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Abstract: In recent years sensor components have been extending classical computer-based 

support systems in a variety of applications domains (sports, health, etc.). In this article we 

review the use of sensors for the application domain of learning. For that we analyzed 82 

sensor-based prototypes exploring their learning support. To study this learning support we 

classified the prototypes according to the Bloom’s taxonomy of learning domains and 

explored how they can be used to assist on the implementation of formative assessment, 

paying special attention to their use as feedback tools. The analysis leads to current 

research foci and gaps in the development of sensor-based learning support systems and 

concludes with a research agenda based on the findings. 
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1. Introduction 

The digital and physical worlds are currently merging, opening new possibilities for us to interact 

with our environment, as well as for our environment to interact with us. This development is mainly 

driven by two technologies: display technologies and sensor technologies. Display technologies in the 
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sense of personal mobile displays, as also a variety of embedded public displays, enable the integration 

and presentation of digital information and services in nearly every situation and context [1]. Sensor 

technologies enable the development of real-time information systems and the extension of classical 

objects to be enhanced and integrated into digital eco-systems. Everyday objects, which previously did 

not seem aware of the environment at all, are turning into smart devices with sensing and tracking 

capabilities. Cisco estimates that by 2020 there will be 50 billion devices connected to the Internet [2] 

and one of the main drivers for this to happen is the increasing number of low-cost sensors  

available [3]. 

A sensor is commonly defined as: “a device that detects or measures a physical property and 

records, indicates, or otherwise responds to it.” [4]. The mere linguistic definition of a sensor seems 

restrictive, in the sense that specific computer programs have been used as sensors, by tracking recent 

songs played, current URLs open, log of incoming calls and some other non-physical properties [5]. 

Consequently, the definition of a sensor being used in this review is: “a physical or virtual object used 

for tracking, recording or measuring.” An overview of the identified sensors together with their 

measured properties and identified usages is shown in Appendix A. Coupling sensors with software 

components creates new types of tools with the capability to measure, analyze and (immediately) 

present results of the obtained data. The name for these instruments has not been standardized yet,  

and in previous works they have been referred as smart-sensors [6] sensor systems [7], sensor 

platforms [8], ecosystems [3], etc. In the remainder of this article these tools will be denoted as  

sensor-based platforms.  

The ability of sensor-based platforms to act according to their retrieved and analyzed data suggests 

a possible use of them as learning tools. In order to get an overview of the state-of-the-art of  

sensor-based learning support and to find directions for further research on it, in this literature review 

we analyzed the learning support of sensor-based platforms that were designed for educational 

purposes as well as sensor-based platforms that were designed for other purposes but that are also able 

to support learning through the presentation of relevant information for performance support, analysis 

and contextual awareness. With the purpose to get an overview of the different areas of learning that 

have already been influenced by sensor-based platforms, we started our study analyzing the 

connections between the different types of sensor-based platforms and their support for the commonly 

distinguished learning domains: the cognitive, psychomotor and affective domain [9]. Since one of the 

current educational challenges is the implementation of formative assessment [10], within the learning 

domains we in particularly focused on exploring whether sensor-based platforms can assist on its 

implementation. Formative assessment provides learners with information that allows them to improve 

their performance and learning. In our study we carefully analyzed how sensor-based platforms have 

been used as feedback tools, since formative assessment includes high quality feedback, which should 

be given as soon as possible after submission; be relevant to the task and the pre-defined assessment 

criteria; and should help the student to understand how to improve her work (not just highlighting 

strengths and weaknesses) [11]. However, the required effort for this type of assessment easily  

leads to a work overload for teachers forcing them to give merely summative instead of formative 

feedback [12]. Implementing formative assessment with more human work force is currently  

not a feasible solution, therefore in this review we explored whether sensor-based platforms can 

contribute to it. 
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To summarize, this article gives an overview on how sensor-based platforms have been used for 

learning support, by exploring their contribution on the different learning domains, the implementation 

of formative assessment, and their status as feedback tools. The remainder of this article is organized 

as follows: Section 2 presents the classification framework used to analyze the prototypes described in 

the articles. Section 3 gives an outline of the used methodology. Section 4 presents the results  

of the analysis. Finally, Section 5 discusses the results and presents an outline for further research  

on the topic. 

2. Classification Framework 

With the purpose of identifying the already existing best practices for the use of sensors in learning 

as well as identifying directions for the further development on the state-of-the-art of sensor-based 

learning support, in this review we examined and studied the current link between learning support and 

the state-of-the-art of sensor-based platforms prototypes found in literature. In order to conduct our 

research we proposed a classification framework examining: 

• Learning domains: get an overview of sensors and learning. 

• Formative assessment: focus our research in sensors and learning, exploring how they can assist 

with a main current educational challenge. 

• Feedback: deepening our research in sensors and learning studying how they have been used for 

giving feedback, which is a key element for formative assessment and one of the most important 

interventions in learning. 

To get an overview of the type of learning support that has already been tinted by sensor 

applications, we first analyzed and classified the existing sensor-based platforms according to the 

support that they give in the commonly identified learning domains [9]. This classification seems 

suitable because to our knowledge it covers all aspects of learning, allowing us to get an impression of 

the development of sensor-based learning support, highlighting the areas of learning that have been 

already influenced by sensors. 

The unobtrusive capabilities of sensor-based platforms to measure and analyze data lead us to think 

of their possible support for assessment. Therefore we deepen our analysis exploring how the  

state-of-the-art of sensor-based platforms can assist in the implementation of formative assessment, 

which is a current educational challenge. To study this contribution we analyzed how the state-of-the-art of 

sensor-based platforms can be used to assist in the 9 aspects of formative assessment that have been 

identified in [13,14]. Feedback is a key aspect of formative assessment and one of the most important 

influences in learning [15], hence to gain insight in the effectiveness of sensor-based platforms as 

feedback tools, we studied their feedback based on the framework of effective feedback [15].  

2.1. Classification Framework for Learning Domains  

Currently most well known sensor applications on the market, such as the Polar heart rate  

monitors [16], Nike+ [17], Digifit [18], or Xbox fitness [19] are used in the field of sports. They are 

designed to track and give feedback about the physical performance of the users, helping them in 

training their motoric skills. With the intention to explore whether the use of sensor data can go 
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beyond that, we explored in scientific literature the areas where learning support have been given by 

sensor-based platforms. For that we analyzed the prototypes described in literature according to their 

support given on the commonly identified learning domains. These domains are: the cognitive, 

affective and psychomotor domain [9] (see Figure 1). The cognitive domain refers to knowledge and 

the development of intellectual skills. It includes the recall or recognition of facts, and the development 

of intellectual abilities and skills [9]. This learning domain contains two dimensions: the knowledge 

dimension and the cognitive process dimension. The knowledge dimension refers to the type of 

knowledge that can be acquired and consists of four categories: factual, conceptual, procedural and 

metacognitive knowledge. The cognitive process dimension deals with how the knowledge is used. It 

contains six categories ranging from remembering facts to the creation of new concepts and objects 

using the acquired knowledge [20]. In order to get an understanding on how sensors can support the 

cognitive domain of learning, we explored the practices that have been used by sensor-based platforms 

to support these two dimensions.  

 

Figure 1. Sensor-based learning support on the learning domains. 

The affective domain refers to the approach in which learners deal emotionally with things, such as 

values, feelings, motivations and attitudes. This domain is usually categorized according to the 

complexity of the behavior incorporated by the learner. Starting from being open to receive the 
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phenomena to internalize these phenomena until they become a characteristic feature of the  

learner [21]. In this review we explored how the identified prototypes have been used to affectively 

support learning, enabling us to extract and analyze the strategies used by sensor-based platforms to 

present support on the affective domain. 

The psychomotor domain deals with physical movement, coordination and the use of the  

motor-skill areas. The development of these skills requires practice and it is evaluated in terms of 

precision, distance, speed or techniques in execution. Six categories have been identified for this 

domain: reflex movements, fundamental movements, perceptual, physical activities, skill movements, 

and non-discursive communication [22]. To explore the current sensor-based learning support on the 

psychomotor domain of learning, we investigated which of these categories have already been 

supported by sensor-based platforms and analyzed how this support has been achieved. 

