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Abstract: Mesoscale simulation using the material point method (MPM) was conducted to study the
pressure–volume (PV) variations of Octahydro-1,3,5,7-Tetranitro-1,2,3,5-Tetrazocine (HMX)/Estane
polymer-bonded explosive (PBX) under impact loading. The PV isotherms and Hugoniot data were
calculated for the different porosities and binder volume fractions. The PV isotherms were used to
determine the parameters for the Birch– Murnaghan equation of state (EOS) for the PBX. From the
EOS, the isothermal bulk modulus (K0) and its pressure derivative (K′0) were calculated. Additionally,
the pseudo particle velocity and pseudo shock velocity variations were used to obtain the bulk wave
speed c and dimensionless coefficient s for the Mie–Grüneisen EOS. The simulations provide an
alternative approach for determining an EOS that is consistent with experimental observations.

Keywords: mesoscale numerical simulation; equation of state; impact loading; material point method;
polymer-bonded explosives

1. Introduction

Polymer-bonded explosive (PBX), a polymer-matrix granular composite, is mainly composed of
viscoelastic polymers and elastoplastic explosives particles. The huge difference between the properties
of polymers and explosives makes it difficult to determine the thermodynamic and mechanical
properties of the granular composite. An equation of state (EOS) is an equation that summarizes the
relationship between several state functions (such as pressure P, volume V, temperature T, and internal
energy E) of a system. An EOS can provide valuable microscopic insight into the bulk properties
of energetic composite materials. Two types of EOS, reacted and unreacted, have been developed
for energetic materials and have been the subject of extensive studies in the field. The commonly
used model for reacted explosives is the Jones–Wilkins–Lee (JWL) EOS; for unreacted explosives, the
Mie–Grüneisen EOS is common [1,2].

The determination of an EOS for a PBX is typically based on experimental studies, although the
constitutive models of each component have also been studied by computational approaches. To
obtain an EOS for an unreacted high explosive, various attempts have been reported involving static
compression experiments [3–6], where the experimental data under static high pressure and room
temperature conditions were derived from X-ray diffraction measurements. Analyses of isotherms
from an empirical EOS allow for the determination of the isothermal bulk modulus (K0) and its pressure
derivative (K′0) for PBXs. The isotherms are transformed to a pseudo particle velocity (us) and pseudo
shock velocity (up) plane using the Rankine–Hugoniot jump conditions [4].
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Experimental determination of the isothermal high-pressure EOS for a PBX using conventional
diffraction techniques is expensive and is not always feasible [7]. The experimental tests can be difficult
to duplicate due to the complex environments and the sensitive behavior of explosives. Experimental
studies also rarely include the effects of microstructures.

The high-pressure EOS of explosive crystals or binders has been intensively studied using
molecular dynamics and other simulation methods [8–12]. Some fitting parameters of an isothermal
EOS for different energetic explosives were also published [13]. However, the numerical simulations of
an EOS for PBXs have rarely been reported.

The material point method (MPM) [14–16] has some advantages over other numerical techniques
to study the thermodynamic and mechanical properties of composites with complicated morphologies
and a wide range of particle sizes such as PBXs. As a meshless method, MPM is easier to use for
discretizing the complex geometries of PBX composites compared to the periodical remeshing required
for finite element method (FEM) calculations. Investigations reported by Banerjee et al. show that
MPM is successful in large deformation and interface contact simulations of a PBX with a high-strain
rate loading test [17–19]. Material points that are surrounded by background grids in an MPM avoid
drawbacks for the costly searching for contact surfaces and/or remeshing by numerical approaches.

In this study, the simulation starts with the component properties of Octahydro-1,3,5,7-
Tetranitro-1,2,3,5-Tetrazocine (HMX) grain and an Estane binder, such as the constitutive equations
and equations of state. Interface interactions between the grain and binder are taken into consideration.
Then, the MPM technique is used to compute the parameters for the EOS of HMX/Estane PBX composite
at mesoscale. The parameters also account for the effects of porosity and binder volume fraction. The
derived EOS can be used in a macroscale simulation for the thermodynamics study of the PBX.

2. Methodology and Simulation Model

2.1. Material Point Method

MPM, as described by Sulsky et al. [16], is a meshless-based method through the presence of
a background grid and has a lot of advantages in computational mechanics. It is more suitable
for solving problems such as large deformation, crack propagation, surface contact, and also shock
loading simulation as it eliminates the need for periodic remeshing steps and the remapping of state
variables [17].

