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Abstract: For Global Navigation Satellite System (GNSS) single frequency, single epoch attitude
determination, this paper proposes a new reliable method with baseline vector constraint. First,
prior knowledge of baseline length, heading, and pitch obtained from other navigation equipment
or sensors are used to reconstruct objective function rigorously. Then, searching strategy is
improved. It substitutes gradually Enlarged ellipsoidal search space for non-ellipsoidal search
space to ensure correct ambiguity candidates are within it and make the searching process directly
be carried out by least squares ambiguity decorrelation algorithm (LAMBDA) method. For all
vector candidates, some ones are further eliminated by derived approximate inequality, which
accelerates the searching process. Experimental results show that compared to traditional method
with only baseline length constraint, this new method can utilize a priori baseline three-dimensional
knowledge to fix ambiguity reliably and achieve a high success rate. Experimental tests also verify
it is not very sensitive to baseline vector error and can perform robustly when angular error is
not great.
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1. Introduction

GNSS double-differenced carrier phase observables can be used for high precision attitude
determination, and the key is integer ambiguity resolution. Many methods are proposed and more
recent ones make use of the LAMBDA method, see Furuno (2003) [1], Monikes (2005) [2], Kuylen
(2006) [3], Hauschild (2008) [4], Wang (2009) [5], Chen (2013) [6], and Landry R2015 [7].

Standard LAMBDA method can be only used for unconstrained and/or linearly constrained
GNSS models, but baseline constraint is nonlinear. So, most of them make use of this additional
information by optimizing searching space and checking whether or not the candidate ambiguities
satisfy the given baseline. Although this kind of process improves the performance of ambiguity
resolution, they are still unable to reach a very high reliability, as prior information is not fully
integrated in the ambiguity resolution process. Especially when used for single frequency, single
epoch attitude determination success rate of ambiguity fixing decreases dramatically [8,9].

For single epoch attitude determination, Chansik Park and Teunissen propose their own
nonlinear constrained integer least square method and relevant searching strategy [10,11]. Both
methods integrate nonlinear constraints into ambiguity objective function, the former is based
on LAMBDA ellipsoidal search space, and the latter is based on a more rigorous but complex
non-ellipsoidal search space. Although they improve the success rate to a high degree compared with
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unconstrained issues, it is not high enough for reliable application. As the same with most methods
before, they only concern the baseline length as prior information. Concerning baseline length as
well as angular information, Henkel extends baseline constraints to three-dimensions, makes use
of baseline length and orientation for ambiguity maximum posterior estimation, and an estimator
is designed [12,13]. Although it is very innovative in utilizing length and angular information of
baseline vector, prior information is not fully integrated into ambiguity objective function, and it is
used for application with multi-epoch and dual-frequency. In recent years, other research on GNSS
attitude determination methods without combination mainly focuses on misaligned baselines [14],
instantaneous ambiguity resolution and attitude determination [15], and medium-length baselines
and multi-frequency single epoch attitude determination [16,17]. However these methods do not
accommodate whole prior baseline vector information into constraint and only take baseline length
into consideration.

In this contribution, we emphasize the real-time requirement of aircraft attitude determination
and propose a reliable single frequency, single epoch attitude determination method with baseline
vector constraints. This method utilizes baseline rough three-dimensional prior information obtained
by other airborne equipment such as compass and inertial navigation system. The contribution is
organized as follows: First, we reconstruct ambiguity objective function with baseline length and
angular information. Then, constrained integer least square resolution is proposed based on the
function above, relevant ambiguity searching strategy is proposed too. Finally, we report the static
experiment and dynamic test and verify, both indicate the good performance of our proposed new
method, with success rates achieving 100% in the model experiment.

2. Baseline Vector Constrained Model

GNSS double differenced linearized observation equation:

y “ Aa`Bb` e (1)

where y is the data vector of order m, consists of carrier phase and code observations and a is
integer ambiguity of order n, b is unknown parameter vector of order p consists of three-dimensional
baseline coordinates and atmosphere delay parameter. In the GNSS attitude model, the baseline is
generally very short in order to eliminate atmosphere delay and meet the requirement of real-time
computation [18], thus p “ 3.