2.2. Classification for Formative Assessment Support  

Once having an overview of the possible use of sensors in learning we wanted to explore whether 

they can be used to help solving a current challenge in education and learning. As introduced above, 

sensor-based platforms can unobtrusively measure and analyze data, thus suggesting their use in 

assessment tasks. Therefore, in this second dimension of our classification framework we have 

classified the analyzed prototypes according to their functions for formative assessment, investigating 

in which ways sensor-based platforms can contribute to its implementation. From a broad perspective 

formative assessment refers to the assessment that provides the learner with information, which allows 

them to enhance their learning and performance [11]. By examining the qualities that allow highly 

competent tutors to contribute to formative assessment [13], and the strategies discussed on the 

“Keeping Learning on Track® Program” [14], we have identified nine aspects that contribute to 

formative assessment (see Figure 2):  

• Knowledge of subject matter, allows analyzing the performance of the learner, identifying the 

origin of its errors. 

• Knowledge of criteria and standards, allows giving learners tasks according to their current level. 

• Attitudes toward teaching, deals with the empathy from the tutor towards the students and the 

desire to help students in their development. 

• Skills in setting, referring to the capacity of setting assessments that reveal understanding and 

skills and testing the desired outcomes. 

• Evaluative skills, allowing to make appropriate judgments and to deal with the possible 

responses of the learners. 

• Sharing learning expectations, identifying the learners’ expectations and allowing sharing them 

across the peers.  

• Self-Assessment, allowing to structure opportunities to take responsibility of own learning. 

• Peer-Assessment, allowing to structure opportunities for activating learners instructional 

resources for each other. 

• Feedback, referring to the evaluative information on the positive and negative features of the 

student’s work.  
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In this dimension of the classification framework we investigated how the sensor-based prototypes 

described in literature support these aspects of formative assessment. The analysis of feedback, an 

essential aspect of assessment, will be done separately and discussed in the next section. 

 

Figure 2. Sensor-based support on formative assessment. 

2.3. Classification Framework for Feedback  

Feedback is one of the most powerful interventions in learning [15], and one of the most beneficial 

thing tutors can do to students is to provide them with feedback that allows them to improve their 
learning [23]. High quality feedback is a key element of formative assessment [11]. Therefore, 

we decided to analyze the type of feedback given by the studied prototypes. Feedback in this study is 

defined as the information about a person’s behavior or performance of a task, which is used as a basis 

for improvement [4]. The effective feedback framework in [15] focuses on how feedback can be used 

to positively influence the learning process. Consequently, we analyzed the alignment between the 

feedback of the studied prototypes and this framework.  

Effective feedback gives answers to the following questions: “where am I going?”, “how am I 

going?” and “where to next?” (see Figure 3) [15]. The question “where am I going?” refers to the 

learner’s goals; goals produce persistence at task performance while facing obstacles, and support the 

resumption of disrupted tasks in the presence of more attractive alternatives [24]. The answer to “how 

am I going?” provides information relative to a task or performance goal of the user. Finally, the 
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answer to “where to next?” shows the learner the next steps to take towards the completion of her goal. 

Implementing the answers to these questions on a computerized system is not a straightforward task. In 

order to answer the question of “where am I going?” first it is important to know the goals of the user. 

The challenge comes in reminding the user about these goals and presenting the user with feedback on 

how the current task and performance aligns to the goals. Work regarding feedback loops has 

suggested that by presenting the user with evidence of his current behavior together with the 

consequences allows the user to perceive an alignment between his performance and goals [25]. 

Sensors can be used as tools to collect this evidence. Presenting this evidence and the potential 

consequences is something that can be implemented on a sensor-based platform. 

 

Figure 3. Framework used for the analysis of sensor-based support on effective feedback. 

In order to answer “how am I going?”, the performance of the user needs to be tracked, and this 

performance has to be compared with some rules. The proposed way to classify the type of feedback 

that gives answer to this second question of is through the five different levels of the complexity of 

feedback dimension [26], which are: 

• No feedback: no indication provided about the performance of the learner. 

• Simple verification: indication of correct or incorrect performance of the learner.  

• Correct response: indicates the learner how the correct performance should be. 

• Elaborated feedback: indicates why the performance of the learner is correct or incorrect.  

• Try again feedback: informs the learner when the performance is incorrect and allows her to 

attempt to change it. 

The implementation to the answer of “where to next?” has two basic requirements. First, a map with 

all steps to achieve the learner’s goal is required. Second, it is important to identify the current position 

of the learner on this map. The measuring and analysis qualities of sensor-based platforms seem 
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suitable to identify the current position of the learner on the learning map. Moreover, sensor-based 

platforms that make use of system adaptation techniques such as direct guidance, content-based 

filtering [27], and self-adaptation through feedback loops [28], open the possibility for them to present 

the learner with a personalized learning map. 

In this review, we analyzed how these three questions of effective feedback have been answered by 

the studied prototypes. To identify the answer to the first question: “where am I going?”, we examined 

whether the technique described of presenting the evidence together with its consequence [25] has 

been used by the prototypes, and explored whether some other techniques have been used to address 

this answer.  

For “how am I going?” we analyzed how the feedback given by the prototypes relates to the 

feedback complexity levels [26]. Together with this dimension, we also explored the feedback channel 

used by the prototypes. This channel can usually be visual, audio or haptic. The reason for this 

exploration is to investigate whether empirical evidence exists backing up these feedback practices.  

For “where to next?” we explored how the prototypes have implemented an answer to this question, 

presenting attention to the inclusion of system adaptation techniques for personalized answers. 

3. Method 

The purpose of this study is to get an overview on the state-of-the-art of sensor-based learning 

support and to explore how the existing sensor-based platforms could bring assistance to the solution 

of an educational challenge, which is the implementation of formative assessment. Therefore we 

collected articles describing studies about sensor-based prototypes and analyzed them according to our 

classification framework in order to identify their learning support.  

The underlying search for articles was conducted using the online repositories of: Education 

Resources Information Center Digital Library (ERIC), ScienceDirect (Elsevier), IEEE Computer 

Society, Association for Computer Machinery and the publisher Springer. The first repository ERIC 

was selected for being considered the largest repository in education. Elsevier was selected because it 

contains journals that publish research that merges the technical and educational aspects. The three 

other repositories were selected for containing the largest digital libraries in computing and engineering.  

The search for articles was executed in different phases. The first phase was in the context of an 

internal study, for which we performed an initial search in early 2013 using the keywords “sensor”, 

“application” and “learning”. We examined the abstract of these papers looking for computerized 

applications that have been enhanced by the use of sensors, paying special attention to the ones 

describing applications that were designed for human learning. This first search left us with  

111 articles that were considered relevant for further study.  

With the purpose to include the latest research in our repository and to start a formal research on the 

state-of-the-art of sensor-based learning support, a second search was done in January 2014 using the 

keywords “sensors”, “software”, “applications” and “learning”, while searching for articles published 

from 2012 to 2013. The term “software” was added to the query to restrict our search, and to exclude 

research focused on the hardware of sensors and not on sensor applications. After a scan through the 

abstracts, looking for applications where sensors have been used for human learning support,  

24 articles were selected for a deeper study. While studying the literature we decided to explore more 
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cases where systems have used sensors to adapt their behavior in order to support learners, therefore a 

later search was performed in March 2014 using the keywords “sensor”, “adaptive”, “system 

adaptation” and “education” for articles published after 2012. An examination of the abstracts of these 

search results let us with three articles that have been included in this study. 

Finally in order to be sure to include some missing relevant work the state-of-the-art on  

sensor-based learning support; we included eight more articles and three commercial products to this 

review that have been pointed out by experts in the field of Technology Enhanced Learning and 

Human Computer Interaction as representative work in the field of tutoring, feedback and sensor systems. 

To select the studies that were included in our analysis, we followed the criteria of including only 

articles describing sensor-based prototypes, and of which the description of these prototypes presented 

some information on how they can proportionate some learning support to their users. From the  

146 reviewed articles and three commercial products, we were able to identify 112 different sensor-based 

platforms prototypes. When analyzing articles describing these prototypes, we could identify that only 

82 of them include a description of the communication channel between the prototypes and the user. 

Since this link between the prototype and the user, is the element in a sensor-based prototype 

responsible to support learning, we decided to only include these 82 prototypes for further analysis. 

