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Abstract: Maize is an extremely important grain crop, and the demand has increased sharply
throughout the world. China contributes nearly one-fifth of the total production alone with its
decreasing arable land. Timely and accurate prediction of maize yield in China is critical for ensuring
global food security. Previous studies primarily used either visible or near-infrared (NIR) based
vegetation indices (VIs), or climate data, or both to predict crop yield. However, other satellite
data from different spectral bands have been underutilized, which contain unique information on
crop growth and yield. In addition, although a joint application of multi-source data significantly
improves crop yield prediction, the combinations of input variables that could achieve the best results
have not been well investigated. Here we integrated optical, fluorescence, thermal satellite, and
environmental data to predict county-level maize yield across four agro-ecological zones (AEZs)
in China using a regression-based method (LASSO), two machine learning (ML) methods (RF and
XGBoost), and deep learning (DL) network (LSTM). The results showed that combining multi-source
data explained more than 75% of yield variation. Satellite data at the silking stage contributed more
information than other variables, and solar-induced chlorophyll fluorescence (SIF) had an almost
equivalent performance with the enhanced vegetation index (EVI) largely due to the low signal
to noise ratio and coarse spatial resolution. The extremely high temperature and vapor pressure
deficit during the reproductive period were the most important climate variables affecting maize
production in China. Soil properties and management factors contained extra information on crop
growth conditions that cannot be fully captured by satellite and climate data. We found that ML and
DL approaches definitely outperformed regression-based methods, and ML had more computational
efficiency and easier generalizations relative to DL. Our study is an important effort to combine
multi-source remote sensed and environmental data for large-scale yield prediction. The proposed
methodology provides a paradigm for other crop yield predictions and in other regions.
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1. Introduction

Maize is a staple food for more than 4.5 billion people, and the demand is expected to double by
2050 [1–3]. China is the second-largest producer and consumer of maize, and the country contributes
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to 21% of the global production with less than 9% of maize planting areas [4]. Therefore, timely and
accurate prediction of maize yield in China is vital for both regional and global food security.

Traditional crop yield estimation primarily relies on crop models and statistical regression [5–7].
Crop models could reproduce the key processes of plant growth and development in detail and can run
on multiple scales [8,9]. However, they are often computationally intensive and require fine soil and
daily weather data, which prevent their large-scale application [10,11]. In contrast, statistical-based
methods provide a simpler alternative for yield prediction, but such empirical models are typically
localized and unable to extend to other areas [7,12]. Machine learning (ML) is an immediate successor
of the statistical method, which adopts important weights rather than the likelihood or probability
of any forecasting information [13]. Therefore, ML is more effective for noisy data and is able to
interpret nonlinear relationships. ML has been increasingly and extensively used for crop classification
and yield estimation [14,15]. For instance, Hunt et al. [16] trained an RF model with high-resolution
sentinel-2 images and mapped within-field wheat yield at 10 m resolution in the UK. Cai et al. [17]
accurately predicted county-level wheat yield in Australia using three ML methods (RF, SVR, and NN),
and confirmed that their performances were much better than the traditional regression model.
Deep learning (DL) is an advanced approach for performing ML tasks [18], which has substantiated its
advantages in many fields, such as image capturing and speech recognition [18–21]. However, there are
still limited studies that applied DL to crop yield prediction [18]. In addition, whether emerging
data-driven approaches outperform the regression-based method has not been well investigated.

ML and DL methods require multiple factors relating to crop growth and development, for example,
satellite observations, climate variables, and soil properties, for capturing yield variability [22–25].
Remote sensing provides data on a large spatial context and can directly monitor crop status through
various spectra, such as optical, thermal, and microwave wavelengths. Previous studies mostly
used visible and near-infrared (NIR) (optical) based vegetation indices (VIs), like the normalized
difference vegetation index (NDVI) and enhanced vegetation index (EVI) to predict crop yield [5,25,26].
The two VIs are similar, but the EVI is less affected by higher canopy leaf area index (LAI) [26].
However, VIs mainly reflect the leaf structure and greenness of vegetation, other than environmental
stress on crop growth [6,12,17]. Solar-induced chlorophyll fluorescence (SIF), a newly detected signal
in the NIR (650–800 nm), contains information about the physiological, biochemical, and the fraction
of absorbed photosynthetically active radiation (fPAR) [27,28]. SIF is a proxy of photosynthesis and
responds to crop stress more sensitively than VIs [29,30]. However, very limited studies so far have
explored whether SIF outperforms EVI in estimating crop yield at larger scales.