Two antennas are used for attitude determination, one is placed in the middle of the carrier body
central axis, located at

”

0 0 0
ı

, and the other one is located at
”

l 0 0
ı

. Heading and pitch
are derived by baseline vector according to following equation:

θ “ arctan
b2

b1
β “ arctan

b3
b

b2
1 ` b2

2

(2)

where b1, b2, b3 are the three coordinates of baseline vector. In order to reach a very high precision,
integer ambiguity must be correctly resolved. Ambiguity integer least square solution without
constraint is given as [19]:

!
a ILS “ argmin

aPZn
||â´ a||2

Qââ
(3)

where â is float solution, Qââ is variance matrix. As no prior information exists, there is any baseline
related items in objective function.
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When baseline vector prior information with length, heading, and pitch is taken into
consideration, one can write Equation (3) as [20]:

!
a CILS “ argmin

aPZn
Fpaq

“ arg min
aPZn

"

||â´ a ||2Qââ
`min

bPR3
Hpa, bq

* (4)

Hpa, bq “ ||b̂paq ´ b ||2Qb̂paqb̂paq
`
pθ ´ θq

2

δ2
θ

`
pβ´ βq

2

δ2
β

`
pl ´ lq

2

δ2
l

(5)

θ “ arctan
bpaq2
bpaq1

β “ arctan
bpaq3

b

bpaq21 ` bpaq22
l “ ||bpaq || (6)

The objective function is very different from any other methods before as it integrates angular
information into the function, see Equation (5), where θ, β, l are the components of baseline vector
in sphere coordinate system, namely heading, pitch, and length. θ, β, l stand for true value, in the
computation we use prior measurement as substitution. δ2

θ , δ2
β, δ2

l is the variance of θ, β, l, respectively.

Generally, l can be measured very precisely, and δ2
l is very small. θ and β are measured by other

airborne navigation systems and sensors with rough precision and bigger variance.

3. Baseline Vector Constrained Ambiguity Searching Algorithm

3.1. Search Space Determination

Assuming a known, then the minimizer of Hpa, bq in Equation (5) is given as:

!

b paq “ arg min
bPRp

Hpa, bq (7)

This nonlinear LS solution is calculated iteratively as follows:

!

b paqpk`1q
“

!

b paqpk`1q
´∇2H

ˆ

a,
!

b paqpkq
˙´1

¨∇H
ˆ

a,
!

b paqpkq
˙

(8)

where ∇Hp¨ q “

»

—

—

—

—

—

–

BH
Bb1
BH
Bb2
BH
Bb3

fi

ffi

ffi

ffi

ffi

ffi

fl

∇2Hp¨ q “

»

—

—

—

—

—

—

—

–

B2H
B2b1

2
B2H
Bb1Bb2

B2H
Bb1Bb3

B2H
Bb2Bb1

B2H
B2b2

2
B2H
Bb2Bb3

B2H
Bb3Bb1

B2H
Bb3Bb2

B2H
B2b3

2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

It can be initialized by b̂paq “ pBTQ´1
yy Bq

´1
BTQ´1

yy py´Aaq. Combining Equations (7) and (4)
then gives:

Fpaq “ ||â´ a ||2Qââ
` H

ˆ

a,
!

b paq
˙

(9)

!
a CILS is computed by search, the searching space Ω Ă Zn is defined as:

ΩpFq “
!

a P Zn| Fpaq ď χ2
)

(10)

Different from standard LAMBDA method, Fpaq is not a quadratic form of a, and it cannot be
formulated as weighted square sum. Thus, it is difficult to determine the ambiguities search scope
sequentially as standard LAMBDA method does, but from Equation (9) we know that for a given
χ2, Fpaq ď χ2, there must exist ||â´ a ||2Qââ

ď χ2, and ΩpEq “
!

a P Zn|||â´ a||2
Qââ

ď χ2
)

is just an
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ellipsoidal search space. So, for a given value χ2, ΩpFq Ă ΩpEq, enumerates all the candidate vectors
in ΩpEq then one can find the minimizer of Fpaq. Although it is somehow exhaustive of substituting
ΩpEq for ΩpFq during the search process, it is feasible and applicable. The only problem is that the
search space is possibly expanded to a much bigger one than the actual non-ellipsoidal one, due to
the following reason.