In MPM, materials are discretized into a collection of particles, namely “material points”, on
a background mesh/grid, and each particle has its mass, coordinate, velocity, and other material
properties. The discrete momentum equation can be written as:

ma = f ext
− f int (1)

where m is the mass matrix, a is the acceleration vector, f ext is the external force vector, and f ext is the
internal force vector generated by the divergence of the material stresses.

In each step of an MPM simulation, all particle quantities, including particle position, velocity,
and mass, are extrapolated to the nodes at the corners of the cell in the background grid, then using
Equations (2) to (4), the mass matrix m, velocities v, and the external forces f ext are calculated at
individual nodes using the material point values:

mi =
∑

p
Sipmp (2)

vi = (1/mi)
∑

p
Sipmpvp (3)

f ext
i =

∑
p

Sip f ext
p (4)
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where Σ summates values over all particles, i refers to individual grid nodes, mp is the particle mass, vp

is the particle velocity, f ext
p is the particle external force, and Sip is the nodal generalized shape function

calculated at the each particle.
The nodal internal forces f int

i are calculated as a volume integral of the divergence of particle
stresses:

f int
i =

∑
p

GipσpVp (5)

where Gip is the nodal shape function gradient calculated at each particle, while σp and Vp are the
particle stress and particle volume, respectively.

The shape function Sip and shape function gradient Gip extrapolated from node i to particle p are
as follows:

Sip =
1

Vp

∫
V
χp(x)Ni(x)dV (6)

Gip =
1

Vp

∫
V
χp(x)∇Ni(x)dV (7)

where Vp is the particle volume, χp(x) is a particle basis function that equals to 1 within the particle’s
domain and zero elsewhere, Ni(x) is a nodal shape function, and ∇ refers to gradient calculation.

In each time step, all particle quantities and initial conditions are mapped to the background
mesh nodes, and the momentum of each node is updated using Equation (1). Then, the information,
such as the momentum carried on the node, is mapped back to the particle. When the next time step
starts, the mapping process of the previous time is repeated until the specified time or the specified
condition is reached, thereby completing the solution to the actual problem.

2.2. Interface Contact

An HMX-Estane PBX consists of HMX grains and an Estane polymeric binder matrix. Estane 5703
is a commonly used polymer in PBXs for various uses, such as being a component of binder in the typical
highly filled energetic material PBX9501 [20]. HMX and Estane binders have different constitutive
models and equations of state in microscale; therefore, we took into consideration the interface
interaction between the two components in a mesoscale simulation. In the MPM, a multimaterial
algorithm can realize the interaction calculation of material interfaces [21]. In a multimaterial MPM,
each material extrapolates to its own velocity field on nodes. If a node in the background grid has
more than one velocity field, contact detection should be determined. When nodes on surfaces are
determined to be in contact, the contact mechanical laws are implemented to modify nodal momenta
and forces; details of the multimaterial algorithm are as follows.

To perform friction contact law between HMX grain and the Estane binder, the tangential traction
generated by frictional sliding is given as:

Sslide =
(
µ+ k∆v′i

)
N + Sa (8)

where Sslide is sliding traction, µ is the frictional coefficient, ∆v′i is the relative sliding velocity, k
refers to a linear coefficient of sliding velocity, N is the contact normal pressure, and Sa is a shear
adhesion strength.

Some earlier studies [22–24] used the Coulomb friction law to investigate the frictional contact,
intergranular interactions, and frictional heating during shock loading or shear deformation. The
simple Coulomb friction is a special case [21], taking Sa = 0, k = 0, and ∆v′i = 0 for Equation (8). Then,
the sliding force can be written as:

Sslide = µN =
−µdn

Ac∆t
(9)
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where dn is the normal momentum changes required to stick, Ac is the contact area, and ∆t is the time
step. During frictional sliding, the momentum change ∆p′ becomes

∆p′i = dn(n̂− µt̂) (10)

where n̂ and t̂ are the normal and tangential vectors, respectively. The momentum change reflects the
implemented sliding frictional contact mechanics. Otherwise, two materials would stick during the
simulations. Such contact obeys a stick contact law, where the final momentum does not change, and
two materials will move in a single velocity filed.

The MPM automatically handles the stick contact law using a detecting contact approach, and the
Coulomb friction contact conditions are applied via the grid analyses. The coefficient of friction can be
taken from the literature where it is available. Some frictional contact parameters are appropriately
inferred in previous work [25].

