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Abstract: Early season switchgrass (Panicum virgatum L.) can be used as animal feed and mature
late-season biomass as a biofuel feedstock. However, nitrogen (N) application and harvest timing
effects on the quality of both end-use need further evaluation. This study evaluated the changes
in nutritive quality for animal feed and biofuel feedstock, under different N application rates (0 to
235 kg N ha−1 yr−1) and different harvest times at a fixed N rate. Plant N removal increased with
increasing N application rate (P < 0.05). The largest single difference (27%) was found between 0 and
33.6 kg N ha−1 application rates. Nitrogen removal decreased during subsequent harvests at a fixed
N rate (P ≤ 0.0001). Forage quality was affected by N rates, although it was especially impacted by
harvesting time. Fibers and most minerals in the biomass increased as accumulated growing degree
days (AGDD) increased (P ≤ 0.0001), but N and total digestible nutrients (TDN) decreased as AGDD
increased (P ≤ 0.0001). High crude protein and minerals with low fiber are desired forage qualities
and the opposite is true for biofuel feedstock. Earlier harvests are beneficial for hay production or
livestock grazing, and late-season harvests are better for biofuel production.

Keywords: switchgrass; biomass quality; forage quality; biofuel biomass quality; harvest timing;
nitrogen fertilization

1. Introduction

Public interests in plant-based renewable fuels within the United States have been varied over the
last decade or so, gaining or declining often based on oil production, fuel costs, and economic and
political changes. There have been calls for the development of renewable transportation fuels for many
years, in order to help mitigate environmental degradation and lessen greenhouse gas emissions [1–3].
Switchgrass (Panicum virgatum) has been identified as a viable source of sustainable biomass for fuel
conversion [4,5], especially as a potential for liquid transportation fuel. Other potential uses that can
be used for products like bioplastics and bioactive compounds prior to conversion for energy use
also make it an attractive source of material, and potential for phytoremediation. [6–11]. Given an
alternative fuel infrastructure and market for bio-based products, the development of practices for
switchgrass management are desirable. A focus on a dual-use harvest management program, in which
switchgrass biomass is harvested as forage in the early growing season, and harvested for biofuel
feedstock later in the season, has been studied by Richner et al. [12], to develop production options
for producers.

Managing switchgrass as a dual-use crop could be ideal for many areas of North America [13].
Switchgrass as biofuel biomass and forage hay would be attractive to growers desiring to use land
unsuitable for other crops. Considering its wide adaptability across North America, Casler et al. [14]
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demonstrated that the latitude of origin of a switchgrass cultivar affects the yield potential and
nutrient content of harvested biomass. Desirable quality required is dependent upon its intended end
use [15,16]. Management decisions, such as fertilization and harvest timing, can affect biomass quality.
High concentrations of nutrients in harvested biomass can cause fouling of processing equipment
and produce a lower-quality fuel [17–19]. However, more nutrients, such as protein and minerals,
and less fiber are preferred as feed for livestock consumption. Many studies have shown harvest timing
had a greater effect on biomass quality and mineral content than nitrogen (N) fertilization [20–23].
Harvest timing and number of harvests per year can affect stand longevity and total yield of the
stand [12,24–27].

Several parameters of plant biomass are often used to determine the forage quality for livestock
uses. They can also be used in accessing quality for biofuel production. Common parameters used are
crude protein (calculated from N content by multiplying N content by 6.25), mineral contents, acid
detergent fiber (ADF), neutral detergent fiber (NDF), and total digestible nutrients (TDN). Neutral
detergent fiber measures the fibrous fraction of the forage, comprised of cellulose, hemicellulose,
and lignin. These components are the slowly digestible and indigestible parts of the plant, so it is
directly linked to animal intake of the forage. Acid detergent fiber measures the cellulose and lignin
component of the plant, and determines forage digestibility for livestock. As ADF increases, total
digestibility will decrease. Total digestible nutrient is a measure of energy that can be derived from
the forage and is calculated using ADF values [12,28]. Nutrient contents of harvested biomass also
affect the quality and its use. Nutrient concentration within the plant can greatly affect the quality of
biofuel produced and the conversion process. A large amount of nutrients in the biomass, especially N,
is known to cause fouling of equipment [19,29]. On the other hand, higher nutrient concentrations in
the forage would be desirable for livestock consumption. The desired qualities for the two different
uses are in opposition to one another. This makes harvest timing critical, as concentrations of quality
parameters change with morphological and phenological growth stages during the growing season.