When using single frequency, single epoch data, in Equation (1) A “ rλIn, 0s , B “
”

GT , GT
ıT

. Let

σ2
φQ and σ2

ρ Q stands for phase and code measurement variance matrix respectively [11], then
ambiguity variance matrix and conditional baseline variance matrix are as follow respectively:

Qââ “ pA
TQ´1

yy Aq
´1
“

σ2
ρ

λ2

˜

σ2
ρ

λ2 Q`GpGTQ´1Gq´1GT

¸

«
σ2

ρ

λ2 GpGTQ´1Gq´1GT

(11)

Qb̂paqb̂paq “ pB
TQ´1

yy Bq
´1
“

σ2
φ

1` σ2
φ{σ

2
ρ

´

GTQ´1G
¯´1

« σ2
φpG

TQ´1Gq
´1

(12)

Generally, σ2
φ ! σ2

ρ . Thus, for most ambiguity candidates a, the first item ||â´ a||2
Qââ

is much

smaller than ||b̂paq ´ b||
2
Qb̂paqb̂paq

in Equation (9), i.e., ||â´ a||2
Qââ

! Fpaq. If the size of search space

ΩEpχ
2q is set by χ2 “ Fpaq, it will be expanded too much and contains too many candidate vectors,

which makes the search tend to become inefficient or interrupted.
In order to avoid a too large a search space, we can use ||â´ a||2

Qââ
to set a smaller χ2

E at first
as it does in [10], but this operation probably makes it too small to encompass ΩpFq. So, the best way
is to find a proper ΩpEq that encompass ΩpFq and is as small as possible as Figure 1 shows.
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min ( )
R

H
∈b

a,b , i.e., ( ), ( )H


a b a . From Equation (8), it is nonlinear least square computation and 
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R

H
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2 2ˆ( ) min , ( )
aa

i i iQ R
F H χ

∈
= + ≤

b
a a - a a b a , i.e., ( )
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22 ˆmin , ( )i i
R

H χ
∈

≤ −
aaQb

a b a a - a  (13)
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In this contribution, we first set a smaller χ2
1 as initial value. If there are no candidates in the

search space, then χ2 increases. Repeat this operation until the increased search space contains at
least one candidate. Although this operation is simple, it can avoid exhaustive searching efficiently.
As correct ambiguity can minimize Fpaq, we can set χ2

1 by χ2
1 “ ||â´aILS||2

Qââ
with the solution of

standard LAMBDA method.

3.2. Modified Search Strategy

One needs to enumerate all the candidate vectors in ΩpEq and calculate the corresponding
!

b paq

to get min
bPR3

Hpa, bq, i.e., H
ˆ

a,
!

b paq
˙

. From Equation (8), it is nonlinear least square computation
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and complex. In order to accelerate the search process, one must reduce the calculation times of
min
bPR3

Hpa, bq as many as possible.

For a given χ2 that guarantees the search space ΩpEq is nonempty, there is at least one candidate
vector ai in search space that satisfies the following inequality:

Fpaiq “ ||â´ai||2
Qââ
`min

bPR3
H pa, bpaiqq ď χ2, i.e., min

bPR3
H pa, bpaiqq ď χ2 ´ ||â´ai||2

Qââ
(13)

This inequality is used to check whether χ2 is of proper value that guarantee the search space
is nonempty. And when χ2 is of proper value, it is further used to check whether other candidate
vectors in ΩpEq is contained in ΩpFq as well. Only if min

bPR3
H pa, bpaqq ď χ2 ´ ||â´ a||2

Qââ
, then could

the corresponding a probably be the correct solution of integer ambiguity. As it is very complex to
calculate min

bPR3
Hpa, bq, we can compute a tight or an approximately tight lower bound of min

bPR3
Hpa, bq

instead of min
bPR3

Hpa, bq itself to utilize inequality Equation (13). The detail of this process is as follows:

For simplifying, we only concern the baseline length when compute the lower bound,
i.e., l “ ||bpaq||. Then Equation (5) is rewritten as:

H1pa, bq “ ||b̂paq ´ b||
2
Qb̂paqb̂paq

`
p||b||´ lq2

δ2
l

(14)

Assuming Qb̂paqb̂paq “
1
λ

I3 is a diagonal matrix, then the contour plane of ||b̂paq ´ b||
2
Qb̂paqb̂paq

is a sphere with the center at b̂paq,
p||b||´ lq2

δ2
l

is also a sphere with the center at origin. So, the

minimizer of H1pa, bq, i.e.,
!