2.3. Simulations Performed

The interface model for the HMX/Estane PBX in this mesoscale analysis is a two-phase
mesostructure that consists of HMX grains and the Estane binder. In the MPM code [26], two
materials are described by different constitutive equations and equations of state, and they are
discretized into material points over respective domains. These material points own the initial
conditions of history-dependent state variables, such as stress and strain, and kinematic variables,
such as position, velocity, and acceleration. Interfaces between grains and binders are taken into
consideration, and the history-dependent state variables for the PBX are calculated using the updated
kinematic variables on nodes of the two materials and their interfaces.

HMX grains are described by an elastic-plastic model and the Mie–Grüneisen EOS. The
elastic-plastic material model [27] for deviatoric stress is given as:

σ =

[
1 +

( .
ε/Cc

) 1
Pc

](
σ0 + δEPε

e f f
P

)
(11)

where σ and σ0 are the stress and initial yield stress of the material, respectively;
.
ε is the strain rate; Cc

and Pc are Cowper–Symond strain rate parameters, respectively; εP
e f f is the effective plastic strain [28],

which is the incremental plastic strain tensor and is defined as εP
e f f =

∑ √
2
3‖dεP‖; and EP and δ are

the plastic hardening modulus and hardening parameter, respectively. The Cowper–Symonds strain
rate parameters were set to zero as a constant strain rate was applied and only one yielded stress for
the PBX.

The Mie–Grüneisen equation [29] of the state is given by:

P =
ρc2ϕ(1− γ0ϕ/2)

(1− sϕ)2 + γ0U (12)

where P is pressure, ϕ = ρ/ρ0 − 1 = 1 − V0/V, ρ0 is for initial density, V0 is initial volume; c is
the bulk speed of sound at room temperature and atmospheric pressure, γ0 is Grüneisen’s gamma
constant at the reference state, U is internal energy per reference volume, and s is the linear Hugoniot
slope coefficient.

The Estane binder is described by a viscoelastic constitutive model [30] and the Mie–Grüneisen
equation of state. The Cauchy stress for the Estane binder is given as:

σ =

∫ t

0
2G(t− τ)

de
dτ

dτ+ I
∫ t

0
K(t− τ)

d∆
dτ

dτ (13)
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where σ is the Cauchy stress; G(t) and K(t) are the deviatoric part of the shear relaxation modulus and
bulk modulus of the constitutive behavior, respectively; e and ∆ refer to the deviatoric and hydrostatic
parts of the Eulerian strain tensor, respectively; t and τ refer to physical current and relaxation times,
respectively; and I is the identity tensor.

The parameters of HMX grain [31,32] and the Estane binder [13,32] used in this mesoscale
simulation are listed in Table 1.

Table 1. The model parameters of HMX 1 and Estane binder 2.

Material Parameter’s Values

HMX

Shear modulus G (GPa) 10.0
Density ρ0 (g/cm3) 1.90

Yield stress σ0 (GPa) 0.10
Cc (-) 0
Pc (-) 0
c (m/s) 2740

Grüneisen γ0 (-) 1.10
s (-) 2.60

Estane

Bulk modulus K (GPa) 4.50
Shear modulus G (GPa) 2.70

Density ρ0 (g/cm3) 1.186
c (m/s) 2320

Grüneisen γ0 (-) 1.00
s (-) 1.70

1 Parameter values of HMX were from Ref. [31] and Ref. [32]; 2 Parameter values of Estane were from Ref. [13] and
Ref. [32].