We conducted the analysis of the prototypes in three stages. On the first stage we explored the 

learning support given by the prototypes. This support was classified according to the Bloom’s 

taxonomy of learning domains [9] (see Section 2.1). On the second stage we analyzed the contribution 

of the prototypes in key identified aspects of formative assessment (see Section 2.2). Finally, on the 

third stage we took a close examination on which of the prototypes did give feedback to the user and 

how this feedback compared to the effective feedback framework [15] (see Section 2.3). 

4. Results 

Out of the 82 analyzed prototypes that were selected for further analysis, 51 of them were created 

inside of an educational context specifically designed to support learning; nevertheless by analyzing 

the description of their communication channel and reports of their usage we identified a total of  

79 prototypes providing users with relevant information for evaluation and analysis, performance 

support or contextual awareness, hence providing users with learning support. We recognized  

79 prototypes supporting learning on the learning domains, 51 prototypes contributing to at least one 

key identified aspect of formative assessment and 35 prototypes giving feedback to the learner. An 

overview of these prototypes is found in Appendix B. 

4.1. Classification for Learning Domains 

With the intention to get an overview of the learning support that has already been given by sensor 

applications, we classified the analyzed prototypes according to their support in the different learning 

domains. Out of the list of 82 prototypes we identified 79 prototypes presenting learning support. By 

examining the output given by the prototypes, we identified that 56 of them present the user with 

information that can help her to remember facts, understand concepts, analyze situations, etc. 

Therefore, we classified them as prototypes supporting the cognitive domain of learning. Six of them 

present information with the purpose to engage users in specific activities, thus we classified them as 
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presenting support to the affective domain of learning. Following this criterion we identified two 

prototypes supporting both the cognitive and affective domain of learning. The output of 17 of the 

prototypes presents the learner with information that aims to help her with the improvement of specific 

movements or her physical abilities. Hence we classified these prototypes as giving support on the 

psychomotor domain of learning. By analyzing the 56 prototypes that we classified as giving support 

to the cognitive domain of learning, we could identify three different strategies (see Table 1) that have 

been used by sensor-based platforms to give this support.  

Table 1. Strategies supporting learning in the cognitive domain. 

Sensor Usage (Design) 
Number of 
Prototypes 

Example of  
Sensors Used 

Cognitive Domain 
Category 

Contextual information 
acquisition for filtering 

22 
NFC, RFID, GPS, 

Microphones 

Depends on the 
information attached 

to the context 

Learner’s feature 
identification and  

user modeling 
11 

EEG, Software sensors, 
NFC, Cameras,  

Heart-rate monitor  

Depends on the 
information attached 

to the feature 

Sensor Data for 
contextual reflection and 

change notification 
23 

Accelerometers,  
Air pollutants sensors 
Cameras, ECG, EEG, 

gyroscopes, microphones  

Depends on the use 
of the information by 

the learner 

The first strategy identified uses sensors to infer the learner context, in order to present the learner 

with relevant contextual information. We identified 22 prototypes following this strategy. The 

learner’s context is commonly inferred by detecting specific objects that are situated in her 

surroundings. The most common technology that has been used to identify these objects is by attaching 

Near Field Communication (NFC) or Radio Frequency identification (RFID) tags to them. The sensors 

of the prototypes are able to read these tags and to present the learner with relevant contextual 

information. The information presented by the prototypes determines the category of the cognitive 

domain [20] that receives the learning support. For example, the prototype in [29] presents support on 

remembering factual knowledge. For this prototype NFC tags have been attached to everyday objects. 

When the prototype senses one of these tags, information about the tagged object is shown to the 

learner, this information helps her to remember specific facts about it. The prototype in [30] uses the 

same strategy. Nevertheless, this prototype supports the category of applying factual knowledge. The 

purpose of the prototype is to help learners to learn Mandarin, for that it uses GPS sensors to  

identify the context of the learner and presents him with Mandarin phrases that are suitable to be 

applied in this context.  

The second strategy identified on 11 of the prototypes, is similar to the first one; nonetheless this 

strategy instead of using sensors to track the learner’s contexts, it uses sensors to track specific features 

of the learner such as the learning style [31], competences based on the score of predefined  

pre-tests [32], attention [33–35], emotional state [36,37], uncertainty while using a tutoring  

system [38,39], trouble solving problems [40] or driving style [41]. The information presented to the 

learner by these prototypes depends on the tracked values for these features. 
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The third strategy identified uses sensors to gather relevant data and presents this data to the 

learner. We identified 23 of the prototypes following this strategy. For example the prototype of 

NoiseSpy [42] uses the microphone and GPS of mobile devices to retrieve the amount of noise in 

different places of a city. These different noise measurements are presented in a map allowing town 

planners to learn about the noise distribution patterns of a city. In this case the use that the learner 

gives to this information establishes the cognitive domain category supported by the prototype. This 

strategy is the only one identified being used by commercial products [43–45]. These products provide 

different visualizations of sensor data, which could help learners to analyze different phenomena from 

natural sciences. The application domain for prototypes using this technique of showing sensor data to 

support the cognitive domain of learning is broad. It can go from the field of civil engineering  

as in [46], to the field of sports where due to the advances in wearable sensors, human movements are 

being studied in new and more precise manners [47–49]. Another common application where sensor 

data supports learning in the cognitive domain is by monitoring the activity, behavior and state of 

patients in order to gain insight about their health [50–54]. These prototypes have been classified as 

supporting the cognitive domain of learning instead of the psychomotor domain, because the users of 

these prototypes who are able to make direct use of the sensor data are experts. By analyzing the data 

these experts can later use their gained knowledge to give proper advice to patients. This proper advice 

might indeed support them in the psychomotor learning domain, but it comes from the expert and not 

from the prototype. The prototype shown in [52] is an example of this; this prototype shows how 

wearable sensors have been used to monitor the movements of people following a heart stroke helping 

doctors to select the best therapy for them. 

The affective domain of learning deals with attitudes, motivations, values, etc. We identified that 

the information presented to the learner in eight prototypes had the purpose to support them in this 

domain The analysis of these eight prototypes let us recognize three different strategies that have been 

used to achieve this support (see Table 2).  

Table 2. Strategies supporting learning in the affective domain. 

Strategy Number of Prototypes Example of Sensors Used 

Behavior overview  
and review 

4 
Accelerometers, Barometer, Camera, 

Compass, GPS, Humistor, Microphone 
Software sensors, Thermometer 

Social network visualization 2 Blood glucose meter, Software sensors  

Involving learners  
in data collection 

2 
Accelerometers, Camera,  

Microphone, Thermometers 

The strategy of behavior overview and review uses sensors to track certain aspects of the learner’s 

behavior and presents the learner with the overview of it. By doing so, the learner becomes aware of 

how she is approaching towards the desired goal, motivating her to change or keep up with his current 

behavior. This strategy has been used by four of the prototypes. The prototype described in [55] 

exemplifies this strategy. The purpose of this prototype is to engage users into a more active lifestyle, 

for that, this prototype uses sensors to track the physical activities performed by the user, and displays 
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the overview of them on their mobile devices. Watching the presented activity overview motivates the 

user to engage into a more active lifestyle. 

The strategy of social network visualization has been used by two of the prototypes; this strategy 

lets learners compare themselves with peers of their network, motivating them to perform well in their 

learning activities. An example of this is described in the prototype in [56]. This prototype presents to 

students of virtual learning environments some smart indicators informing them about their activities, 

achievements and progress in comparison with other peer students.  

The strategy of involving learners in data collection has been identified in two of the prototypes, it 

supports learning in the affective and the cognitive domain. This strategy has been used to engage 

learners into scientific activities, by letting them participate in the data-gathering phase of the scientific 

process. Learners use sensor measurements to gather this data. An example of this strategy is the 

prototype in [57]. This prototype allows learners to create scientific experiments that are compiled into 

mobile applications. These applications use the sensors of the mobile devices to assist the learners to 

conduct their experiments. 

Seventeen prototypes have been identified to support the psychomotor domain of learning (see 

Table 3). For the exploration of this domain we analyzed how the prototypes give support on the six 

categories of the psychomotor domain of learning [22], identifying support in four of them: 

fundamental movements, skilled movements, physical activities and non-discursive communication. 