b
1

paq must be between b̂paq and the origin. Let
!

b
1

paq “ µb̂paq{||b̂paq||,

0 ď µ ď ||b̂paq||, plugging this into Equation (14), then we get the value µ̂ “
l ` σ2

l λ||b̂paq||
1` σ2

l λ
that

minimizes H1pa, bq. It is actually the weighted mean value of ||b̂paq|| and l, then we get a proximate

value of
!

b paq, that is:

!

b
1

paq “ arg min
bPRp

H1pa, bq “
l ` σ2

l λ||b̂paq||
1` σ2

l λ
¨

b̂paq
||b̂paq||

b̂paq ‰ 0 (15)

Turn it back to Equation (14):

min
bPRp

H1pa, bq “
λ
´

l ´ ||b̂paq||
¯2

1` σ2
l λ

(16)

If b̂paq “ 0,
!

b1paq has no solution, minimized H1pa, bq is still
λ
`

l ´ ||b̂paq||
˘2

1` σ2
l λ

.

Generally, Qb̂paqb̂paq is not a diagonal matrix, but the following inequality holds:

||b̂paq ´ b||2
1

λmin
Ip

ď ||b̂paq ´ b||2
Qb̂paqb̂paq

ď ||b̂paq ´ b||2
1

λmax
Ip

(17)

where, λmin denotes the minimum eigenvalue of Qb̂paqb̂paq. λmax denotes the maximum. Then
we get:

λmin

´

l ´ ||b̂paq||
¯2

1` σ2
l λmin

ď min

#

||b̂paq ´ b||
2
Qb̂paqb̂paq

`
p||b||´ lq2

δ2
l

+

ď

λmax

´

l ´ ||b̂paq||
¯2

1` σ2
l λmax

(18)
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λmin

´

l ´ ||b̂paq||
¯2

1` σ2
l λmin

ď minH1pa, bq ă minHpa, bq ă χ2 ´ ||â´ a||2
Qââ

(19)

Utilize formula
λmin

´

l ´ ||b̂paq||
¯2

1` σ2
l λmin

ă χ2 ´ ||â´ a||2
Qââ

as checking inequality. Eliminate

all the vectors that do not satisfy the inequality before calculating min
bPR3

Hpa, bq so as to make search

more efficient.
Although minH1pa, bq ă minHpa, bq is not a tight inequality, the two items are actually

very approximate as baseline length is much more accurately measured than angle. So, ignoring
angular information seldom adds candidate vectors. For computation, it is much easier to calculate
minH1pa, bq than minHpa, bq.

The steps for computing
!
a are then as follows:

Step 1: With float solution â, b̂ and relevant variance and covariance matrixes.

1. Compute the minimum eigenvalue of Qb̂paq“Qb̂b̂´Qb̂âQ´1
ââ Qâb̂;

2. Compute aILS with unconstrained LAMBDA;
3. Initialize χ2 by χ2

ILS “ ||â´aILS||2
Qââ

.

Step 2: For all the candidate vectors a that satisfy ||â´ a||2
Qââ

ď χ2.

1. Compute b̂paq “ b̂´Qb̂âQ´1
ââ pâ´ aq;

2. If
λmin

´

l ´ ||b̂paq||
¯2

1` σ2
l λmin

ă χ2´||â´ a||2
Qââ

, calculate
!

b paq according to Equation (8), and then

calculate Fpaq.

Step 3: If the search space is empty i.e., no a satisfies the above inequality, expand the search space as
χ2 “ χ2 ` χ2

ILS, and then repeat step2 till Ω is nonempty. Select one a that returns the smallest value
for Fpaq as fixed solution.

As long as the ambiguity is fixed, b “ bpaq is the final high precise baseline solution to determine
the attitude.

4. Test Verification and Analyses

In order to test the performance of proposed method, static and dynamic experiments are carried
out on 23 April and 2 May 2015 respectively in Xi’an, China. With a 10˝ cut off elevation angle, seven
and eight satellites are tracked. PDOP value is between about 1.5 and 2.1 during the static as well as
dynamic experiments, which means good measuring environment.