Fertilization and harvest timing can affect switchgrass biomass quality. These two management
practices can be used in producing quality switchgrass for biofuel production or as forage. The objectives
of this study were to evaluate how N rates affect N, ADF, NDF and TDN contents, and to monitor selected
quality parameters during the growing season, by harvesting switchgrass at different accumulated
growing degree days (AGDD) to aid the decision on final use.

2. Materials and Methods

2.1. Experiment Design and Treatment Description

A nitrogen (N) fertilization study was initiated in 2008 in Stillwater, OK, in a previously established
Kanlow switchgrass stand (36◦08′01.54” N: 97◦06′17.16” W), using eight N rates (0, 33.6, 67.2, 100.8,
134.4, 168.0, 201.6, and 235 kg N ha−1) in a randomized complete block design (RCBD) with 4 replications.
Each plot measured 6.1 × 6.1 m and was fertilized each year after soil sampling in the spring. Nitrogen
was applied manually as urea (46-0-0). The N input was a single application when rates were
≤ 67.2 kg N ha−1, and a split-application when rates were ≥ 100.8 kg N ha−1. The 67.2 kg N ha−1 or less
rate was applied in mid-March and the remaining N of other treatments was applied in early May to
reach total N needed. Triple superphosphate (TSP; 0-46-0) was applied only to individual plots where
soil test P was deficient, in order for mitigate any N × P interaction. The soil at the site is a Norge loam
(fine silty, mixed, active, and thermic Udic Paleustoll) [30].

2.2. Soil Analysis

Soil samples were collected from a 0 to 15 cm soil layer from each plot before fertilization each
year (Table 1). Samples were oven-dried at 65 ◦C for 24 h and ground to pass through a 2-mm sieve.
Soil pH was measured with an electrode in a 1:1 soil:water suspension. Plant available N was extracted
by 1M KCl and analyzed by a flow-injection analyzer [31]. Plant available phosphorus (P), potassium
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(K), calcium (Ca), and magnesium (Mg) were extracted using a Mehlich-3 solution [32]. Sulfate-S was
extracted by 0.008M calcium phosphate. Micronutrients iron (Fe), zinc (Zn), boron (B), and copper
(Cu) were extracted by DPTA-Sorbitol [33]. All nutrients in the extracts were quantified by a Spectro
inductively coupled plasma (ICP) spectrometer [34]. The soil pH and nutrient contents were consistent
and slightly or not different across years, as per the standard deviation (Table 1). These ensured
treatments were different and affected only by the nitrogen rates and harvest timing.

Table 1. Soil pH and plant available nutrients tested by year (2008, 2009, and 2010). Samples prior to
fertilizer application (pre-season soil sampling).

Year pH NO3-N
-N P K SO4-S Ca Mg Fe Zn B Cu

mg kg−1

2008 6.3 2.7 16.8 120 8.8 1614 326 48.5 0.7 0.34 1.38
Std. dev. 0.19 0.4 2.9 17 0.9 171 34 10.7 0.07 0.01 0.11

2009 6.2 7.1 15 115 5.5 1612 324 60.3 0.82 0.36 1.5
Std. dev. 0.19 8.6 2.7 20 0.0 172 33 9.3 0.09 0.03 0.04

2010 6.4 2.5 16 114.6 6.3 1587 315 58.4 0.72 0.27 1.5
Std. dev. 0.11 1.0 3.0 13.2 1.8 158 29 8.0 0.18 0.01 0.28

Averaged data was calculated from samples taken on each plot. Std. dev. = Standard deviation of the mean (n = 32).

2.3. Switchgrass Biomass Harvest Sampling

Research plots (6.1 × 6.1 m) were divided into two subplots, each 3.0 × 6.1 m for separate
sampling (harvest) regimes. One subplot was harvested using a flail harvester as a single harvest after
senescence and killing frost in November of each year and analyzed for biomass nutrient composition.
The other subplot was further divided into 0.9 × 3.0 m sections to harvest at pre-determined intervals
during the year. These temporal harvests were hand-harvested with garden shears and prepared for
nutrient analysis.