Climate variables, such as temperature- and water-related variables, reflect crop stress from
growth conditions, which cannot capture by satellite data. Land-surface temperature (LST) from
thermal bands is a critical variable for detecting crop stress from leaf canopy temperatures [31–33].
Heft-Neal et al. [34] substituted ground-observed maximum air temperature (Tair) with LST to estimate
maize yield and achieved a better result in Africa. Pede et al. [12] also reported that LST had improved
maize yield predictions and could accurately forecast them several months in advance relative to Tair
in the US. However, the majority of agriculture studies have not yet utilized LST. To our knowledge,
there is still no study focusing on remotely sensed LST for crop yield prediction on large scales in
China to date.

Previous studies have confirmed that water supply significantly affects maize production,
especially in extremely hot periods [35–38]. However, precipitation may be an inadequate indicator of
water availability. The actual available water for crops highly depends on soil moisture, which relates
to several soil characteristics, including soil water holding capacity, soil quality and type, and rooting
depth [39,40]. Furthermore, soil property varies greatly across the whole of China, resulting in a highly
variable growing condition for crops. Additionally, soil property is considered as one of the important
factors that lead to a large yield gap in the Chinese Maize Belt [41,42]. Hence, large-scale crop yield
estimation should integrate soil features with climate variables to better capture the variation of
yield [14,17]. Previous studies have also reported that a joint application of multi-source data could
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improve crop yield prediction [12,17,23,29]. However, which combinations of input variables could
achieve the best results is unclear.

Here, we integrated optical, fluorescence, thermal satellite data, and environmental variables
(climate variables, soil properties, and irrigation ratio) to predict the county-level maize yield in
China from 2001 to 2015 by applying four methods: least absolute shrinkage and selection operator
(LASSO), random forest (RF), extreme gradient boosting (XGBoost) and long short-term memory
(LSTM). We aimed to answer the following questions: (1) Does SIF, a proxy of plant photosynthesis,
outperform EVI in predicting maize yield at regional scales? (2) How do ML and DL perform when
compared with traditional linear regression for estimating crop yield? (3) Which combinations of input
variables could achieve the best results?

2. Materials and Methods

2.1. Study Area

The main maize-growing regions are divided into four agro-ecological zones (AEZs) according
to the cultivar characteristics, management practices, and geographical environments (Figure 1).
The typical growth cycles of maize in each AEZ are shown in Figure S1.Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 21 
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Figure 1. The maize planting areas and four main agro-ecological zones in China.

Zone I (North China spring maize) has a continental monsoon climate, rich and deep soil,
and a mean temperature of 8.6 ◦C. The total annual precipitation ranges from 400 to 800 mm. The maize
and wheat double rotation is the dominant cropping system and contributes to 39% of the national
total maize production.

Zone II (Huang-Huai-Hai summer maize) has a semi-humid monsoon climate, alluvial soil,
and a mean temperature ranging from 8–15 ◦C. The annual precipitation is very uneven, ranging from
400 mm in the northwest to 2000 mm in the southeast. The main cropping system is the winter wheat
and summer maize rotation, which produces one-third of maize.
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Zone III (Southwest maize) has a subtropical monsoon humid climate, lime purple soil, and a mean
temperature of approximate 24 ◦C. The annual precipitation exceeds 990 mm. The prevailing planting
pattern is an intensive triple-cropping system that includes rice, maize, and wheat. The maize
production accounts for 13.4% of the total yield.

Zone IV (Northwest maize) has a monsoon climate of medium latitudes, Loess, and a mean
temperature of approximately 9.5 ◦C. The annual precipitation decreases from 400 mm in the east to
less than 50 mm in the west. The main planted crops are winter wheat and spring maize. The maize
production contributes to approximately 10% of the national yield.

2.2. Data

We collected multi-source data with various spatial and temporal resolutions, including
annual maize planting areas and county-level yield, satellite data, and environmental factors
(i.e., climate variables, soil properties, and irrigation ratio). An overview of the data was presented
in Table S1. Here, we first resampled the gridded data into 1 km and monthly time steps and then
aggregated all input data to a mean for each county after being masked by maize planting areas.
All these processes were implemented on the GEE (Google Earth Engine) platform.