Table 3. Overview of the support for learning in the psychomotor domain. 

Category Supported Amount of Prototypes Example of Sensors Used 

Reflex movements 0 - 

Fundamental movements 7 
Accelerometers, Cameras, ECG,  

Electromyography sensor, Gyroscopes 

Perceptual 0 - 

Physical activities 1 Heart-rate monitor, Thermometer 

Skilled movements 7 
Accelerometers, Cameras,  
Force gauge, Gyroscopes 

Non-discursive 
communication 

2 - 

Seven of the prototypes present support to fundamental movements, such as walking, running, 

sitting, etc. The purpose of these prototypes is to help patients going through a rehabilitation process. 

These prototypes use sensors to track the patients’ movements, analyze these movements and give 

feedback to the patients informing them whether the movements have been performed correctly or 

incorrectly. As an example, the prototype in [58] uses wearable inertial sensors to identify the posture 

of patients who are going through rehabilitation after a damage of their motor system. Whenever the 

posture is incorrect the prototype provides audio feedback.  

Support for learning skilled movements, referring to the movements used for dancing, recreation and 

sports, has been recognized in seven of the prototypes. The strategy used to support the skilled 

movements is similar as the one used to support the basic ones, prototypes use sensors to track the 

learner’s movements, analyze how they are being performed and show the analyzed results to the 

learner. The areas of this type of learning assistance that have been identified are: music gestures [59,60], 
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special rehabilitation exercises [61], taekwondo movements [62], snowboarding [63,64] and karate 

punches [65]. 

The prototype in [66] is the only one that has been recognized to support physical activities. This 

prototype uses sensors to track the weather conditions and current fitness of cross-country runners. 

According to the difficulty of the route, the tracked weather conditions and the tracked current fitness 

level of the runner, the prototype indicates the runner the route to take for an optimal workout. 

Support for learning non-discursive communication referring to the acquisition and development of 

nonverbal communication skills has been identified in two of the prototypes. The prototype in [67] 

tracks the facial gestures, voice intonation, volume and speaking rate giving feedback to the learner 

about the correct use of her nonverbal communication for job interviews. The prototype in [68] is a 

videogame that tracks the facial expressions in children with autism teaching them how to smile. 

4.2. Classification for Formative Assessment Support  

To explore how sensor-based learning support can contribute to the solution of one current 

educational challenge [10,11], we studied how the investigated prototypes can bring assistance to the 

implementation of key aspects of formative assessment (see Section 2.3). By looking at the 

information that the prototypes gave to the users we identified 51 of them (see Table 4) contributing to 

at least one of these aspects. 

Table 4. Support for the aspects of formative assessment. 

Aspects of Formative 

Assessment 

Number of 

Prototypes 
Strategies Used Example of Sensors Used 

Knowledge of  

subject matter 
12 

Presenting sensor data about the 

learner’s performance 

Accelerometers, Cameras, 

Gyroscopes, Software sensors 

Knowledge of criteria 

and standards 
15 

Presenting sensor data about the 

learner’s performance.  

Presenting sensor data about the 

learner’s physiological state 

Accelerometers, Cameras, EEG, 

Heart-rate monitors,  

Galvanic skin response sensor, 

Gyroscopes, Software sensors 

Attitudes toward teaching 2 

Informing the tutor about the 

emotional state of the learner 

while performing learning tasks 

Camera, Galvanic skin conductance, 

pressure mouse, accelerometers 

Skills in setting 8 

Setting assessments according to 

learner’s location.  

Setting assessments according to 

learner’s physiological state 

GPS, EEG, Heart-rate monitors, NFC, 

RFID, Software Sensors 

Evaluative skills 4 Evaluating answers of learners GPS, NFC, RFID, Software Sensors 

Sharing learning 

expectations 
0 - - 

Self-Assessment 6 
Presenting an overview of the 

learner’s performance 

Accelerometers, GPS, Software 

sensors 

Peer-Assessment 0 - - 

Feedback 35 

Presenting information about the 

learner’s performance, behavior 

or state 

Accelerometers, Cameras, EEG, 

Heart-rate monitors, Galvanic skin 

response sensor, Gyroscopes, 

Software sensors 
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Twelve of the prototypes have been identified to support the aspect of knowledge of subject matter, 

which allows experts on making better assessments about the students’ performance. This support is 

achieved due to the monitoring capabilities of sensors. The sensor data presented to the experts 

(tutors), helps them to analyze and identify the errors of the learner. This type of support is used in 

sports and healthcare. An example of the sports field is found in the Swimming prototype [47]. In this 

prototype, wearable accelerometers are attached to the learner. The data received by these sensors 

allow for the analysis and error identification of the learner’s swimming technique. In healthcare the 

prototype in [50] uses wearable gyroscopes to analyze the gait of patients. This analysis allows 

detecting gait abnormalities or deteriorations to identify the presence of diseases and pathologies.  

The knowledge of criteria and standards, which helps to identify the current learning level of the 

student, is supported by 16 of the prototypes. The strategy of using sensors to track the learner’s 

performance and to identify his errors, which can be used to support knowledge of subject matter, can 

also be used to identify the current learning level of the learner. Two of the prototypes identify the 

current level of the learner by identifying his physiological state. The prototype in [34] uses an 

electroencephalogram to track the attention level of the learner while attending an online lecture. The 

prototype shows in which part of the lecture the attention of the learner decreases allowing tutors to 

give tasks to the learner of the subjects in need of being reviewed. The study in [59] describes a 

prototype that emulates musical sounds according to certain gestures of the users. In this study teachers 

who observed students using the prototype, reported that the prototype allowed them to identify the 

musical level of the students. 

We identified two prototypes tracking the emotional state of the learner while doing learning  

tasks and informing the tutor about this [36,37]. This helps the tutor to increase her empathy  

towards the learner and therefore supports the key aspect of formative assessment identified as 

attitudes toward teaching. 

Support for skills in setting, which deals with the capacity to set assessments that reveal the 

knowledge and skills level of students, has been identified in eight prototypes. Four of these prototypes 

support these aspects by setting assessments to the learners in a spatial context. The prototype in [69] 

acts as a mobile guide in a museum. It identifies the location of the learner using RFID technology, 

and according to the location it asks specific questions to the learner and evaluates her answers. Two 

of the prototypes support skills in setting by tracking the physiological state of the learner. These 

prototypes display this state to the tutor, allowing them to set appropriate assessments according to the 

learner’s identified state. The prototype in [52] exemplifies this. It uses wearable accelerometers to 

track the movements of patients following a rehabilitation program after having a heart stroke. The 

analysis of the tracked movements allows doctors to select the right set of exercises and therapy for 

them. The last identified technique to support skills in setting has been used by two of the prototypes. 

Here learners are required to use sensors to complete the tests that tutors have given them. For 

example, in the prototype in [57] students have to collect and analyze data using the sensors of their 

mobile devices to answer the scientific tests set by the teacher.  

Four prototypes support the evaluative skills. They achieved this support by evaluating the 

questions that have been previously asked to the learners. The prototype in [32] has been designed to 

evaluate the answers of learners to predefined tests and makes use of an expert system to present 

learners with the learning objects that relate to their tests’ results.  
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Contribution for self-assessment, i.e., structuring opportunities for the student to take responsibility 

about her own learning, was identified in six prototypes. These prototypes structure opportunities to 

take responsibility of own learning by showing an overview of the actions and performance of the 

learner. The prototype in [55] shows an example of this, by tracking the physical activity of the user 

and displaying an overview of it in the form of a virtual garden where the amount of life displayed in 

the garden is represented by the physical activity of the user. By looking at this representation, the 

learner is able to reflect and take responsibility about its actions. Support for key elements such as: 

sharing learning expectation, and peer assessment have not been identified in the studied prototypes. 

4.3. Feedback Analysis  

Because of its relevance in formative assessment and learning in general, we decided to dedicate a 

complete subchapter of this review on the analysis of the feedback given by the prototypes. By 

analyzing the information presented by the prototypes to the user, we could identify that 35 of them, 

revealed information about the user’s performance, activities or states; therefore we selected them for 

our feedback analysis in this review. In the following subsections of this review we report our 

exploration on how the questions for effective feedback [15] have been answered by the prototypes. 