3. Construction of Simulation Systems

In this study, an idealized mesostructure was packed with circular particles and consisted of
circular HMX grains and an Estane binder covering the outer layer of grains. All particles with a bimodal
distribution of the diameters were chosen so as to be consistent with experimental observations [33]
and were placed randomly in the packing box. The system designed for MPM mesoscopic calculation
is shown in Figure 1. The system is composed of rigid mold, HMX grains, the Estane binder, and
voids between particles. The void in the system was set as a vacuum. Moreover, interfacial properties
described by frictional contact between grains and binders are considered in the model. The system
model was initially set at a stress-free state, then impact loading was implemented by applying a
constant vertical velocity at the top boundary. The other three boundaries were confined in fixed rigid
walls to avoid lateral expansion. Liu [34] reported that the representative volume element (RVE) has a
minimum size of 1.5 mm for a sample with an average HMX grain size of 125 µm. Specifically, we
chose the HMX grain size in the range of 10–150 µm with a bimodal distribution, and the resulting
RVE domain of the sample size is 0.5 × 1.5 mm. The distributions of the HMX grain size for all
configurations are plotted in Figures S1 and S2 in the Supplementary Materials. The microstructural
RVE has an aspect ratio of 3:1 (1.5 × 0.5 mm), allowing the stress wave transmission process that
resulted from impact loading to be resolved. The Estane binder has a homogenized approximation
in order for it to be considered an effective binder matrix. A homogenized binder with a different
thickness covered the outer layer of the HMX grains, and the thickness of the binder was selected by
the mass ratio between the HMX and the Estane binder. A frictional coefficient of 0.3 was used in the
calculation. An earlier study used this value for the frictional contact between HMX grains and the
binder [21], where the HMX grains and binder were simulated with a Mie–Grüneisen bulk response
and elastic shear response. Its simulation results were close to the experimental observations.
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Simulations using different volume fractions of the binder were performed with an initial 
porosity of 0.003 and a constant velocity of 250 m/s. PBX9501 is theoretically made up of 95% HMX 
and 5% Estane binder and plasticizer by weight. The volume fraction of the HMX and polymeric 
binder was calculated to be 92.7% and 7.3%, respectively; however, the apparent binder volume 

Figure 1. Configuration of computational model of impact loading.

A parametric study was carried out in this study, focusing on the effects of (i) the binder volume
fraction and (ii) initial porosity of the PBX. For all simulations, the initial temperature was set to 300K.
The impact velocity at the top boundary of the specimen was chosen to be 250 m/s, resulting in an
overall strain rate of 1.67 × 105 s−1.

The four specimens, with the initial porosities of 0.113, 0.073, 0.033, and 0.003, which correspond
to the densities of 1.654, 1.728, 1.803, and 1.859 g/cm3, respectively, as shown in Figure 2, were studied.
The theoretical maximum density (TMD) of HMX/Estane PBX is 1.864 g/cm3. The thickness of the
Estane binder ranges from 0.026 to 3.9 µm and was selected to cover the outer layer of HMX grains.
The mass ratio between the HMX and the binder is 95:5, and the impact velocity for different porosities
is 250 m/s.
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Figure 2. (a)–(d) are specimens with an initial porosities of 0.113, 0.073, 0.033, and 0.003, respectively.

Simulations using different volume fractions of the binder were performed with an initial porosity
of 0.003 and a constant velocity of 250 m/s. PBX9501 is theoretically made up of 95% HMX and 5%
Estane binder and plasticizer by weight. The volume fraction of the HMX and polymeric binder was
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calculated to be 92.7% and 7.3%, respectively; however, the apparent binder volume fractions in the
micrograph would actually be 23%–26% [35] because many of the fine particles were dislodged from
the sample during its preparation. This is called the “dirty binder” effect by Xue et al. [36]; the “dirty
binder” approximation is effective when it is required to reduce the computation for systems with very
small particles. In our work, the HMX particle has a range of 10–150 µm; in such a case, the “dirty
binder” approximation is not necessary, so we only considered the effect of the volume fraction of the
pure binder on the PBX composite. Computationally generated microstructures with a binder volume
fraction of 0%–20% are shown in Figure 3, and the corresponding volume ratios between the HMX and
the Estane binder are 100:0, 95:5, 90:10, and 80:20.
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Figure 3. (a)–(d) are specimens with binder volume fractions of 0%, 5%, 10% and 20%, respectively.

Adopting the irregular circular particles for the HMX grains is for convenience. Barua et al. [37]
showed that the grain morphology of explosives has significant effects on interface interaction, interface
debonding, and energy distribution, and it may also affect the Hugoniot data compared to the real
microstructure. However, Barua et al. also indicated that the little effects on the overall mechanical
response were observed for grain morphology changing from a circular to diamond shape [37]. In this
study, this effect is not considered but will be addressed in a future publication.

4. Results and Discussion

4.1. Justification of Model

For the justification of the model, the mesostructure effects on the compression behavior of HMX
grains and the HMX/Estane PBX under impact loading were studied. At low pressure, weak shocks are
predominated by compressional effects, and shock waves can be defined as a transmission wave front,
across which a discontinuous adiabatic jump in state variables occurs [38]. Consequently, isothermal
compression can be approximated by the adiabatic compression process, and the pressure–volume
(PV) data can be transferred to pseudo particle velocity up and pseudo shock velocity us in terms of
the method of Olinger and Cady et al. [39]. The Rankine–Hugoniot jump conditions are expressed as
follows:

up =
√
(P− P0)(V0 −V) (14)

us = V0

√
(P− P0)

(V0 −V)
(15)
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where P0 and V0 are the initial pressure and volume of the system, respectively. P and V describe the
pressure and volume at different compressions, respectively.