2.2.1. Maize Yield and Planting Area

County-level maize yield (kg/ha) from 2001 to 2015 was collected from the ‘Agricultural Statistical
Yearbook’ compiled by the Ministry of Agriculture of China. Annual maize planting areas were based
on previous work [43] in which maize-cropping areas were identified at a resolution of 1 km in China
from 2000 to 2015 (https://doi.org/10.6084/m9.figshare.8313530). The counties were selected in the light
of having yield data and more than six planting grids for at least 8 years out of a 15-year study period.
Finally, 1198 counties were selected, covering approximately 50% of cropping areas in China.

2.2.2. Satellite Data

Monthly maximum values of two vegetation metrics (EVI and SIF) in the growing season
were used to reflect aboveground vegetation dynamics associated with biomass and photosynthesis.
We used the latest version (Collection 6) MODIS EVI with 1 km and 16-day resolution during
the period of 2001–2015 from the MOD13A2 product, which obtained from the GEE platform
(https://doi.org/10.5067/MODIS/MOD13A2.006). SIF data was a global spatially contiguous SIF (CSIF)
dataset with 0.05◦, 4-day resolutions (https://doi.org/10.6084/m9.figshare.6387494), which was generated
by training a neural network (NN) with MODIS surface reflectance and Orbiting Carbon Observatory-2
SIF (OCO-2) [44]. The dataset showed high consistency with the satellite-retrieved OCO-2 SIF and
GOME-2 SIF with R2 > 0.8.

2.2.3. Environmental Data

MODIS daily LST at 1 km resolution from MOD11A1 V6 product (GEE Dataset’s DOI: https:
//doi.org/10.5067/MODIS/MOD11A1.006) was employed to calculate three agro-meteorological indices,
namely, growing (GDD), killing (KDD), and freezing (FDD) degree days, for better capturing the
impact of environmental stress on final yield. They were calculated as follows:

GDD =
N∑

d=1

max
(
Td
− TGDD, 0

)
, (1)

KDD =
N∑

d=1

max
(
Td
− TKDD, 0

)
, (2)

https://doi.org/10.6084/m9.figshare.8313530
https://doi.org/10.5067/MODIS/MOD13A2.006
https://doi.org/10.6084/m9.figshare.6387494
https://doi.org/10.5067/MODIS/MOD11A1.006
https://doi.org/10.5067/MODIS/MOD11A1.006
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FDD =
N∑

d=1

min
(
Td
− TFDD, 0

)
, (3)

where d and N were the start and end month of maize growing season (Figure S1) in each AEZ; TGDD,
TKDD, and TFDD were 10 ◦C, 35 ◦C, and 0 ◦C, respectively [45].

Monthly 4-km meteorological information was obtained from TerraClimate datasets (http://doi.org/

10.7923/G43J3B0R), which was commonly used for regional maize yield prediction [46]. The primary
variables utilized for this analysis were minimum (Tmin), maximum temperature (Tmax), precipitation
(Pre), vapor pressure (Vap), vapor pressure deficit (Vpd), evapotranspiration (Pet), and palmer drought
severity index (Pdsi) from 2001 to 2015. Beyond that, seven properties relating to soil hydrology and
water availability at 1-km resolution were adopted for the topsoil (30 cm), which were gathered from
a soil particle-size distribution dataset in China (http://globalechange.bnu.edu.cn) [47]. Information
about the irrigation ratio was also used in the form of yearly averages for the whole county to represent
management characteristics, which was obtained from FAO (http://gaez.fao.org/Main.html#) [41].

2.3. Methodology

2.3.1. Selecting Key Variables

High-dimensional inputs lead ML and DL methods to suffer from accuracy and computational
cost [48]. To reduce input variables without sacrificing information, we applied Pearson correlation
analysis to select key climate variables. Specifically, we first divided 10 environment variables into
three groups, namely, temperature-related Tmin, Tmax, as well as LST-based GDD, KDD and FDD,
water-supply-related Pre and Pdsi, and water-demand-related Pet, Vap, and Vpd. Then, we calculated
the correlation among the variables and yield. Finally, the variables that had the highest correlation
coefficients with yield were selected.

In addition, a spatiotemporal correlation analysis was conducted between yield and the transient
variables (i.e., climate and satellite variables) to interpret the results of the ML and DL methods.
We first calculated county-level correlations for each month to investigate which stage would
significantly affect the final yield in each AEZ, and then, the monthly coefficients with the highest
absolute value were spatialized to explore their spatial patterns.

