N4.5 ln(1/ε)), here, ε is a given solution precision) by using the CVX package [18,19]. From
the figure, we observe that our solution achieve the solution that better than the conventional MDS,
WMDS, and dwMDS methods when the noise is large, and quite comparable estimation accuracy
with the standard SDP for a small value of σ, since our solution depends on how good initial points
are. It can be improved if we can choose a good parameter to set up. Figure 4b give us such
an example. However, note that in this particular simulation with MATLAB implementation, the
proposed method is faster than the others in running time.
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Figure 4. Cont.
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Figure 4. Comparison of root mean square error (RMSE) performance of our scheme and several
methods versus σ. (a) A good precision for P; (b) A bad precision for P.

The results indicate that our scheme is more suitable for the case of limited anchor node
information. This is a good property for some scenarios where anchor node positions are not
available. Thus, the obtained solution can be provided as a good initial point for other fine
localization algorithms.

5. Conclusions

In contrast to many existing algorithms developed for the Euclidean distance matrix completion
problem or its relaxation, we cast the problem under unconstrained formulation in terms of the
location vectors directly and propose a new scheme using a modified Newton’s method instead.
We manage the complexity by organizing the gradient and Hessian matrices. The theory is simple,
but the results are effective and robust for localization in WSNs for intelligent IoT.
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