4.1. Static Experiment

In the static experiment, two antennas of GPS-702-GG are located at both ends and connected
to two receivers of NovAtel OEM628 (NovAtel Inc, Calgary, AL. Canada), which can provide
measurement precision about L1 carrier phase 2 mm (1σ) and C/A code measurement 20 cm (1σ).
Carrier phase data of frequency L1 and C/A code data are both collected. Experiments are carried out
two times with different baselines. In the first experiment, the baseline is of length 3.145 m, heading
25.025˝, pitch 11.208˝. In the second experiment, the baseline is of length 8.343 m, heading 49.402˝,
pitch ´16.137˝. The baseline length is measured by millimeter ruler with a standard deviation
0.5 mm. Angular prior information is obtained by the Inertial Navigation System coarse alignment,
a type of Novatel SPAN-CPT(Synchronized Position Attitude Navigation-Compact, Portable, and
Tightly Coupled, NovAtel Inc, Calgary, AL, Canada), and the standard deviation is heading 0.8˝ and
pitch 0.6˝.
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2156 and 2013 epochs are logged respectively during the two experiments. Resolve the integer
ambiguity with one epoch and another. Multi-epoch solution is regarded as true ambiguity. Compare
the proposed method in this paper with BC-LAMBDA (BC stands for Baseline Constraint) method
in [10] and BC-LAMBDA of rigorous non-ellipsoidal search strategy is proposed in [11]. The success
rates and average computation time of each method are as shown in Table 1.

Both methods in [10,11] only concern baseline length constraint. As it shown in Table 1, method
in [11] performs better, achieving a higher success rate, but it still gets ambiguity resolution wrong
at over 10 epochs. Different from the tow methods above, this paper’s new method concerns not
only baseline length but also angular constraint, thus to strengthen the model of GNSS attitude
determination and achieve a success rate of 100% in two experiments of different baselines.

The whole time that was required for resolving integer ambiguity at every epoch was measured
using Matlab. Then we divided the whole computation time by number of epochs to obtain the
average computation time per epoch. The PC is of Pentium(R) Dual-Core CPU E5500+2.80 GHz,
2.79 GHz and 1.96 G RAM.

Table 1. Single frequency, single epoch success rate and average computation time comparison.

Baseline
Length/m Epochs Success

Epochs
Success
Rate/%

Average Computation
Time/s

method in [10]
3.14 2156 2132 98.6 0.065
8.34 2013 1957 96.7 0.093

method in [11]
3.14 2156 2142 99.4 0.084
8.34 2013 1999 99.3 0.123

This new method
3.14 2156 2156 100 0.079
8.34 2013 2013 100 0.116

As is shown in Table 1, this paper new method is a little slower than methods in [10,11], it is
still very fast and very close to reference methods. The average computation time is much shorter
than 1 s (1 epoch). Compared to method in [11], it performs better than ambiguity resolution, and
the computation time does not increase because of the modified search strategy. With single epoch
measurement, short computation time, and a very high ambiguity fix success rate, this new method
can be expected for airborne application reliably.

In the first experiment, the attitude of baseline is determined with the first 1000 epochs,
computing one by one. This paper’s proposed method is compared with method in [11], and the
result is shown in Figure 2.
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of new method.
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Figure 2 shows that the solution of heading and pitch are probably far from true value and shake
severely at a few epochs when using method in [11]. This is actually due to the wrong fixed ambiguity.
Although the baseline length holds still close to the true value, the heading and pitch deviated.
When using baseline vector constraint of three-dimensions, we integrate heading and pitch constraint
information into objective function. If the heading or pitch deviates from prior information to some
extent, objective function increases dramatically, the relevant ambiguity candidate will not be chosen
as fixed right one. This is why this paper proposed method performs better and achieves a higher
success rate. Figure 2 also shows that after integer ambiguity is correctly fixed, the result of attitude
determination in the experiment is heading 23.5˝, about 1.5˝ deviation from prior information; pitch
10.2˝, about 1.0˝ deviation from prior information. The max error of heading is about 0.1˝, standard
deviation 0.05˝; the max error of pitch is about 0.2˝, standard deviation 0.08˝.

In fact, prior information is not exactly correct and always has a measurement error. Baseline
length error is very small and can sometimes be ignored, but angular error cannot be ignored for its
inaccurate measurement of other navigation systems or sensors. In the computation of this proposed
new method, we substitute angular prior information for the true value. It affects the ambiguity
solution and decrease success rate.