2.3.2. Developing Yield Prediction Models

Here, four methods (LASSO, RF, XGBoost, and LSTM) were trained and tested against county-level
maize yield in each AEZ. We first normalized all of selected variables and yield, and then randomly split
all of the samples in each AEZ into 70% for training and 30% for testing. The ten-fold cross-validated R2

and RMSE were used to evaluate model performance. The optimal model was the one with the highest
R2 and the lowest RMSE in the test set. The metrics were the means of 100 runs. Additionally, the spatial
patterns of the predicted yield were also compared to critically evaluate the model performance. Details
for the model construction and parameterization were given in the following.

(1) Least absolute shrinkage and selection operator (LASSO)

LASSO was first proposed by Tibshirani [49], which can directly compress the low coefficient
of the input variables to be exactly zero through adding a regularization term to the loss function.
Thus, the LASSO could effectively remove the non-significant and high-correlation variables from the
model, resulting in parsimonious models and avoiding overfitting. Here, the regularization intensity
(alpha) was tuned to improve the accuracy of the model using the GridSearchCV package in Python 3.7.

(2) Random forest (RF)

RF, firstly proposed by Breiman [50], fits an ensemble of models that first train a multitude
of decision trees and then obtain predictions by an average or vote through all individual trees.

http://doi.org/10.7923/G43J3B0R
http://doi.org/10.7923/G43J3B0R
http://globalechange.bnu.edu.cn
http://gaez.fao.org/Main.html#
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The algorithm introduces extra randomness when growing trees and searches for the best trees
among a random subset of features. This condition results in greater tree diversity, generally yielding
an overall better model. In addition, bagging is employed to reduce the variance and over-fitting.
Five hyper-parameters, including the number of decision trees (n_estimators), the maximum depth
(max_depth), the number of features (max_features), the minimum number of samples at a leaf node
(min_samples_leaf ), and the minimum number of samples to spilt (min_samples_split), were tuned
in this study.

(3) Extreme gradient boosting (XGBoost)

Extreme gradient boosting (XGBoost) is a scalable ML technique that was proposed by Chen and
Guestrin [51]. The algorithm fits the first learner to the whole input and fits the second learner with
the residuals of the first learner. The method tries to boost these weak learners into strong learners.
The approach simplifies the objective functions that allow combining the predictive and regularization
terms to prevent over-fitting. Parallel calculations are automatically executed during the training
phase. Here, six hyper-parameters were optimized in sequence using the GridSearchCV package—first
for maximum depth (max_depth), minimum sum of instance weight (min_child_weight), step-size
shrinkage (eta), minimum loss reduction (gamma), subsample ratio (subsample), and subsampling of
columns (subsampling of columns)—to obtain a low biased model and then for two regularization terms,
alpha and lambda, to control over-fitting.

(4) Long short-term memory (LSTM)

The long short-term memory (LSTM) network was first introduced by Hochreiter and
Schmidhuber [52], which was developed to deal with the inherent problems of recurrent neural
networks (RNNs), i.e., vanishing and exploding gradients [53]. The LSTM network is composed of an
input layer, one or more hidden layers, and an output layer. The characteristic of LSTM networks is
in the hidden layer(s) consisting of memory cells [54]. In this case, transient data (i.e., EVI, SIF, and
climate variables) was dealt with two hidden layers with 150 neurons and a ReLU activation function
each. The static variables (i.e., soil properties and irrigation ratio) were appended to the third hidden
layer and was then fully connected to the output layer. We applied three methods to train the LSTM
network via keras. First, RMSprop was utilized as an optimizer to update the learning rate. Second,
we applied a dropout rate of 0.2 and L2 regularization within the hidden layer to avoid overfitting and
improve generalization. Third, an early stopping patience of 50 was used to further reduce the risk
of overfitting.