4.3.1. Where Am I Going? 

The answer to “where am I going?” is related to the goals of the user. Five of the prototypes  

(see Table 5) explicitly display an answer to this question. For example, the user’s goal in the 

prototype described in [70] is to eat healthier and avoid emotional eating. In order to make the user 

aware of how she stands in respect to her goals, this prototype followed the technique described in [25] 

of presenting evidence together with consequences. This prototype shows the overview of the user’s 

eating habits as a tree (evidence), where the color (consequence) of the tree depends on the healthiness 

of the food intake by the user.  

The prototypes described in [55,71] used the same technique. The first prototype shows an 

overview of the healthy activities performed by the user (evidence) as a garden where the amount of 

flowers and life in the garden (consequence) depend on the amount of physical activities. The second 

prototype uses the same approach but the metaphor used is the one of an ecosystem. The life of the 

ecosystem depends on the ecological friendly trips done by the user. 

The relevance to answering the question of “where am I going?” by sensor-based platform has been 

empirically tested in the work in [72]. This work has released two different versions of their prototype. 

Only one of the versions has presented the user with an overview of her standing in respect to her goal. 

The results of this study show that the compliance to finish sampling experiences in experience 

sampling method studies was 23% higher in the group whose participants used the version of the 

prototype displaying the overview. 
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Table 5. Prototypes answering to “where am I going?”. 

Prototype Topic 
Strategy Used to  

Answer the Question 

Carroll et al., (2013) [70] Healthy eating 
Evidence: Overview of eating habits 
represented as a tree. Consequences: 

The color of the tree changes. 

Consolvo et al., (2008) [55] Healthy living 

Evidence: Overview user’s activities 
represented as a garden. 

Consequences: Life in the garden 
depends on the activities. 

Froehlich et al., (2009) [71] Eco-traveling 

Evidence: Overview of means of 
transportation as an ecosystem. 

Consequences: Life in the ecosystem 
depends on the means. 

Hicks et al., (2010) [53] Healthy habits 
Ask questions about performed 
activities to reflect about goals. 

Hsieh et al., (2008) [72] Physical activities 
Evidence: Overview of user’s 

performance presented  
together with the goals.  

4.3.2. How Am I Going? 

To answer the question of “how am I going?” the sensor-based platforms are required to track the 

actions or behaviors of the users, and provide them with information relative to their performance in 

relation with some predefined rules. Twenty-six of the analyzed prototypes have answered this 

question (see Table 6). The analysis in this section discusses the form and the channel of feedback 

given by the studied prototypes.  

Form of feedback: Looking at the dimension of complexity of feedback [26], feedback can be 

given at five different levels including no feedback, simple verification, correct response, elaborated 

feedback and try again feedback. From the analyzed prototypes one of them gives exclusively a 

simple verification feedback giving the user points when guesses about her glucose levels are  

correct [51]. Eight of the prototypes present exclusively the “try again” feedback, telling the user 

that her action was wrong and letting her to repeat the action until it is performed correctly. Six of 

the prototypes give both the simple verification and the try again feedback. In [73] this has been 

achieved by playing harmonic sounds when the gait of the users is correct (simple verification) and 

by playing strong rhythmic sounds pointing out to the user that its gait needs to be corrected  

(try again feedback).  
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Table 6. Prototypes answering to “how am I going?”. 

Prototype Topic 
Strategy Used to  

Answer the Question 

Channel of 

Feedback 

Aukee et al., (2004) [74] Incontinence Elaborate feedback Visual 

Baca & Kornfeind  

(2006) [75]-Biathlon 
Rifle movements in Biathlon Elaborate feedback Visual 

Baca & Kornfeind  

(2006) [75]-Rowing 
Exerted forces in rowing Elaborate feedback Visual 

Baca & Kornfeind  

(2006) [75]-Table tennis 

Shot position and cadence in 

table tennis 
Elaborate feedback Visual 

Bevilacqua et al., (2007) [59] Musical level 
Try Again 

Simple verification 
Audio 

Brunelli et al., (2006) [58] Posture Try Again Audio 

Burish, & Jenkins (1992) [76] Relaxation 
Try Again 

Simple verification 
Audio 

Carroll et al., (2013) [70] Healthy eating Elaborate feedback  Visual 

Cockburn et al., (2008) [68] Teaching to smile 
Try Again 

Simple verification 
Visual 

Hicks et al., (2010) [53] Healthy habits 

Questions are asked user 

letting the user reflect 

about the answer. 

Visual 

Hoque et al., (2013) [67] Interview coaching Elaborate feedback Visual 

Kranz et al., (2006) [61] Physiotherapy Try Again 
Audio 

Visual 

Kwon & Gross (2005) [62] Martial arts Elaborate feedback Visual 

Lehrer et al., (2000) [77] Breathing technique Try Again Audio 

Li et al., (2012) [78] Coordination training  
Try Again  

Simple verification 

Audio 

Visual 

Linden et al., (1996) [33] Attention level Try Again 
Audio 

Visual 

Paradiso et al., (2004) [73] Gait 
Try Again 

Simple verification 
Audio 

Pentland (2004) [51] Diabetes Diabetes Simple verification Audio 

Spelmezan & Borchers (2008) [63] Snowboarding Try Again Audio 

Spelmezan et al., (2009) [64] Snowboarding Try Again Haptic 

Strachan (2005) [79] Sound navigation Try Again Audio 

Takahata et al., (2004) [65] Martial arts 
Try Again  

Simple verification 
Audio 

Vales-Alonso et al., (2010) [66] Cross country running Elaborate feedback Visual 

Van der Linden et al., (2011) [60] Violin Playing Try Again Haptic 

Verhoeff et al., 2009 [80] Gait Elaborate feedback Audio 

Verpoorten et al., 2009 [56] 
Indicators for virtual learning 

environments 
Elaborate feedback Visual 

Ten of the prototypes present elaborate feedback indicating why the performance of the user is 

correct or incorrect. To give this feedback, the prototypes present the evidence of the user’s actions 

together with indications of the acceptable standards to conduct her activities. An example of this is the 

prototype described in [62]. This prototype points out the differences between the movements of an 
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expert martial artist (correct technique or correct standard) and the user, letting the user become aware 

on how to correct her mistakes. The prototype described in [53] used a different feedback strategy, 

showing that our proposed framework to analyze the feedback of sensor-based platforms to the 

question of “how am I going?” was not exhaustive. This prototype instead of indicating the user 

whether her behavior has been correct or incorrect, it presents her with evidence of her tracked 

behavior and asks her a question about it, presenting her a chance for self-reflection. 

Seven studies reported empirical results about the use of the prototype with participants, all of them 

showing positive results in regards to the purpose of the prototype. Five of these prototypes used the 

strategy of try again feedback [33,60,64,76,80] and two of them presented elaborate feedback [67,74].  

Channel of feedback: Since users receive the feedback through their senses, in theory there is a 

feedback channel for each one of them: visual, auditory, haptic, gustatory and olfactory. The feedback 

channels used by the prototypes were audio, visual and a combination of both. Ten of the analyzed 

prototypes present their feedback exclusively through the audio channel. The prototype developed  

in [65] has shown an example of this; the sounds played by the prototype depend on the accuracy of 

the karate punch technique performed by the user. Eight of the prototypes display their feedback 

through the visual channel. The prototype in [70] uses the screen of the user’s mobile device to show a 

message saying: “let’s count slowly to 10 and breath…”. The combination of visual and audio has 

been used in three prototypes. In [33] the prototype shows the score of the user on the computer screen 

and plays sounds whenever the user maintains her concentration. Two of the prototypes provided 

feedback through the haptic channel. The prototype in [60] exemplifies this type of feedback. It 

consists of a pair of gloves that give haptic feedback when the user, who is learning how to play the 

violin, performs incorrectly a specific technique. 

Empirical positive results in regards to the purpose of the prototype were found for all of the 

identified feedback channel practices [33,60,64,67,74,76,80]. Pointing out that the study of [64] 

showed that for physical activities such as snowboarding, the haptic feedback was perceived faster 

than the audio feedback. 