The calculated PV curve of HMX at room temperature is illustrated in Figure 4a and compared
with available experimental observations [40–43] and numerical simulation results [44–46]. It is seen
that the calculated results are in good agreement with the experimental data and match those from the
molecular dynamics simulation studies by Sewell et al. [46].
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Figure 4. (a) Calculated isotherm pressure–volume (PV) data and (b) Hugoniot data of HMX at
room temperature compared with experimental and previous simulation results. Experimental and
simulation results are from Refs. [40–46].

The us–up variations of HMX converted from the static PV data using Equations (14) and (15) are
plotted in Figure 4b and also compared with experimental results [40,42,43] and numerical simulation
data [44–46]. The calculated us–up data also show a good agreement with experimental observations.
Pseudo particle velocity up and pseudo shock velocity us are related by a linear relation [47], which is a
Hugoniot EOS:

us = sup + c (16)

where the constant c and s are parameters of a Mie–Grüneisen EOS; c is related to the bulk wave speed,
and s is a dimensionless coefficient. Curve fitting yields c = 2.759 and s = 2.545, which are in good
agreement with the experimental values (c = 2.74 km/s and s = 2.60) [40].

Figure 5a shows a PV isotherm of the PBX (95% HMX: 5% Estane) compared with experimental
and other previous simulation data [48–52]. The authors in [50] compared Hugoniot data for Estane
and the PBX9501 binder, where 2.5% plasticizer is mixed, and the results showed similar changes for
the two components. The pressure required for the PBX in this study is close to the experimental
data of reference [48] at the same compression ratio and is slightly higher than the experimental data
when the compression ratio is lower than 0.8. Divergence may be generated from different simulation
techniques or different loading temperatures.
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Figure 5. (a) Calculated PV isotherm and (b) Hugoniot data of HMX/Estane polymer-bonded explosive
(PBX) at room temperature along with previous experimental or simulation results. Experimental and
simulation results are from Refs. [48–52].

Figure 5b presents the Hugoniot data of HMX/Estane PBX with experimental and numerical
results also shown for comparison. The black solid line in Figure 5b is a linear fit of the simulation
data in this study; the two dash dotted lines are us–up linear fits taken from [49,52]. The Hugoniot
data can be fitted as us = 2.356up + 2.71 in this study, which is coincident with us = 2.3up + 2.65 given
by Gustavsen et al. [49]. Moreover, simulation data in this study are close to the results from [50]
at low up (0 < up < 0.6 km/s). The aforementioned comparisons indicate that results of the MPM
mesoscale simulation are reliable and that this model is applicable to develop the equation of state for
investigating the pressure–volume variation behaviors of HMX/Estane PBX, as well as microstructure
effects on EOS of PBX in mesoscale.

4.2. PV Isotherms and Hugoniot Analysis of HMX/Estane PBX

The PV isotherms of HMX/Estane PBX at different porosities and different binder volume fractions
are plotted in Figure 6. Figure 6a presents the PV data of the PBX at different porosities. The four
porosities are 0.113, 0.073, 0.033, and 0.003, and their corresponding packing densities are 1.654, 1.728,
1.803, and 1.864 g/cm3. Each PV isotherm shows two trends: a linear variation at an early time
(high V/V0), followed by rapid curved growth (low V/V0). The linear variation is associated with
the rearrangement and deformation of particles squeezing out void space. At this stage, a small
compression pressure results in a large volumetric change. After void space is removed, the PBX
becomes highly compact, and the volume change slows down with the increase in compression
pressure. It is seen from Figure 6a that at the same compression ratio the compression pressure
decreases with the increase of porosity. A sample with smaller porosity has a higher packing density
and therefore lower compressibility. It requires a large compression pressure for the same compression
ratio, as shown in the experimental observation [3].
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volume fractions.

Figure 6b shows the PV isotherms of the PBX at different binder volume fractions. The four
volume fractions are 0%, 5%, 10%, and 20%, where 0% represents only the HMX component in the
model. The PV isotherms show that at the same compression ratio, the compression pressure decreases
with the increase in the binder volume fraction. Due to the addition of more binders, the elastic moduli
of the PBX decrease, and the PBX becomes more elastoplastic. Bulk modulus, which is a form of elastic
modulus and reflects the capacity of PBXs to resist external compression loading, decreases with the
increasing binder volume fraction. Consequently, the compression pressure decreases at the same
compression ratio. The simulations show that an increase in the porosity or the binder volume fraction
in the PBX sample decreases in the compression pressure at the same compression ratio. Furthermore,
comparisons between the curves of porosity and binder volume fraction suggest that porosity has a
greater influence on compression pressure than binder volume fraction.