2.3.3. Designing Comparison Experiments

We designed two comparison groups to answer the questions mentioned in last part of introduction
section. To answer the first two questions—does SIF outperform EVI? and how do ML and DL perform
when compared with the linear regression for maize yield estimation?—we applied two combinations
of inputs into four models (LASSO, RF, XGBoost, and LSTM) in each AEZ: 1) “SIF+Environment”:
SIF combined with environmental data (i.e., climate variables, soil properties, and irrigation ratio);
(2) “EVI+Environment”: EVI combined with environmental data. As for the third question—which
combinations of input variables could achieve the best yield prediction—we firstly divided the maize
growing season into three stages in each AEZ: namely the early (from planting to V3), peak (from V3
to silking), and late stage (from silking to maturity), respectively. Then we compared the results of the
following two combinations of inputs to determine the most influential stage: (1) “Climate(all)+SIF(s)”:
one specific stage of satellite data combined with all climate data and other variables (i.e., soil properties
and irrigation ratio); (2) “SIF(all)+Climate(s)”: all satellite data combined with one specific stage of
climate data and other variables.



Remote Sens. 2020, 12, 21 7 of 20

3. Results

3.1. The Key Variables Selected

Figure 2 showed that SIF and EVI were strongly correlated with each other, and both showed
significant correlations with yield (p < 0.001). However, the correlation was negative for SIF while
positive for EVI. For temperature-related variables, LST-based metrics were significantly correlated
with yield with higher coefficients than those of Tmin and Tmax with the exception of FDD, largely
attributed to their ability in reflecting temperature and water stress simultaneously. Additionally,
monthly Tair smoothed out extreme temperatures, and consequently, cannot capture conditions within
critical crop developmental stages. We noticed both FDD and Tmin were non-significantly correlated
with yield, which was in line with the reality that maize production suffered less from freezing
damage across China with the exception of zone I [55,56]. We found all of the water-related variables
significantly and negatively correlated with yield except for Vpd, indicating that water might be
a critical factor controlling maize production in China [57,58]. Particularly noted, all of the water-related
variables were highly correlated with GDD and KDD, with the coefficients consistently exceeding 0.5
(p < 0.01), which further substantiated that LST could monitor plant water conditions [12,33]. Based on
the above results, the climate factors indicating the most significant correlation with yield in each group
were choosing for training models. Please note that beyond GDD, KDD was also selected since it was
one of the key climate factors affecting maize production in China [59,60]. Additionally, we conducted
a correlation analysis in each AEZ (Figure S2–S5). Similar results were found in four AEZs and the
whole country. However, a few differences were indicated by the significant relationships between
Tmin/Tmax and yield across AEZs (with the exception of zone IV), with the corresponding correlation
coefficients slightly smaller than the LST-based GDD and KDD. Thus, we finally selected GDD/KDD
to predict yield, rather than Tmin/Tmax. As for water-related variables, Pre/Vpd were significantly
associated with yield across AEZs except for Vpd in zone III. Overall, the dominant factors controlling
yields are similar in four AEZs. Therefore, the same variables were selected to predict corn yield across
the whole studied areas. An overview of the finally-determined variables is presented in Table 1.Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 21 
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Table 1. Key variables applied to develop yield prediction models.

Abbreviation Type Description Unit

Satellite variables transient

EVI Enhanced vegetation index —

SIF Solar-induced chlorophyll fluorescence W m−2 µm−1 sr−1

Environmental variables

Climatic variables transient

GDD Growing degree days ◦Cd

KDD Killing degree days ◦Cd

Pre Precipitation mm

Vpd Vapor Pressure Deficit KPa

Soil properties static

SCLAY Clay cm3 cm−3

SSILT Silt cm3 cm−3

SSAND Sand cm3 cm−3

S_OC Organic carbon %

S_PH PH in water —

S_CEC Cation exchange capacity cmol kg−1

SREF_BULK Bulk density g cm−3

Management factor static

Irri Irrigation ratio —

3.2. Spatiotemporal Correlation Patterns between the Transient Variables and Yield

To further investigate the relationships of explanatory variables and yield, we conducted
a spatiotemporal correlation analysis between the transient variables and yield. The results showed
that the temporal patterns of correlations were almost equivalent for all variables, while the spatial ones
differed remarkably among AEZs, suggesting individual models should be developed for each zone.