4.3.3. Where to Next? 

The answer to “where to next” is about showing ‘some’ guidance to the user on the next steps to 

follow. Eight prototypes have been identified which present the user an answer to this question (see 

Table 7) Five of the prototypes present an indicator of just the next step to take, indicating the next 

step to do to solve a problem [40], showing the steps required to correct mistakes [69], showing the 

next activity to engage [51], instructing the user the steps that she needs to follow in order for her to 

relax and gain self-control again during highly emotional situations [70], and showing which direction 

to take [66]. Three of the prototypes present the user with a complete personalized learning path for 

them. This path has been obtained by capturing the user’s attention levels during a virtual lecture [34], 

tracking the user’s competences [32], or identifying the user’s learning styles [31]. While the prototype 

in [34] has just pointed out the user the steps to follow, the prototypes described in [31,32] have used 

system adaptation techniques to present the user with her personalized path. The system adaptation 

technique presented by [31] uses a literature-based approach, where the number of visits and time 

spend by the students working with learning objects is used to automatically identify the student’s 
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learning style. This approach tracks the behavior of students in order to get hints about their learning 

style preferences, then it uses a rule-based approach to estimate the preferred learning style from the 

amount of matching hints. Finally, it presents the learner with a learning path suited for his learning 

style. None of the prototypes have shown empirical results about their learning support.  

Table 7. Prototypes answering to “where to next?”. 

Prototype Strategy Used to Answer the Question 

Anderson & Reiser (1985) [40] Informs the user which next step to take.  
Carroll et al., (2013) [70] Informs the user which next step to take. 

Chen & Huang (2012) [69] Presents a corrective step to follow. 
Dung & Florea (2012) [31] Presents a personalized learning path. 

Hsu & Ho (2012) [32] Presents a personalized learning path. 
Pentland (2004) [51] Memory 

glasses 
Informs the user which next step to take. 

Szafir & Mutlu (2013) [34] Points out the steps to follow. 
Vales-Alonso et al., (2010) [66] Tells the user which direction to take. 

5. Discussion 

The pairing of sensors with software components has created tools with capabilities to automatically 

retrieve and analyze data, referred to in this review as sensor-based platforms. In order to explore the 

use of these tools in learning, we analyzed the prototypes described in literature according to our 

classification framework. Starting with an exploration of the areas of learning that have been supported 

by sensor-based prototypes, this review revealed that sensor-based platforms have been designed and 

used to give support in each of the three learning domains. The domain with the most support (56 of 

the 82 studies) is the cognitive domain; mirroring what happens with learning in general, where the 

cognitive domain is the most used and studied [81]. Remarkably, also given the research in [82], which 

asserts that a comprehensive educational design should merge these domains, in this review we could 

only identify two prototypes supporting a combination of domains. This presents a research opportunity 

on finding the implications to create sensor-based platforms able to support multiple domains of learning.  

In our search to seek whether sensor-based platforms can be used to help solving current 

educational challenges, we continued our analysis of the prototypes studying their possible connection 

with formative assessment. While in this review we did not identified prototypes specifically designed 

to give formative assessment, our analysis showed that sensor-based platforms have already been used 

for seven of the nine aspects of formative assessment described in Section 2.2 (see Table 4). The 

missing aspects for contribution were structuring opportunities for peer assessment and sharing 

learning expectations.  

With the intention to deepen our research in an aspect considered to be fundamental for learning 

and for formative assessment, our analysis of the prototypes showed that sensor-based platforms are 

able to retrieve, measure and analyze personal information in order to give feedback on the three 

questions of effective feedback. For giving an answer to the first question, “Where am I going?” which 

deals with guiding learners towards their goal, we identified three different used representations. These 

representations consisted of a description of the learners’ goals, showing the learners’ performance 
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together with the consequences, and showing a metaphor of the goals and performance instead of the 

real data values. While we recognize ways to give an answer to this question, we did not found 

prototypes attempting to formulate an advice on it. Additionally, none of the reviewed articles studied 

the appropriate timing for giving this type of feedback. An important aspect for answering the question 

of “where am I going?” which besides relating to the metacognitive skills of a self-regulated learner 

one of its main purposes is to keep the learner motivated, therefore having an impact on the affective 

domain of learning. As previously seen in the analysis of the learning domains, the affective domain of 

learning does not receive as much attention as the cognitive domain, which partly can explain the 

knowledge gaps on how to use sensor-based platforms to answer “where am I going?”. 

Continuing with the second question, this review shows that sensor-based platforms have been used 

to give an answer to “how am I going?”. We recognized several feedback representations used by 

sensor-based platforms to answer this second question. These representations can be classified 

according to different feedback dimensions [26] such as: timing of feedback, feedback channel and 

complexity of feedback. However, what we miss from the reviewed articles was a study revealing a 

suitable method to present this answer as feedback to the learner. From the reviewed articles  

only [60,64,73] presents an explanation for the selection of its feedback method. Overall, also in 

relation to the other two questions discussed, studies about the effectiveness of the different feedback 

channels and feedback dimensions are limited, finding only one work [64] comparing the receptivity 

between the auditory and the haptic feedback channel. Moreover, no study has been identified 

exploring how the different ways to give feedback using sensor-based platforms, play a role in subjects 

such as the cognitive load [83], reflection-in-action and reflection-on-action of the learner [84].  

The review shows that sensor-based platforms can be used to show the users their next learning 

steps, therefore answering the question of “where to next?”. What we miss to recognize in the 

literature is a prototype able to answer the three questions of effective feedback.  

This analysis allowed us to identify two main research branches for sensors-based learning support. 

The first branch deals with the acquisition of relevant data that might be useful for the learner, and the 

second branch deals with the presentation of this sensor data to the learner. The amount of different 

prototypes supporting learning for so many different subjects and domains has shown us that several 

researches have already been undertaken on the acquisition of relevant sensor data for learning. 

However, we did not identify many studies investigating and reporting on the implications to deliver 

this relevant inferred sensor data in ways that can effectively support learning. Looking that only 35 

out of 82 prototypes have been identified to present the learner with feedback reveals this. 

Furthermore, we found only one study [64] analyzing different types of feedback methods for their 

prototypes, and only in few cases the selection of the feedback methods used by the prototypes were 

argued. This research gaps give us an indication of the state-of-the-art of sensor-based learning 

support, which can be corroborated by the very few empirical studies found investigating the 

effectiveness of sensor-based platforms as learning tools. This current state of research in sensors and 

learning is also reflected in related literature reviews studying the topic of sensors, where the  

purpose is to analyze these platforms based on techniques to identify objects [85], achieve ambient 

intelligence [86], augment reality [87], create body sensor networks [88], classify postures and 

movements using wearable sensors [89], etc. None of the literature studies known to the authors focus 

on the use of sensors to support learning. These findings about the current maturity of sensor-based 
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learning support align with the lack of use of sensor-applications for formal learning, which are not 

that popular yet and only deal with the presentation of sensor data for the study natural sciences [43–45] 

together with the arrival to the market of sensor applications such as Nike+ [17], Digifit [18], Xbox 

fitness [19] etc. that support informal learning.  

6. Conclusions 

In this review we analyzed 82 prototypes found in literature studies according to our classification 

framework in order to identify the state-of-the-art of sensor-based learning support. The analysis 

revealed sensor-based learning support as an emerging and promising field of study, which has the 

potential to support learning in several areas and subjects. In this review we merely identified research 

studies focusing on the learning aspects of the described sensor-based platforms. This turned out to be 

a limitation for this review, by not allowing us to clearly identify and analyze the learning strategies 

used by the prototypes. Nevertheless, this lack of focus on learning effectiveness, points out a research 

direction for further improvement on the state-of-the-art of sensor-based learning support.  