The Hugoniot data derived from the PV data of the PBX at different porosities and different binder
volume fractions are plotted in Figure 7a,b, respectively. Figure 7a shows the Hugoniot data of the PBX
at different porosities of 0.113, 0.073, 0.033, and 0.003, the corresponding packing densities of which
are 1.654, 1.728, 1.803, and 1.864 g/cm3, respectively. The linear fitted parameters of the Hugoniot
data are listed in Table 2. It is seen from Table 2 that c decreases gradually with increasing porosity.
However, no significant changes are observed for s when porosity increases. Experimental work by
Gustavsen et al. [49] showed a substantial difference of 0.18 km/s in the parameter c of the calculated
Hugoniots for PBX 9501 at typical densities (range from 1.80 to 1.837 g/cm3) and at the theoretical
maximum density (TMD = 1.86 g/cm3).
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Table 2. Parameters by fitting to the us–up variations at different porosities.

Porosity (ϕ) s c

0.003 2.356 2.711
0.033 2.198 2.656
0.073 2.276 2.459
0.113 2.392 2.047

Figure 7b shows the Hugoniot data of the PBX at the binder volume fractions of 0%, 5%, 10%, and
20%. The parameters s and c obtained from the linear curve fitting using Equation (16) are presented in
Table 3. It is seen that with the increase of binder volume fraction, the slope of the us–up curve, namely
the dimensionless parameter s of the Mie–Grüneisen EOS, also decreases. On the other hand, the
parameter c does not have a great decrease. Table 3 suggests that mixing a small content of the binder
with HMX particles reduces the parameters c and s of the EOS obviously, and further addition of the
binder has little effect on the parameters’ values. Experimental shock loading analyses of the PBX [51]
reveal that for the PBX with the amount of the binder beyond a threshold value, the binder’s properties
rather than the binder’s volume fraction exert a measurable influence on the shock sensitivity of the
PBX. The authors in [53] also reported that the EOS and constitutive relation of the PBX mainly depend
on the properties of the binder (such as density, elastic modulus, etc.), but this has limited dependence
on the binder volume fraction. This is consistent with the simulation results.
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Table 3. Parameters by fitting to the us–up variations at different binder volume fractions.

Binder (b) s c

0% 2.545 2.759
5% 2.356 2.711

10% 2.319 2.714
20% 2.282 2.678

Simulated Hugoniot data for the PBX suggest that porosity and binder volume fraction both affect
the equation of state under impact loading but in different ways. The porosity mainly affects parameter
c, in that an increase in porosity leads to a decrease in c. However, the binder volume fraction mostly
affects parameter s: An increase in binder volume fraction gives rise to a decrease in s. Therefore, the
EOS of PBXs depends on both microstructures, such as porosity and mass ratio, of the HMX/binder.

4.3. Equation of State (EOS) Study

The isothermal compression simulations show that porosity and binder volume fraction have
significant effects on the PV isotherms and Hugoniot data. Based on the PV variations obtained
from the MPM mesoscale simulations, an effective EOS that can be used to study the PV isothermal
properties of the PBX as well as porosity and binder volume fraction effective factors is obtained in the
following procedures.

Normalized compression pressure Pn can be obtained as follows:

Pn = P/Pη (17)

where P is the compression pressure of a system and Pη is the pressure of a system when the compression
ratio η = V/V0 = 0.80. The PV isotherms of the PBX at different porosities and different binder volume
fractions are normalized and plotted in Figure 8a,b, respectively. The normalized PV curves at different
porosities are basically coincident, and the same can be said for different binder volume fractions. This
allows the EOS fitting to be performed at any one of the four porosities and binder volume fractions.
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The third-order Birch–Murnaghan EOS [54] is used to analyze the compression curves for the
PBX. The equation is as follows:

P =
3
2
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)(V0

V

) 2
3
− 1


 (18)
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where K0 and K′0 respectively refer to the zero-pressure isothermal bulk modulus and its pressure

derivative with K′0 =
(
∂K0
∂P

)
P=0

, V0 is zero-pressure volume, and V is the volume of the PBX under
compression loading.