3.2.1. Correlations between Satellite Variables and Yield

Both variables (EVI and SIF) were positively correlated with yield regardless of AEZs and shared
the same temporal pattern as the correlations were consistently maximized at the peak stage except
for that of SIF in zone IV (Figure 3a,c). The maximums for both data were comparable across AEZs,
with the exception of zone II in which SIFs were larger than those of EVI (Figure 3a,c). In contrast,
the spatial correlation patterns varied in AEZs. For example, the correlations between SIF and yield
were negative for more than 47% of the counties in zone I, and the absolute values were generally less
than 0.4 (Figure 3d). However, the correlations in zone II were mostly positive and the coefficients of
30% of counties were higher than 0.6. Similar results were found in zone III for approximately 38% of
counties. In comparison with the above three zones, the correlations in zone IV were mostly positive
but with a larger variability (Agu. in Figure 3c), which mainly ascribed to the high variability of SIF in
northwest China [44]. Similar patterns of EVI were found as that of SIF, and the discrepancy was that
more than 50% of counties correlated positively with yield in zone I while negatively for one-third of
counties in zone II (Figure 3b).
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gray square represents the mean; the right part is the spatial pattern of the correlation for the month
with the highest correlation coefficient (the red circle in the left part).

3.2.2. Correlations between Climate Variables and Yield

Similarly to those of satellite data, the maximum absolute values of correlation coefficients were
consistently indicated by the peak or late stage for all climate variables, but the values were generally
smaller than those of satellite data (Figure 4a,c,e,g). Surprisingly, we found mostly negative correlations
with yield for both GDD and KDD (Figure 4a,c). This was most likely due to GDD containing extremely
high temperature information, as demonstrated by the significantly linear relationship between the
two variables (Figure 2). In contrast, water-related variables (i.e., Pre and Vpd) had a relatively smaller
correlation with yield (Figure 4e,g). Precipitation had a positive correlation while negative for Vpd,
and the absolute maximum coefficients for Vpd were higher than that for precipitation, suggesting
that water-related variables significantly affect maize production [58,60]. As for their spatial patterns
(Figure 4b,d,f,h), no climate variables showed obvious differences among the agricultural zones,
possibly due to their relatively low temporal and spatial resolutions and, hence, incapability for
capturing the spatial variability of environments.
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3.3. The Model Performances for Yield Predictions

As shown in Figure 5, on the national scale, SIF and EVI had comparable performances for
predicting final yields, demonstrated by the almost equivalent R2 for all models. In fact, a slightly
higher R2 for SIF was found than that of EVI across AEZs with the exception of zone III (Table S6),
largely due to the low signal–noise ratio of SIF in southwest China [44]. In agreement with previous
studies, ML and DL methods distinctly outperformed the linear regression (i.e., LASSO), independent
of input variables and AEZs. We attributed the better performances of ML and DL than LASSO to
their ability in capturing potential complex relationships between explanatory variables and yield.
The accuracies of the two ML models were relatively higher, which could explain more than 75% of
yield variations (Figure 5c,d,e,f). The RMSEs ranged from 731 to 746 kg/ha, which were considerably
low compared with the mean of recorded yields (7538 kg/ha). We noticed that the performance of ML
models (Figure 5c,d,e,f) were slightly better than LSTM (Figure 5g,h). Please note that the superior
performances of ML over LSTM were more obvious in zone IV (Table S2), which might be caused by the
relatively small training samples; hence, the LSTM network was incapable of extracting key features.
Overall, the performances of SIF and EVI in predicting county-level maize yield were comparable,
and the ML and DL methods evidently outperformed traditional linear regression. Based on the above
findings, we would only use SIF as a satellite variable and focus on three nonlinear methods in the
following analyses.
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3.4. The Spatial Patterns of Predicted Yield

In China, the high-yield counties were mostly distributed in the northeast, North China Plain,
and northwest areas (Figure 6a). However, the counties with the lowest yield were mainly concentrated
in the farming–grazing transitional zone in northern China (Figure 6a). The spatial patterns of the
predicted yields were in agreement with the reality (recorded ones) for all methods (Figure 6a,b,c,d),
demonstrating that ML and DL methods were applicable for crop yield estimation at a larger scale.
Moreover, we found the counties with high yields were slightly underestimated, regardless of methods,
which were mostly located in northeast China, North China Plain, and Sichuan Basin. The spatial
patterns of relative errors for three methods were considerably similar across all AEZs, with the
exception of zone IV, in which the errors of the LSTM were higher than the others (Figure 7). The largest
errors were consistently found in the farming–grazing transitional zone in northern China, with >20%
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errors for a quarter of the counties. We attributed the largest errors to frequent disturbance from mixed
pixels mainly caused by maize and pasture in the 1 km grid. Similar spatial patterns were found for
EVI (Figure S6) but with slightly higher errors than those of SIF (Figure S7).
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3.5. The Important Factors for Maize Yield Prediction