In four replications of one N rate each year, harvest date was used as a treatment to evaluate
biomass quality throughout the growing season. Therefore, the average N rate of 134.4 kg N ha−1 for
2008, 2009, and 2010 has been chosen for the temporal sampling from June to February or March of the
following year. The harvest dates, accumulated growing degree days (AGDD) since Jan. 1 of each
year, and growth stages [35,36] are listed in Table 2. Growing degree days were calculated as shown in
Equation (1) [21].

GDD = [(maximum daily temperature + minimum daily temperature)/2] − 10 ◦C, (1)

Table 2. Dates of periodic plant biomass harvests from one of the nitrogen treatments (134.4 kg N ha−1)
and associated accumulated growing degree days (AGDD).

Year Harvest Date Julian DOY AGDD Growth Stage

2008 1 12 June 2008 164 755 E1
2008 2 24 July 2008 206 1452 R2
2008 3 5 September 2008 249 2175 S3
2008 4 30 October 2008 304 2611 Senescence
2008 5 4 December 2008 339 2672 Senescence
2009 6 28 February 2009 425 2748 V0
2009 1 3 July 2009 184 1180 E4
2009 2 9 August 2009 221 1822 S0
2009 3 25 September 2009 268 2426 S5
2009 4 19 November 2009 323 2627 Senescence
2010 5 26 January 2010 391 2642 G5
2010 6 2 March 2010 426 2642 G5
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Table 2. Cont.

Year Harvest Date Julian DOY AGDD Growth Stage

2010 1 15 July 2010 196 1323 R1
2010 2 3 September 2010 246 2240 S4
2010 3 28 October 2010 301 2803 Senescence

2010 4 2 December 2010 336 2878
288 Senescence

2011 5 7 January 2011 372 2888 G5
2011 6 25 March 2011 449 3031 V1

Growth stages [35], using estimated mean stand count (MSC) calculated from AGDD by calendar year as
MSC = 0.875 + (0.0017 × AGDD) [36]. Julian DOY: Julian day of the year.

Daily maximum and minimum temperatures in Stillwater (2008, 2009 and 2010) were obtained
from the Oklahoma Mesonet [37]. Accumulated growing degree days was calculated by summing
positive GDD (GDD > 0), beginning January 1 of each year [6,9]. The mean growth stage count (MSC)
in Table 2 was calculated using Equation (2) [36].

MSC = [0.875 + (0.0017 × AGDD)], (2)

Switchgrass growth stages and descriptions are found in Moore et al. [36], and MSC values of 0.0
to 4.9 were used to describe switchgrass growth stages (Table 2). Estimated MSC > 4.9 were listed as
“post-ripening/senescence” in our study, since some harvests took place after physiological maturity
and senescence.

2.4. Sample Preparation for Nutrient Analysis and Biomass Quality

Switchgrass plant samples were chopped and ground to pass through a 1.0-mm sieve.
Acid detergent fiber (ADF) and neutral detergent fiber (NDF) were determined by the filter bag
technique [15]. Total digestible nutrient (TDN) is a measure of forage energy and was calculated
from ADF values: TDN = [98.625 − (1.048 × ADF)], as per Ashworth et al. [16] Plant samples were
digested with nitric acid (HNO3) for mineral nutrients, in which 0.5 g of ground plant materials were
predigested for 1 h with 10 mL of trace metal grade HNO3 in the HotBlock™ Environmental Express
block digester. The digestion products were then heated to 115 ◦C for 2 h and diluted with deionized
water to 50 mL [38]. Digested samples were analyzed by an ICP for P, K, Ca, Mg, S, Cu, Fe, Zn, and Mn.
Total N was determined with a carbon/nitrogen (C/N) dry combustion analyzer.