In the first static experiment, the true value of the heading is known as 23.5˝. In order to test how
the angular prior information error affects ambiguity solution, we add some error to the true value
and set its standard deviation as real measured prior information for simulation. As Figure 3 shows,
with a given standard deviation, the bigger the error is the lower the success rate is. The proposed
method is sensitive to the error when standard deviation becomes smaller. With small standard
deviation, the success rate can achieve a very high level when angular prior information error is
small, but will decrease rapidly when errors increase. On the contrary, when standard deviation is
big, the new method does not become too sensitive to prior information error, but at the same time
the performance of constraint becomes worse.

Figure 3 also shows that, set standard deviation of 0.8˝ as example, success rate decreases along
with prior information error increases, but when error is within 2˝, the new method still performs
better than that without angular constraint. Pitch is similar to heading, no need to test again.
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Figure 3. Prior angular information error affects success rate of ambiguity fix, heading as example.

According to the simulation result, we can reconstruct the objective function to achieve a better
performance of baseline vector constraint. When prior information is not much reliable, we set
a bigger standard deviation or even eliminate the relevant angular constraint items in objective
function. When prior information is reliable with a higher precision, we set a smaller standard
deviation to make a tight constraint. Using the inverse of variance of each item as weight value
in Equation (5) is just in according with that idea, i.e., smaller standard deviation means reliable prior
information and thus has a bigger weight value.
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4.2. Dynamic Test

Fasten two antennas along the axis of experiment vehicle, drive it along 400 m sports track one
lap and a half, and determine attitude continuously. Before it moves, prior baseline information
is measured as length 2.353 m, heading 0.253˝, pitch 1.837˝, set the standard deviation of baseline,
heading, and pitch are 0.5 mm, 0.8˝, 0.6˝, respectively. The vehicle movement path is as shown in
Figure 4. GNSS determined baseline length and attitude are shown in Figure 5.
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Figure 5. Heading and pitch determination during the test.

From Equation (6), heading is defined as the angle between east and the horizontal project
of baseline, increases from zero to 360˝ counterclockwise. Pitch is defined as the angle between
baseline and horizontal plane. During the first 30 s, the vehicle stands still, heading and pitch remain
unchanged, the integer ambiguity is resolved by new method with single frequency, single epoch.
Figure 5 shows that during the move, baseline length is measured as 2.35 m which corresponds to
prior information; heading is changing corresponding to the vehicle moving track; pitch is about
1.3˝, maximum floating value is about 1˝ corresponding to the flat track of ground. The vehicle
movement track is obtained by reference antenna pseudorange positioning. The experiment result
indicates that baseline length, heading, and pitch are all measured correctly, which is owing to the
correctly fixed ambiguity.
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5. Conclusions

This contribution utilizes baseline vector constraint, fully concerns the prior information of
baseline length, heading, and pitch, integrates it into objective function. A fast and reliable new
method is proposed to increase the success rate of single frequency, single epoch ambiguity fix.

1. Expand traditional baseline length constraint to baseline vector constraint of three-dimensions.
The inverse of variance of each item in objective function is set as a weighted value. Compared
to length constraint only, the angular constraint item can effectively avoid fixing the wrong
ambiguity which results in attitude deviating from prior information to some extent. Thus, it
can increase the success rate compared to only baseline length constraint.

2. Substitute ellipsoidal search space for non-ellipsoidal search space to make it suited for
LAMBDA search process, and expand it gradually. An accelerating strategy is proposed to avoid
calculating relevant nonlinear least square items in objective function repeatedly, which makes
searching more efficient.

3. The performance of vector constraint depends on the accuracy of prior information. Generally,
baseline is very precise, while angular information is not. When prior information is not reliable
enough, ambiguity fix success rate decreases, but when angular error is within a given range (2˝

in simulation), it still performs better than the traditional method with only length constraint.

Different from traditional single frequency, single epoch attitude determination method, and this
paper utilizes baseline vector prior information fully and rigorously. On the other hand, eliminating
some extra wrong ambiguity candidate vectors by inequality is an effective method to accelerate
search. Experiment results show that the proposed new method can achieve a very high ambiguity
fix success rate up to 100%. We also test the affection by prior information error in simulation to
prove its robust performance. A final dynamic vehicle experiment further verifies the reliability of
this new method.
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