Based on Equation (18), the zero-pressure bulk modulus changes with the normalized pressure.
One set of the normalized PV data is fitted to Equation (18) as shown in Figure 8. The parameters are
found to be K0,n = 0.8765 and K′0,n = 23.27, where K0,n is the normalized zero-pressure bulk modulus
and K′0,n is the corresponding pressure derivative.

When the compression ratio η = 0.80, the relation between compression pressure and porosity is
represented as Equation (19); also shown in Equation (20) is the relation between compression pressure
and binder volume fraction.

Pη,ϕ = P0,ϕ · exp(α(1−
ϕ

ϕ0
)) (19)

Pη,b = P0,b · exp(β(1−
b
b0
)) (20)

where ϕ0 and b0 are the reference porosity and reference binder volume fraction, taking the values of
0.003and 5%, respectively. P0,ϕ is the pressure at the reference porosity, and α refers to porosity effective
factor. P0,b is the pressure at the reference binder volume fraction, and β refers to the binder volume
fraction effective factor. Each porosity or binder volume fraction has its corresponding reference
pressure Pη, as listed in Tables 4 and 5 for the four porosities and four binder volume fractions. P0,ϕ =

9.668 GPa and α = 0.0168; these values are obtained by fitting the data in Table 4 into Equation (19). The
values of P0,b = 10.02 GPa and β = 0.0724 are obtained by fitting the data in Table 5 into Equation (20).

Table 4. Pη,ϕ of PBX at different porosities (η = 0.80).

Porosity (ϕ) Pη(GPa)

0.003 9.698
0.033 8.022
0.073 6.792
0.113 5.086

Table 5. Pη,b of PBX at different binder volume fractions (η = 0.80).

Binder Volume Fraction (b) Pη(GPa)

0% 11.382
5% 9.698
10% 9.316
20% 8.458

Based on Equation (17), the relations among the parameters K0, K0,n, and Pη can be expressed as:

K0 = K0,n · Pη (21)

Therefore,

K′0,ϕ = K′0,n ·

(
∂Pη,ϕ

∂P

)
P=0

= K′0,n · exp(α(1−
ϕ

ϕ0
)) (22)

K′0,b = K′0,n ·

(
∂Pη,b

∂P

)
P=0

= K′0,n · exp(β(1−
b
b0
)) (23)

The parameters in the Equations (18) to (23) obtained by fitting the corresponding variables with
porosity and binder volume fraction effective factors are given in Table 6.
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Table 6. EOS parameters obtained from curve fitting.

Related Parameters K0,n K
′

0,n P0,ϕ α P0,b β

Values 0.8765 GPa 23.27 9.668 GPa 0.0168 10.02 GPa 0.0724

Using Table 6, the zero-pressure isothermal bulk modulus and its pressure derivative with porosity,
K0,ϕ and K′0,ϕ, are as follows:

K0,ϕ = 8.474 exp(0.0168(1−
ϕ

ϕ0
)), K′0,ϕ = 23.27 exp(0.0168(1−

ϕ

ϕ0
)) (24)

The zero-pressure isothermal bulk modulus and its pressure derivative with binder volume
fraction, K0,b and K′0,b, are as follows:

K0,b = 8.783 exp(0.0724(1−
b
b0
)), K′0,b = 23.27 exp(0.0724(1−

b
b0
)) (25)

where ϕ
ϕ0

and b
b0

are respectively the specific values of porosity and the binder volume fraction.
Similar relationships between effective factors and the parameters c and s in the us–up plane of the

PBX can be expressed as:

s = s0,ϕ · exp(mϕ(1−
ϕ

ϕ0
)), c = c0,ϕ · exp(nϕ(1−

ϕ

ϕ0
)) (26)

s = s0,b · exp(mb(1−
b
b0
)), c = c0,b · exp(nb(1−

b
b0
)) (27)

where ϕ0 and b0 are the reference porosity and reference binder volume fraction, taking the values of
0.003 and 5% respectively; s0,ϕ and c0,ϕ are the parameters fitting to the us–up curve at the reference
porosity; mϕ and nϕ refer to porosity effective factors. Here, s0,b and c0,b are the parameters fitting to
the us–up curve at the reference binder volume fraction, and mb and nb refer to the porosity effective
factors. The parameters obtained by fitting the data in Tables 2 and 3 to Equations (26) and (27) are
given in Table 7.

Table 7. Parameters obtained from the effective factors of porosity and binder volume fraction.