2.5. Statistical Analysis

Differences in biomass quality indices and nutrient content were determined using analysis
of variance (ANOVA) and Duncan’s multiple range test. Only a few outliers were removed from
the replication dataset of treatments by using IML and UNIVARIATE (ROBUSTSCALE) procedures
of the SAS program, and the statistical analyses were performed with n = 3 for those specific
treatments [39]. To evaluate biomass quality as affected by N rates and harvest date, regression analyses
were performed for all replicated data by fertilizer rates, and by harvest date in AGDD. Nitrogen and
mineral concentrations were evaluated for all study years, but ADF, NDF and TDN were evaluated
for 2009 and 2010. Trend analysis was conducted using best-fit models determined from linear and
quadratic regression by level of significance, using P ≤ 0.05. The higher level of significance for each
model (lower P-value) was used to determine a best-fit model, using the PROC REG procedure in
SAS ver. 9.4. Equation coefficients of each model were tested for significance as well (Tables S1–S4,
Supplementary Material).
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3. Results

3.1. Biomass Quality Parameters as Affected by Nitrogen Fertilization Rates

The relationships between N, ADF, NDF and TDN in plant biomass harvested at maturity and N
application rates are shown in Figures 1 and 2. Regression analysis indicated increases in N (P = 0.002
in 2008 and 2009, and P = 0.03 in 2010) (Figure 1), ADF (P < 0.0001 in 2009, and P < 0.0001 in 2010),
and an increase or no change in NDF (P = 0.02 in 2009, and P = 0.05 in 2010) (Figure 2) as N application
rates increased. Trend analysis showed decreases in TDN (P < 0.0001 in 2009, and P = 0.01 in 2010)
by N application rate (Figure 2). In the 2009 study year, ADF tended to increase with increasing
N fertilization, from a low value of 536 g kg−1 in the control to a high value of 636 g kg−1 with
235.2 kg N ha−1 of input. A numerical increase in NDF was seen with increased N rates, ranging from
829 g kg−1 for 33.6 kg N ha−1 to 890 g kg−1 for 168.0 kg N ha−1 applied. Total digestible nutrients tended
to decrease as N rate increased from 394 g kg−1 at 235.2 kg N ha−1 to 472 g kg−1 at 0 kg N ha−1 (Figure 2).

In 2010, no forage analysis was significantly affected by N application rates using ANOVA
and PROC GLM. This could be a lack of need for N fertilizer applications in native prairie grasses,
as they evolved without additional fertilization [40,41]. Acid detergent fiber tended to increase to
a high of 564 g kg−1 at 168 kg N ha−1 applied, then decreased. The data appeared to be widely
scattered. Neutral detergent fiber followed a similar pattern to ADF, reaching a maximum average of
796 g kg−1 at 134.4 kg N ha−1. The highest individual value for NDF was 824 g kg−1 at 168.0 kg N ha−1.
Total digestible nutrients decreased slowly with an increased N rate to an average of 435 g kg−1

at 100.8 kg N ha−1. Total digestible nutrients reached a high of 509 g kg−1 at 0 kg N ha−1, and an
individual low value of 403 g kg−1 at 134.4 kg N ha−1. Significant differences were not identified in N
concentration and other forage quality parameters by nitrogen rate, although significant linear trends
were found in all regression analyses, except for NDF in 2009 (P = 0.076).

3.2. Mineral Concentration as Affected by Nitrogen Fertilization Rates

Mineral concentrations of harvested biomass at maturity had no significant differences with
respect to N rates, with a few exceptions (Table 3). In 2008, nitrogen concentration within harvested
biomass increased significantly (P = 0.013) with increasing N rates, from an average of 3.02 g kg−1

in the control to 4.44 g kg−1, with the application of 201.6 kg N ha−1. The largest single increase
in N occurred between the control plot and the lowest N rate, 33.6 kg N ha−1, from 3.02 g kg−1 to
3.78 g kg−1 (Table 3). Phosphorus and potassium concentrations did not change significantly by N
rates (P > 0.05). Other differences in nutrient concentrations due to N rate were insignificant (P > 0.05).
There were significant differences according to Duncan’s multiple range test in Mg between the 67.2
and 134.4 kg N ha−1 rates, and in Cu between the 33.6 and 67.2 kg N ha−1 rates in 2008.

In 2009, significant differences were shown in N and P (P = 0.012 and 0.0003, respectively). Nitrogen
concentration (g kg−1) tended to increase with increasing N rate, from an average of 3.43 g kg−1 for
the control to 4.57 g kg−1 for the 201.6 kg N ha−1 rate, then decreasing at the 235.2 kg N ha−1 rate
to 3.86 g kg−1. Phosphorus concentration decreased with increasing N rate, ranging from 0.41 to
0.80 g kg−1.