Figure 8 showed the predicted R2s of three models with one specific stage of SIF combined with
all climate variables and other data (Figure 8a) or with one specific stage of climate variables combined
with all SIF and other data (Figure 8b). We found that SIF combined with static environmental variables
(i.e., soil properties and irrigation ratio, but no any climate input), achieved better results than that
climate data did (the dashed lines in Figure 8a,b) regardless of model methods, indicating that satellite
data (SIF) provided more information for yield prediction. Combining SIF with all environmental data
(i.e., climate data, soil properties, and irrigation ratio) significantly improved the predicted R2s (ranging
from 0.19 to 0.32) depending on the methods (Figure 8a). Moreover, the peak SIF consistently showed
more contribution than the other two stages, which was in agreement with previous studies [17,29].
In contrast, adding climate information to the combinations of SIF and other static environment
variables improved the model performance less, with an R2 increase of 0.15–0.20. The peak or late of
climate data contributed more information to yield prediction than that of the early stage, which was in
accord with the fact that climate conditions during the silking and maturity period most significantly
influenced final yield formation [61,62].
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To identify the critical factors for maize yield prediction in each AEZ, we further analyzed the
important orders of the top 18 variables from the XGBoost models (Figure 9). The peak SIF was
consistently ranked as the top one factor for predicting the final yield, followed by soil properties
across all AEZs except zone IV. Excluding zone I, irrigation ratios were also ranked in the top 10 across
AEZs, suggesting that management practices significantly affected maize production in China [62,63].
However, the order of climate variables was varied among AEZs. In zone I and III (Figure 9a,c),
the peak Vpd and KDD were ranked in the top 10. However, climate variables were consistently more
important than SIF and soil properties in zone II (Figure 9b), which was in line with those reports in the
North China Plain [42,58]. Moreover, the critical climate variables were similar to those in zone I and
III, but with the slight differences in the month of KDD and Vpd (Vpd6 and KDD6). Different from the
above three zones, we noticed that the top one factor (SIF) was followed by water-related variables
(Vpd8 and Pre9) rather than soil properties in zone IV (Figure 9d), highlighting the significant roles of
the water-related variables for maize production in northwest China.
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4. Discussion

4.1. Comparing the Performances of EVI and SIF in Predicting Crop Yield

In agreement with previous studies [17,64,65], we found both SIF and EVI were positively
correlated with yield across AEZs, and the correlation coefficients at the peak stage for SIF were
generally higher than that for EVI, illustrating SIF was more sensitive to a high photosynthesis rate.
However, we noticed the predicted R2 for two data sources were comparable on the national scale
irrelative to methods. Such findings could be explained by the following reasons. Firstly, the retrieved
SIF contain more uncertainties than VIs [66–68]. Secondly, aggregating four-day SIF to a monthly scale
weakened its advantages in capturing mild and short-term crop stresses. On the other hand, two data
sources may share some information related to aboveground crop biomass because EVI was sensitive to
changes in green leaf structure, chlorophyll content, and biomass [17,29,69]. Furthermore, the currently
available SIF data might fail in capturing spatial features in details due to a coarse spatial resolution
(0.05–1◦) relative to EVI (1 km) [70–72]. Although SIF data with improved spatial-temporal resolution
were used, the issue has not completely been resolved in this study. Overall, SIF was a feasible data
source for crop yield estimation at a larger scale, and it was not inferior to EVI.

4.2. Comparing the Performances of Linear, ML, and DL Methods in Predicting Crop Yield

The results showed that ML and DL methods definitely outperformed linear regression (LASSO)
across AEZs, largely attributed to their ability to extract the complicated relationships between the
predictors and the target variable [14,17,73]. Intuitively, we noticed that ML methods had better
performance than the LSTM network across AEZs, especially in zone IV. The difference between ML
and DL was mainly caused by fewer maize planting counties there than other zones, consequently
resulting in a small training sample in zone IV and subsequently limiting the DL network performance.
Furthermore, the DL method can automatically extract key features from input data; however,
hand-designed features were used in the study, and the potential power of DL might not be sufficiently
utilized [18,48,74,75]. Finally, although our study covered 1198 counties over a 15-year time period
(2001–2015), the training samples were relatively small, and thus, combining feature engineering with
ML methods could achieve better performance [22,76]. In summary, ML and DL methods evidently
outdo statistical regression, and ML has the advantages of computational efficiency and spatial
generalization relative to the DL network. In comparison with traditional yield prediction methods
(i.e., crop models simulation and statistical regression), they provide new opportunities for yield
predictions at regional or even global scales.
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4.3. Integrating Multi-Source Data to Predict Large-Scale Crop Yield