Porosity (ϕ) Binder Volume Fraction (b)

Parameters Values Parameters Values

s0,ϕ 2.273 s0,b 2.476
c0,ϕ 2.786 c0,b 2.746
mϕ −8.16 × 10−4 mb 1.5 × 10−3

nϕ 7.19 × 10−3 nb 3.99 × 10−4

It is seen in Table 7 that nϕ > nb, indicating that porosity has a greater influence on parameter c,
i.e., the bulk wave speed of PBX, than the binder volume fraction. Here, c plays an important role
in shock wave propagation. Comparisons with the parameters obtained from the effective factors
of porosity and binder volume fraction suggest that porosity has a greater influence on Hugoniot
data. Porosity is related to pores in a compressed system, and the authors in [55] found that density
heterogeneity is always located at the parts where pores exist. These locations may become the failure
zones for the existence of microcracks.

The pressure–volume data were used to determine certain thermodynamic parameters (bulk
modulus, first pressure derivative of the bulk modulus) of the Birch–Murnaghan EOS, which can
demonstrate the suitability of an EOS at different pressures, especially at high pressure. Hugoniot
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data derived from isothermal curves will provide quantitative measurements for shock parameters.
Therefore, the effective EOS fitted in this research can be used to predict some thermodynamic and
mechanical properties, such as the initiation process of the PBX under extreme conditions.

4.4. Bulk Modulus and Its First-Order Pressure Derivatives

The bulk modulus is given as K = −V(dP/dV) for different pressure, so the expression for bulk
modulus from Equation (18) comes out as:

K =
1
2

K0

7(V0

V
)

7
3
− 5(

V0

V
)

5
3
+ 3

8
K0

(
K′0 − 4

)9(V0

V
)

3
− 14(

V0

V
)

7
3
+ 5(

V0

V
)

5
3
 (28)

The corresponding expression for the first-order pressure derivative of the bulk modulus K′ =
dK/dP obtained from (28) comes out as:

K′ =
K0

8K

(K′0 − 4
)81(

V0

V
)

3
− 98(

V0

V
)

7
3
+ 25(

V0

V
)

5
3

+
4
3

49(
V0

V
)

7
3
− 25(

V0

V
)

5
3


 (29)

where K0 and K′0 are respectively the zero-pressure bulk modulus and its pressure derivative. Variations
of the isothermal bulk modulus K and its pressure derivative K′ with pressure for the PBX with
0.003 porosity and 5% binder volume fraction by using the Birch–Murnaghan EOS are shown in
Figure 9a,b, respectively. Figure 9 shows that with the increase in pressure, K increases continuously,
while K′ decreases progressively with the increase of pressure and gradually becomes asymptotic.
Stacey et al. [56] suggested a few basic criteria of an EOS for its validity and applicability. These are as
follows:

i. In the limit of infinite pressure, V/V0→ 0.
ii. With the increase in pressure, the isothermal bulk modulus increases continuously, and in the

limit of infinite pressure, K→∞
iii. K′ must decrease progressively with the increase in pressure, and K′ remains greater than 5/3

in the limit of infinite pressure.

The results of this study show that the effective EOS derived from mesoscale simulations satisfies
the above three criteria based on thermodynamic relations.
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5. Conclusions

Starting with the constitutive equations of each component of HMX/Estane PBX, an effective
EOS of the PBX with microstructure effects was established by fitting the PV isotherms at different
porosities and different binder volume fractions obtained by an MPM calculation. The equation of state
is effective because it includes the effective factors of the microstructures of the PBX studied and the
mass ratio of the energetic crystals and the binder contained in the PBX. The isothermal bulk modulus
(K0) and its pressure derivative (K′0) for the PBX were determined by analyzing the obtained isotherms
using the Birch–Murnaghan equation of state. The results demonstrate that the established effective
EOS meets the criteria based on the basic thermodynamic discussion. The bulk wave speed c and
dimensionless parameter s in the Mie–Grüneisen EOS of the PBX obtained by fitting us-up variations
with the different porosities and different binder volume fractions are also effective.

The MPM mesoscale simulation technique presented in this study is an alternative approach for
the development of an equation of state that can be used to predict the thermodynamic properties of
PBXs for a wide range of pressures and temperatures. An effective EOS fitted at the different porosities
and binder volume fractions in this study provides necessary input data for the description of particle
dynamic behaviors at the continuum level, which is a key intermedium to connect microscopic and
macroscopic properties in the study of energetic materials.
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