This review shows that the focus on sensor-based applications for learning support is quite broad 

and that this support can have an effect on all the learning domains. It also shows the potential for 

sensor-based platforms to contribute on the implementation of formative assessment. Nevertheless, we 

found a lack of studies focusing on the implications required for sensor-based platforms to present 

their inferred information in such ways that learners can assimilate it effectively, so that sensor-based 

platforms can become effective learning tools. This research gap suggests the main research path to 

follow for the improvement of sensor-based learning support. By following this path, we consider that 

sensor-based platforms can become reliable learning tools able to reduce the workload of human 

teachers and therefore contribute to the solution of a current educational challenge, which is the 

implementation of formative assessment. While more work needs to be done on sensor-based 

platforms to become common learning tools introduced to formal and non-formal learning programs, 

this review can be taken as a basis and inspiration towards this goal. 
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Appendix A. Identified Sensors Together with Their Measured Property and Identified Functions 

Sensor Measured Property Helps with Installation 

Accelerometer Acceleration 
Activity sensing, Context sensing, Environment sensing, 

Physiological state sensing 
Environmental, Wearable 

Air pollutants sensors 
Amount of toxic particles  

in the atmosphere 
Context sensing, Environment sensing Environmental, Wearable 

Barometer Pressure Activity sensing, Context sensing, Physiological state sensing Environmental, Wearable 
Blood glucose meter Glucose on the blood Physiological state sensing Wearable 

Bluetooth Radio signals Activity sensing, Context sensing Wearable 

Camera Visual light 
Activity sensing, Context sensing, Environment sensing, 

Physiological state sensing 
Environmental, Wearable 

Compass Earth magnetic field Activity sensing  Wearable 
Electro cardiogram (ECG or EKG) Heartbeat Activity sensing  Wearable 
Electrodermal activity meter (EDA) Skin conductance Physiological state sensing Wearable 

Electroencephalogram (EEG) Electrical activity along the scalp Activity sensing, Context sensing Physiological state sensing Wearable 

Electromyography sensor 
Electrical activity produced by  

skeletal muscles 
Activity sensing Wearable 

Force gauge Force Activity sensing Wearable 
Galvanic skin response sensor Skin conductance Context sensing, Physiological state, Wearable 

Global positioning system (GPS) Earth coordinates Activity sensing, Context sensing, Environment sensing 
Environmental, 

Wearable 
Global system for mobile (GSM) Radio signals Context sensing Environmental, Wearable 

Gyroscope Measures orientation Activity sensing, Context sensing, Physiological state sensing Wearable 
Humistor Detects humidity Activity sensing, Physiological state sensing Wearable 

Infra red camera Infra red frequency of light Activity sensing, Context sensing Environmental, Wearable 
Microphone Sound waves Activity sensing, Context sensing, Environment sensing Environmental, Wearable 

Near Field Communication receiver Radio frequency Context sensing Environmental, Wearable 
Radio frequency identification receiver Radio frequency Context sensing Wearable,  

Sonar Detect objects through sound waves Activity sensing Wearable 

Software Sensors Detect user’s actions 
Activity sensing 
Context sensing 

Environmental, Wearable 

WiFi Radio frequency Context sensing Environmental, Wearable  
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Appendix B. List of the Analyzed Prototypes 

Prototype 
Learning 
Domain  

Formative Assessment 
Contribution 

Sensors Used Description 

Ailisto et al., (2006) [90] Cognitive - Cameras RFID readers 
It reads tags placed in objects in order to  

present more information about them. 
Anderson & Reiser  

(1985) [40] 
Cognitive Feedback Software Sensors 

A tutoring system that helps students when having trouble 
solving some problems for the lisp programing language. 

Amaratunga et al.,  
(2002) [46] 

Cognitive - Accelerometers 
It monitors the movement of a flagpole and streams this 

data through the network creating a virtual lab. 

Arroyo et al., (2009) [36] Cognitive Attitudes towards teaching 
Camera, Galvanic skin 
conductance, pressure 

mouse, accelerometers. 

It is a prototype that detects the emotional state of students 
while interacting with an intelligent tutoring system. 

Baca & Kornfeind (2006) 
[75]-Biathlon 

Cognitive 
Knowledge of subject matter 

Knowledge of criteria and standards 
Feedback 

Camera It analyzes the movement of the rifle.  

Baca & Kornfeind (2006) 
[75]-Rowing 

Cognitive 
Knowledge of subject matter 

Knowledge of criteria and standards 
Feedback 

Force transducer It is analyzes the rowing technique. 

Baca, & Kornfeind (2006) 
[75]-Table tennis 

Cognitive 
Knowledge of subject matter 

Knowledge of criteria and standards 
Feedback 

Accelerometers It analyzes the position of the table tennis shots. 

Börner et al., (2014) [35] Cognitive - Camera 
It is a ambient display that adapts its behavior  

to capture the attention of learners. 

Broll et al., (2011) [91] Cognitive - NFC 
It is a game where players need to touch  

parts of a screen with NFC readers 

Chapel (2008) [92] Cognitive - 
GPS 
NFC 
WiFi 

It provides a communication system  
for students in a university. 

Chavira et al., (2007) [93] Cognitive - 
RFID 
NFC 

It gives contextual information to the  
participants of a conference. 

Chen & Huang, (2012) [69] Cognitive 

Skills in setting 

Evaluative skills 

Feedback 

RFID It gives a tour through a museum. 
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Prototype 
Learning 
Domain  

Formative Assessment 
Contribution 

Sensors Used Description 

Chu et al., (2010) [94] Cognitive - RFID It gives a tour through a botanic garden. 

Dung & Florea (2012) [31] Cognitive Feedback Software sensors 
It detects the learning style of students and presents them 

later with learning objects fitting their style. 

Edge et al., (2011) [30] Cognitive - GPS 
It helps to learn a second language  

by presenting users with contextual phrases. 
Ghasemzadeh et al.,  

(2009) [48] 
Cognitive 

Knowledge of subject matter 
Knowledge of criteria and standards 

Accelerometers It analyzes golf swings. 

GlobiLab for middle & high 
schools [43] 

Cognitive - - Commercial software to visualize and analyze sensor data. 

Greene (2010) [50] Cognitive 
Knowledge of subject matter 

Knowledge of criteria and standards 
Gyroscopes It analyzes the user’s gait. 

Hester et al., (2006) [52] Cognitive 
Knowledge of criteria and standards 

Skills in setting 
Accelerometers 

It measures the movements of people who have suffered a 
heart stroke. 

Hicks et al., (2010) [53] Cognitive 
Self-Assessment 

Feedback 
Accelerometer  

GPS 
It captures the health and behavior of the user, with the 

sensors of a mobile device 

Hsu & Ho (2012) [32] Cognitive 

Knowledge of subject matter 
Knowledge of criteria and standards 

Evaluative skills 
Feedback 

NFC 
It chooses the learning path of the learner according to its 

tracked competences 

James et al., (2004) [47] 
swimming 

Cognitive 
Knowledge of subject matter 

Knowledge of criteria and standards 
Accelerometers It analyzes the movements of the user while swimming. 

James et al., (2004) [47] 
rowing 

Cognitive 
Knowledge of subject matter 

Knowledge of criteria and standards 

Accelerometers 
GPS 

Heart rate monitors 

It analyzes the movements and applied  
forces of the user while rowing. 

Jraidi, I., & Frasson, C.  

(2012) [38] 
Cognitive - EEG 

It detects the uncertainty of students while performing 

exercises in an intelligent tutoring system. 

Kaasinen et al., (2009) [29] Cognitive - NFC 
It reads tags placed in objects in order to  

present more information 
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Kanjo (2009) [42] 
MobAsthma 

Cognitive - 
Air pollutants sensors 

GPS 
Software sensors 

It measures the air pollution and compares it asthma cases. 

Kanjo (2009) [42] 
NoiseSpy 

Cognitive - 
GPS 

Microphones 
It measures the noise pollution. 

Kanjo (2009) [42] 
PollutionSpy 

Cognitive - 
Air pollutants sensors 

GPS 
It measures the air pollution. 

Karime et al., (2011) [95] Cognitive - RFID 
It is a magic wand that recognizes objects and displays 

information about them on an ambient screen. 

Kozaki et al., (2010) [96] Cognitive 
Knowledge of subject matter 

Knowledge of criteria and standards 
Accelerometers 

ECG 
It tracks the motion of the user in order to infer its activity 

Kubicki et al., (2011) [97] Cognitive - RFID It is an interactive tabletop able to identify tangible objects. 
Kuflik et al., (2011) [98] Cognitive - RFID It is a mobile guide for museums. 

Lee & Carlisle (2011) [54] Cognitive 
Knowledge of subject matter 

Knowledge of criteria and standards 
Accelerometers 

GPS 
It detects falls using the accelerometer of mobile devices. 

Linden et al., (1996) [33] Cognitive Feedback EEG It trains children with ADD to pay attention. 