Visible and NIR-based VIs are widely prevailed because of their relatively long-time series
and high-spatial resolution [9,77]. However, satellite data from other spectra can provide additional
information related to crop growth and development [6,78,79]. Furthermore, other factors, such as
climate variables and soil properties, significantly affecting crop yield, contain abiotic information,
and may not be captured by satellite data [25,80,81]. This study integrated multi-band satellite data
with environmental variables to predict county-level maize yield in China. One of the objectives was
to investigate which combinations of input variables could achieve the best crop yield prediction.

The results showed that satellite data provided more information and newly detected SIF had
a slightly better performance than EVI, which was largely attributed to the fPAR, and the fluorescence
yield was sensitive to root zone soil moisture, and thus, added extra information about drought and heat
stress [57,78,82]. Moving to thermal bands, LST-based GDD and KDD were both significantly correlated
with yield, and were more sensitive to crop water conditions relative to Tair across AEZs, indicating
LST can be an indicator of crop water stress, which was supported by previous studies [32,83,84].

We found the combination of SIF and static environmental variables achieved better yield
predictions than using environmental data only (i.e., climate variables, soil properties, and irrigation
ratio). Adding peak or late of climate information on the top of them could further improve model
performance. Although satellite data do show advantages in monitoring crop biomass, final yield is
determined by grain weight, which is related to grain number in the flowering period and individual
grain size in the grain-filling period [85]. Additionally, numerous agronomy experiments have shown
that drought and heat in the above periods have a greater impact on crop growth [86,87]. These findings
have explained why adding the silking or maturity stage of climate factors significantly improved
crop yield prediction in current study. Beyond satellite and climate data, soil properties should be
considered for estimating crop yield at regional scales. The reason was that they contained unique and
extra information related to environmental stress on crop growth [39–42]. Therefore, we suggested
that large-scale crop yield prediction should integrate satellite data from different spectral bands and
various environmental variables.

4.4. Uncertainties in the Study

This study would also be plagued with some uncertainties. One of the concerns is that SIF suffers
from a low signal–noise ratio and coarse spatiotemporal resolution [29,65,66]. With the newly launched
TROPOMI onboard the Sentinel 5 (launched on October 13, 2017) [88], the ESA Sentinel-4/UVN
instrument (to be launched in 2019) [89] and the FLuorescence EXplorer (FLEX) (to be launched in
2022) [90] SIF with higher spatial and temporal resolution are expected. In addition, the current study
focused on predicting county-level crop yield because yield data recorded are only available at the
county level. On the other side, most of the satellite datasets in this study are of relatively coarse
spatial resolution, resulting in small training samples and limiting the power of ML and DL methods.
Finally, ML and DL approaches are “black box” with limited process-based interpretation. Integrating
a process-based model with data-driven approaches could not only attain interpretable ML/DL models
but, more importantly, are computational efficiency and readily extrapolate outside the range of
training conditions [18,91], which is recommended for future large-scale yield estimation, management
optimization, and disaster monitoring.

5. Conclusions

In this study, we integrated optical, fluorescence, thermal satellite, and environmental data and
employed four data-driven approaches (LASSO, RF, XGBoost, and LSTM) to predict county-level
maize yield in China. Results showed that SIF had comparable performance with EVI in predicting
crop yield, largely due to the low signal-to-noise ratio and coarse spatial resolution. Thermal-based
LST metrics significantly correlated with yield and were sensitive to water conditions relative to
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Tair, demonstrating they are good indicators of crop water stress. SIF-combined static environmental
variables (i.e., soil properties and irrigation ratio) reasonably estimated the final yield, and adding the
peak or late of climate information could further improve the model performance. We found that the
ML and DL methods evidently outperformed traditional regression models. Moreover, ML methods
have advantages of computational efficiency and spatial generalizations relative to the DL network,
which opens up new prospects for crop yield prediction at a regional, even global scale. Our study
highlights the necessity of integrating multi-spectral satellite data and environmental variables for
predicting crop yield on large spatial scales.
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