In 2009, more significant differences were seen in K, Ca, Mg, S, Cu, Fe, Zn and Mn; often with
one rate being significantly different from others according to Duncan’s multiple range test. P-values
of all micronutrients except Cu were insignificant (Table 3). In 2010, no significant differences in
macronutrient concentration between N rates were found. Significant differences (P < 0.05) in 2010
were only shown in Zn. Differences in concentration by Duncan’s multiple Range tests in secondary
and micronutrient concentrations were shown in P, S, and Zn among N treatments. In similar studies
focused on switchgrass nutrient concentration, response to N fertilization was shown to be insignificant
for most parameters [42].
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Figure 2. Relationship of acid detergent fiber (ADF), neutral detergent fiber (NDF), and total digestible
nutrients (TDN) and nitrogen application rates.

Table 3. Mineral concentrations of harvested biomass, as affected by nitrogen (N) fertilization rate.

Year N Rate N P K Ca Mg S Cu Fe Zn Mn

kg ha−1 g kg−1 mg kg−1

2008 0 3.02c 0.90 3.95 1.83 1.35ab 0.50 7.7ab 58.0 19.0 51.8
33.6 3.78abc 0.88 3.35 2.18 1.50ab 0.48 8.1a 57.0 15.6 59.1
67.2 3.01c 0.83 3.28 1.65 1.30b 0.43 6.4b 63.9 13.0 44.7

100.8 3.48bc 0.85 3.25 1.95 1.48ab 0.45 7.2ab 61.8 14.2 47.9
134.4 3.61abc 1.00 4.25 2.00 1.78a 0.53 8.0ab 62.4 17.9 48.4
168.0 3.71abc 0.78 3.63 1.93 1.58ab 0.45 7.0ab 57.0 15.3 57.2
201.6 4.44a 0.80 3.80 1.90 1.58ab 0.48 7.1ab 55.7 15.5 46.2
235.2 4.12ab 0.75 3.23 1.93 1.60ab 0.48 7.4ab 56.9 15.6 44.4
Avg. 3.64 0.85 3.59 1.92 1.52 0.47 7.4 59.1 15.7 49.9

Std. dev. 0.70 0.16 0.83 0.34 0.29 0.08 1.1 11.7 3.8 13.5
P 0.013 0.479 0.441 0.633 0.351 0.802 0.315 0.977 0.486 0.515

F test 3.43 0.98 0.81 0.72 1.10 0.53 1.1 0.2 1.0 0.6
CV% 19.13 18.97 23.07 17.63 19.03 17.22 14.7 19.7 24.2 26.9
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Table 3. Cont.

Year N Rate N P K Ca Mg S Cu Fe Zn Mn

kg ha−1 g kg−1 mg kg−1

2009 0 3.43bc 0.80a 2.32a 1.62ab 1.04ab 0.36bc 2.0c 32.5ab 15.4ab 70.7a
33.6 3.48bc 0.77a 2.34a 1.92a 1.19a 0.41ab 2.4bc 32.0ab 15.3ab 66.5ab
67.2 3.57bc 0.64ab 2.37a 1.60ab 1.05ab 0.37abc 2.5b 45.6a 12.9ab 64.5ab

100.8 3.38c 0.76a 2.42a 1.67ab 1.09ab 0.39abc 2.8b 34.0ab 15.9ab 52.7ab
134.4 3.66bc 0.66ab 2.41a 1.57ab 1.13a 0.38abc 2.7b 33.4ab 14.4ab 58.2ab
168.0 4.15ab 0.53bc 2.01ab 1.48ab 1.08ab 0.39abc 2.9b 33.4ab 12.0ab 53.6ab
201.6 4.57a 0.68ab 2.14ab 1.65ab 1.16a 0.44a 3.6a 37.5ab 16.4a 46.3ab
235.2 3.86bc 0.41c 1.70b 1.24b 0.93b 0.33c 2.5b 20.6b 11.3b 39.7b
Avg. 3.76 0.66 2.21 1.59 1.08 0.38 2.7 33.6 14.2 56.5

Std. dev. 0.55 0.16 0.39 0.32 0.13 0.05 0.5 15.6 3.2 19.5
P 0.012 0.0003 0.102 0.216 0.126 0.091 <0.0001 0.527 0.145 0.292