Littlewort et al., (2011) [37] Cognitive Attitudes towards teaching Camera 
This prototype tracks the facial expressions of kids while 

solving problems using a tutoring system. 
Logger Pro [44] Cognitive -  Commercial Software to visualize sensor data. 

Lu et al., (2009) [99] Cognitive - Microphone 
It uses the microphone of the mobile device of the user to 

identify its context and present information about it. 

Mandula et al., (2011) [100] Cognitive 
Skills in setting 
Evaluative skills 

RFID 
It identifies indoor locations and objects in order to give 

contextual information to the user. 
Maisonneuve et al., (2009) 

[101] 
Cognitive - 

Microphone 
GPS 

It measures the noise pollution. 

Muñoz-Organero et al., 
(2010) [102] 

Cognitive - RFID 
It uses sensors to identify objects and give information 

about them. 
Muñoz-Organero et al., 

(2010) [103] 
Network Lab 

Cognitive Skills in setting RFID 
It identifies objects on a network lab and gives information 

about them to the users. 

Nijholt et al., (2007) [104] Cognitive - Cameras It captures and displays the non-verbal input of the user. 
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Ogata et al., (2006) [105] Cognitive - 
GPS 
RFID 

It helps to learn a second language by presenting users with 
contextual phrases. 

Pentland (2004) [51] 
Medical Monitoring 

Cognitive 
Knowledge of subject matter 

Knowledge of criteria and standards 

Accelerometer 
Blood pressure sensor, 

EEG 
Heart-rate monitor 

Galvanic skin sensor GPS 
Thermometers  

It monitors the health condition of the user. 

Pentland (2004) [51] 
Memory Glasses 

Cognitive Feedback 
Bluetooth 

GPS 
Software Sensors 

It triggers reminders to the user according to its context 

Pérez-Sanagustín et al., 
(2012) [106] 

Cognitive - 
NFC 
RFID 

It provides contextual information to students inside of the 
university campus. 

Rahman, & El Saddik  
(2012) [107] 

Cognitive - 
Accelerometers 
Infrared cameras 

It gets information about objects by pointing at them. 

Ramirez-Gonzalez et al., 
(2012) [108] 

Cognitive Skills in setting NFC 
It allows teachers to create information about objects so that 

students can access this information later. 

 Serbedzija & Fairclough 
(2012) [41] 

Cognitive - 
Heart-rate monitor 
Electromyography 
GPS Speedometer  

It adapts the cockpit of a car according  
to the user’s state and driving rules. 

SPARKvue [45] Cognitive -  Commercial Software to visualize sensor data. 

Spelmezan, Schanowski & 
Borchers (2009) [49] 

Cognitive - 

Bend sensors 
Force sensors 

Inertial sensors  
Software Compass 

It tracks important moments during snowboarding. 

Strachan (2005) [79] Cognitive Feedback GPS It helps users to navigate through sounds. 

Szafir & Mutlu (2013) [34] Cognitive 
Knowledge of criteria and standards 

Skills in setting 
Feedback 

EEG 
It tracks the attention level of students during a virtual 

lecture, and recommends which subjects to review after it. 
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Whitehill et al., (2008) [39] Cognitive Knowledge of criteria and standards Camera 
The prototype determines the speed at which lesson 

material should be presented in a tutoring system according 
to the facial expressions of the learner. 

Garrido (2011) [109] 
Cognitive - 
Affective 

Skills in setting 
Evaluative skills 

NFC 
RFID 

It is a game where objects can be found by using sensors. 

Heggen (2012) [57] 
Cognitive - 
Affective 

Skills in setting 

Accelerometer 
Camera 

Microphone 
GPS 

It uses the sensors on a mobile device to gather scientific 
data. 

Carroll et al., (2013) [70] Affective 
Self-Assessment 

Feedback 

Accelerometer 
ECG 

Electro dermal activity 

It monitors the emotional state of the  
user and keeps track of its eating habits. 

Consolvo et al., (2008) [55] Affective 
Self-Assessment 

Feedback 

Accelerometer Barometer 
Camera 
Compas 

Humistor 
Microphone 

Thermometer microphone 

It monitors and keeps track of the  
physical activity of the user. 

Froehlich et al., (2009) [71] Affective 
Self-Assessment 

Feedback 

Accelerometer  
Barometer 

Infrared camera 
GSM 

It monitors and keeps track of the  
means of travel by the user. 

Hsieh et al., (2008) [72] Affective 
Self-Assessment 

Feedback 
Software sensors It monitors and keeps track of the user’s activities. 

Pentland (2004) [51] 
DiabeNet 

Affective 
Self-Assessment 

Feedback 
Blood glucose meter 

Software sensors 
It monitors the glucose condition of the user. 

Verpoorten et al., (2009) [56] Affective Feedback Software sensors 
It adapts a virtual learning environment according to the 

learner’s actions and interests. 

Aukee et al., (2004) [74] Psychomotor Feedback Biofeedback(Barometer) 
It gives feedback about the pelvic floor activity, and it is 

used to improve incontinence. 
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Bevilacqua et al., (2007) [59] Psychomotor 
Knowledge of criteria and standards 

Feedback 
Accelerometers 

Gyroscopes 
It maps gestures taught on a music lesson to sounds. 

Brunelli, et al., (2006) [58] Psychomotor Feedback 
Accelerometers 
Inertial sensors 

It corrects the posture of people going through a 
rehabilitation process. 

Burish, & Jenkins  
(1992) [76] 

Psychomotor Feedback 
Electromyograph 

Thermometer 
It teaches patients going through  

Chemotherapy how to relax. 

Cockburn et al., (2008) [68] Psychomotor Feedback Cameras 
It is a game that trains children with autism to perform 

some facial gestures. 

Hoque et al., (2013) [67] Psychomotor Feedback 
Cameras 

Microphones 
It is a prototype that helps learners to develop social skills 

for job interviews 

Kranz et al., (2006) [61] Psychomotor Feedback 
Accelerometers 

Gyroscopes 
RFID 

It corrects the movements of patients  
going through physiotherapy. 

Kwon & Gross (2005) [62] Psychomotor Feedback 
Accelerometers 

Cameras 
It is a motion training system for martial arts. 

Lehrer et al., (2000) [77] Psychomotor Feedback ECG It trains users to breath according to the heartbeat. 

Li et al., (2012) [78] Psychomotor Feedback Camera 
It is a game based psychomotor skill  

training for kids with autism. 

Paradiso et al., (2004) [73] Psychomotor Feedback 

Accelerometers 

Barometers 

Gyroscopes 
Sonar 

It produces different sounds  
according to the gait of the users. 

Spelmezan & Borchers 
(2008) [63] 

Psychomotor 
Knowledge of subject matter 

Knowledge of criteria and standards 
Feedback 

Bend sensors 

Force sensors 

Inertial sensors  
Software Compass 

It helps to train the snowboarding technique. 
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Sensors Used Description 

Spelmezan et al., (2009) [64] Psyhomotor Feedback 

Bend sensors 

Force sensors 

Inertial sensors  

Software Compass 

It helps to train the snowboarding  

technique using haptic feedback. 

Takahata et al., (2004) [65] Psychomotor Feedback 
Accelerometers 

Cameras 
It helps to train karate movements. 

Vales-Alonso et al.,  

(2010) [66] 
Psychomotor Feedback 

Barometer 

Heart-rate monitor 

Humistor 

Thermometer 

It helps cross country runners with its training. 

Van der Linden et al.,  

(2011) [60] 
Psychomotor Feedback 

Inertial motion  

capture sensors 

It is a prototype that helps learners to practice certain 

movements while playing violin. 

Verhoeff et al., (2009) [80] Psychomotor Feedback 
Accelerometers 

Gyroscopes 
It gives feedback according to the user’s gait. 

Chang et al., (2009) [110] - - 

Humistor 

Light sensors 

NFC 

RFID 

Thermometers 

It is a house that adapts certain aspects  

automatically according to the user’s preferences 

Hsu (2010) [111] - - RFID 
It is a house that adapts the music being played 

automatically according to the user’s preferences. 

Krause et al., (2006) [112] - - 

Accelerometer 

Galvanic skin response 

Thermometer 

It is a mobile phone that changes its behavior  

according to the user state and surroundings. 
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