F test 3.49 6.83 2.01 1.52 1.87 2.09 8.9 0.9 1.8 1.3
CV% 14.74 23.99 17.51 20.01 12.39 13.23 19.0 46.3 22.6 34.6

2010 0 3.59 0.73a 1.84 2.80 1.46 0.50a 2.4 44.5 25.2a 85.1
33.6 3.34 0.56b 2.06 2.41 1.23 0.41ab 1.9 43.8 17.8b 77.6
67.2 3.41 0.56b 2.05 2.19 1.34 0.38ab 2.4 43.7 16.0b 78.0

100.8 3.40 0.58b 2.22 1.99 1.24 0.35b 2.7 39.4 15.1b 67.8
134.4 4.00 0.57b 1.68 2.09 1.43 0.37b 1.8 40.0 15.0b 71.3
168.0 3.60 0.55b 1.82 2.10 1.41 0.38ab 2.2 40.5 14.4b 64.6
201.6 4.98 0.62ab 1.66 2.36 1.62 0.46ab 3.0 41.3 17.4b 62.3
235.2 4.46 0.54b 1.52 2.56 1.54 0.42ab 2.3 41.3 15.0b 70.2
Avg. 3.85 0.59 1.86 2.31 1.41 0.41 2.3 41.9 17.0 72.1

Std. dev. 1.14 0.11 0.45 0.50 0.24 0.08 0.8 7.4 4.5 18.1
P 0.450 0.205 0.368 0.323 0.305 0.136 0.416 0.985 0.005 0.678

F test 1.01 1.55 1.16 1.25 1.29 1.82 1.1 0.2 4.3 0.7
CV% 29.58 18.60 24.46 21.77 17.25 19.33 32.2 20.0 26.4 25.1

Avg.: Average. Std. dev.: Standard deviation of the mean (n = 4). CV%: Coefficient of variation as a percentage.
Numbers in a column followed by the same letter exhibited no significant differences (P > 0.05) whereas ‘a’ means
higher than ‘b’ and not different from ‘ab’ or ‘abc’ based on Duncan’s Multiple Range Test.

3.3. Biomass Quality Parameters as Affected by AGDD

The relationship between tested quality parameters (N, ADF, NDF, and TDN) and AGDD are
shown in Figures 3 and 4. Parameters ADF and NDF tended to increase with maturity as the harvesting
date got later and AGDD increased (P < 0.0001). These results were similar to Sena et al. [15], who found
that the NDF exhibited a consistent positive trend through the end of the growing season, and that the
ADF increased consistently through the season in two switchgrass cultivars.

3.4. Mineral Concentration as Affected by Accumulated Growing Degree Days

Significant differences in mineral concentrations existed among biomass harvested with various
AGDD (Table 4). In 2008, all mineral concentrations analyzed showed significant differences (P < 0.05)
by AGDD. In most cases, mineral concentrations of nutrients decreased with increasing AGDD.
Significant differences were shown in all nutrients except Fe in 2009. For the 2010 season, significant
differences were seen in all minerals, except in Ca and Fe. Significant differences were not detected in
Ca and Fe in 2010. In 2010, phosphorus, sulfur and manganese were not analyzed due to errors in
laboratory analysis and lack of data. Significant variation in annual and field-to-field production has
been shown in other studies [43].
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Table 4. Mineral concentrations in harvested biomass as affected by harvest timing (AGDD, accumulated
growing degree days).

Year AGDD N P K Ca Mg S Cu Fe Zn Mn

g kg−1 mg kg−1

2008 754.7 7.10a 1.78a 15.13a 2.30a 1.80a 0.83a 25.7b 106.8ab 26.2a 77.7a
1452 4.51b 1.15b 7.93b 2.03ab 1.50ab 0.60b 23.3b 88.7ab 22.7ab 82.0a
2175 3.44bc 1.10b 6.38c 1.68b 1.38bc 0.50bc 5.9b 54.8ab 19.3bc 54.8b
2611 3.26bc 0.78c 3.58d 1.68b 1.43b 0.40cd 12.2b 145.6a 15.5c 47.0b
2672 2.95c 0.75c 2.93d 1.45b 1.08cd 0.35d 6.2b 134.2a 15.2c 41.4b
2748 3.04c 0.50d 1.50e 1.48b 1.01d 0.07e 220.5a 16.0b 8.5d 43.6b
Avg. 4.05 1.01 6.44 1.77 1.36 0.47 50.6 94.4 17.9 57.7
Std.
dev. 1.63 0.44 4.64 0.49 0.34 0.24 89.1 64.6 6.5 19.7

P <0.0001 <0.0001 <0.0001 0.0272 0.0013 <0.0001 <0.0001 0.0440 <0.0001 0.0010
F Test 15.59 31.17 204.59 3.49 7.23 49.7 14.3 2.8 15.3 7.6
CV% 40.29 43.96 10.47 27.50 24.60 14.31 87.9 56.4 36.4 34.2

2009 1180 10.34a 1.64a 10.1a 2.17ab 1.95a 0.77a 9.4a 60.2 25.9a 77.6a
1822 9.42a 1.55a 7.87b 2.69a 2.07a 0.81a 9.8a 75.1 29.4a 68.7ab
2426 4.99b 1.08b 4.22c 1.24c 1.05b 0.39b 5.2b 81.2 16.2b 50.6bc
2627 4.68b 0.76c 2.29d 1.29c 1.05b 0.36b 1.5c 43.0 14.1b 42.1c
2642 4.00b 1.00b 1.75d 2.00b — — — — — —
2642 4.00b 1.00b 1.00e 2.00b — — — — — —
Avg. 6.24 1.17 4.13 1.90 1.53 0.58 6.5 64.9 21.4 59.7
Std.
dev. 2.80 0.35 3.28 0.63 0.55 0.22 3.7 27.7 7.2 21.3

P <0.0001 <0.0001 <0.0001 0.0007 <0.0001 <0.0001 <0.0001 0.2616 0.0006 0.0148
F Test 41.97 33.45 327.32 8.63 26.21 52.04 40.0 1.6 16.3 6.1
CV% 44.85 29.58 8.955 33.22 36.22 38.57 19.1 42.8 33.8 35.7

2010 1323 6.76a 1.00 7.75a 2.25 1.75a 1.00 5.5a 70.1 23.1a —
2240 6.84a 1.00 6.25b 2.25 1.75a 1.00 4.6b 92.1 20.4ab —
2803 4.04b 1.00 3.00c 1.75 1.50ab 1.00 4.2b 110.5 19.3ab —
2888 3.24bc 1.00 1.75d 1.75 1.00b — 3.0c 55.7 18.2bc —
3031 3.08c 1.00 1.25d 1.50 1.00b — 3.1c 97.8 14.5c —
Avg. 4.79 1.00 4.00 1.90 1.40 1.00 4.1 85.2 19.1 —
Std.
dev. 1.88 0.00 2.70 0.55 0.50 0.00 1.3 42.1 4.6 —

P <0.0001 — <0.0001 0.2859 0.0489 — <0.0001 0.2569 0.0056 —
F Test 39.65 — 70.18 1.42 3.29 — 16.6 1.5 6.3 —
CV% 39.32 0.00 17.08 29.08 35.90 0.00 32.8 49.4 24.0 —

Avg.: Average. CV%: Coefficient of variation as a percentage. Std. dev.: Standard deviation of the mean (n = 4).
Numbers in a column followed by the same letter exhibited no significant differences (P > 0.05) whereas ‘a’ means
higher than ‘b’ and not different from ‘ab’ or ‘abc’ based on Duncan’s Multiple Range Test.

4. Discussion

Acid detergent fiber and neutral detergent fiber increased with increasing N rates. Total digestible
nutrients generally decreased with increasing fertilizer N rates. These trends of decreases in TDN and
increases in ADF and NDF with increased N fertilization may be due more to the late single harvest
rather than N fertilization rates. It would be expected that N applications would encourage a delayed
growth response, because of adequate N provided. With lower stress to the plant due to fertilization,
maturity and seed production was delayed, therefore more vegetative growth with N fertilization
would be expected [40].

The concentration of N in the biomass generally increased with increasing fertilizer N rates,
regardless of the study year. In each year, the highest mean N concentration was found in plots
receiving the 201.6 kg N ha−1. Nitrogen concentration in harvested biomass can significantly affect
the quality to meet the final use of the crop. High concentrations of nutrients, especially N, can cause
fouling of equipment in the biofuel conversion process [17], thus lignin and cellulose with low nutrient
content is needed for biofuel conversion. Nutrients and protein are desirable for livestock consumption.
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Therefore, harvest for biofuel feedstock should take place after senescence to avoid high N in the
biomass [19,44].

Those trends in NDF and ADF in switchgrass in our study were also similar to NDF and ADF
trends reported by Aurangzaib et al. [45], and Kering et al. [27]. Nitrogen and TDN, on the other hand,
decreased with increasing AGDD and later harvest date (P < 0.001) (Figures 3 and 4). Commonly,
nitrogen and nonstructural carbohydrates decline, and lignin and cellulose increase through the
growing season of switchgrass [45]. These changes are gradually taking place with plant growth as it
moves to maturity and completes its cycle of producing seed.

The ADF and NDF in biomass harvested after flowering and senescence are high, whereas N
and TDN have all decreased to low levels. These high ADF and NDF provide lignocellulosic material
needed for biofuel conversion. The low N and other nutrients are considered favorable because large
concentrations of nutrients can foul conversion equipment used in biofuel production. Therefore,
monitoring the quality before harvest may be beneficial to determine the appropriate use, grazing and
hay for livestock use or biomass feedstock for biofuel production [46].

Biomass harvested after a killing frost would be mostly fibrous with low nutritive value.
Switchgrass harvested at this late time of maturity makes a very low-quality hay with low crude
protein and high fiber contents and is likely unpalatable to livestock [12,16]. The high ADF and NDF
of late-harvested biomass, however, is more desirable in lignocellulosic biofuel conversion [47]. If the
end-use is for biofuel feedstock, this would suggest higher fertilization rates can increase biomass
yields with high lignin and cellulose content if harvested late [48]. Low ADF and NDF and high N
(crude protein) and TDN would be better for livestock feeding. Total digestible nutrient is a measure of
the energy value of the hay and is inversely related to ADF. Lower ADF and NDF would indicate more
digestibility and forage intake by animals, with less plant cell wall fibrous materials, making forage
more palatable and a greater amount consumed and digested [12,49]. A high-quality livestock forage
should have ADF < 300 g kg−1, NDF < 400 g kg−1, and TDN > 600 g kg−1 and N > 30 g kg−1 [16], but the
late-harvested, i.e., post senescence, switchgrass is far from considered a quality forage. Therefore,
earlier harvest, prior to reproductive growth stages, perhaps early July, should be considered if feeding
switchgrass to livestock is desired.

Similar to Sena et al. [15] and Ashworth et al. [44], N concentration in switchgrass was high if
harvested in the early season (May–June), and declined throughout the rest of the growing season.
Generally, mineral concentration in the plant decreases as the season progresses, as would be expected
in native perennial grasses. All mineral analyses indicated decreases in mineral concentration with
increasing AGDD. Not all decreases are significant based on Duncan’s multiple range test; such as
P, Ca, and S in 2010 and Fe in 2009 and 2010. As previously mentioned, year-to-year variation is
not uncommon in switchgrass [41,43]. These types of decreases have been shown in another study
regarding harvest timing as well [50]. Since mineral concentrations decreased as AGDD increased,
harvesting at earlier growing season with lower AGDD would preserve more nutrients and favor
forage use, while a later season harvest with higher AGDD would offer more desired quality for
biofuel production.

5. Conclusions

Acid detergent fiber, neutral detergent fiber, total digestible nutrient, and nitrogen (or crude
protein) and mineral concentrations were affected by N application rates for switchgrass production.
Those quality parameters were especially impacted by harvesting time. Overall, fibers and most
minerals in the biomass increased as AGDD increased, but N and TDN decreased as AGDD increased.
Since high crude protein and minerals, and low fiber are desired forage quality and the opposite is true
for biofuel feedstock, earlier harvests are beneficial for hay production or livestock forage grazing,
and late-season harvests are better for biofuel production. Our results are consistent with the literature
concerning forage quality patterns throughout the growing season, therefore, these trends will help in
the decision-making for switchgrass management for biomass and/or forage.
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