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Abstract: The ability of carbon-based nanomaterials (CNM) to interact with a variety of pharmaceutical
drugs can be exploited in many applications. In particular, they have been studied both as carriers for
in vivo drug delivery and as sorbents for the treatment of water polluted by pharmaceuticals. In recent
years, the large number of experimental studies was also assisted by computational work as a tool to
provide understanding at molecular level of structural and thermodynamic aspects of adsorption
processes. Quantum mechanical methods, especially based on density functional theory (DFT) and
classical molecular dynamics (MD) simulations were mainly applied to study adsorption/release of
various drugs. This review aims to compare results obtained by theory and experiments, focusing on
the adsorption of three classes of compounds: (i) simple organic model molecules; (ii) antimicrobials;
(iii) cytostatics. Generally, a good agreement between experimental data (e.g. energies of adsorption,
spectroscopic properties, adsorption isotherms, type of interactions, emerged from this review) and
theoretical results can be reached, provided that a selection of the correct level of theory is performed.
Computational studies are shown to be a valuable tool for investigating such systems and ultimately
provide useful insights to guide CNMs materials development and design.

Keywords: adsorption; carbon nanomaterials; isotherms; drugs; water treatment; molecular dynamics;
ab initio calculations; DFT

1. Introduction

The first carbon nanomaterial, buckminsterfullerene C60, was discovered in 1985 by Kroto et al. [1].
In 1991, Iijima recognized and fully described carbon nanotubes (CNTs) [2], even though some believe
that the discovery was made earlier by Bacon [3]. Novoselov et al. [4] discovered graphene, the thinnest
known material in existence [5]. These three materials (shown in Figure 1a–c, respectively) constitute
the main classes of carbon nanomaterials (CNMs).

Figure 1. Representation of: (a) Buckminsterfullerene C60; (b) 14-14 armchair single walls carbon
nanotubes (SW-CNT); (c) graphene slab.
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The presence of strong carbon-carbon bonding, aromatic structure, reactive sites on the surface
obtained through chemical functionalization, and free π electrons make them unique materials with
exceptional proprieties. Indeed, the high π electron density could interact with the molecular orbitals
of different compounds, thus facilitating reactions or adsorption [6–8]. Moreover, this peculiar
structure provides excellent thermal [9] and electrical conductivity [10–13] and exceptional mechanical
properties [14–18].

Fullerenes (Figure 1a) are considered three-dimensional analogues of benzene and are large
carbon cage molecules. Buckminsterfullerene C60 with 60 carbon atoms arranged in a spherical
structure represent the most abundant form of fullerenes which have a characteristic football shape
(a truncated icosahedron) [19,20]. In addition to C60, there are other different types of fullerenes with
numbers of carbon atoms ranging from 38 to 980, and they form different structures with different
properties and field of applications [21]. Three main methodologies can be used to produce fullerenes:
Huffman-Krätschmer; combustion and microwave methods [22].

The systematic development of covalent fullerene chemistry (i.e., introducing surface
modifications) provided an unprecedented diversity of three-dimensional building blocks for
technologically interesting materials with different chemical and physical properties, such as increased
water solubility and improvement of optical properties, that allow their applications in multiple
fields [23,24].

CNTs are allotropes of carbon with a cylindrical three-dimensional (3D) structure formed by
rolling single or multiple layers of graphite sheets into seamless cylinders [18,25]. These cylindrical
structures could be either single-walled (SW-CNTs) or multi-walled (MW-CNTs) CNTs (Figure 2).

Figure 2. Representation of: (a) 14-14 armchair single walls CNT; (b) multi-walled CNT (MW-CNT):
14-14 armchair CNT and 10-10 armchair CNT.

MW-CNTs generally have a larger outer diameter (2.5–100 nm) compared to SW-CNTs
(0.6–2.4 nm) [9]. CNTs are characterized by unique properties, such as high tensile strength, elasticity,
ultra-light weight and excellent chemical and thermal stability [9]. Several techniques have been
developed to obtain CNTs; the most common procedures are: arc-discharge [26,27], laser-ablation [28]
and catalytic chemical vapor deposition (CVD) [29–31].

CNTs can be functionalized in different ways, to enhance their aqueous solubility and to reduce the
tendency to aggregate. Chemical modification can be accomplished in several ways, either covalently
or non-covalently [32,33].

Graphene-based materials are two-dimensional (2D) sheets of sp2 carbons arranged in
six-membered rings which can be chemically modified to contain a variety of reactive sites [34,35].
The most used forms are single, bi-layer or multi-layer graphene, graphene oxide (GO) and reduced
graphene oxide (rGO). Single-layer graphene is synthesized by repeated mechanical exfoliation [4]
or controlled growth on substrates like silicon carbide [36] via chemical vapor deposition (CVD) [37].
Graphene oxide (GO) is a highly oxidized form of graphene, chemically modified with carboxylic
acid, epoxide and hydroxyl groups in the plane. Carboxylate groups provide colloidal stability and
pH dependent surface charge [38], while epoxide (-O-) and hydroxyl (-OH) groups can interact by
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hydrogen bonding (H-bond) [39]. GO is an amphiphilic molecule, which can be used as a surfactant to
stabilize hydrophobic molecules in a solution [40,41]. Reduced graphene oxide (rGO) can be obtained
by thermal, chemical and ultraviolet (UV) treatment of GO under reducing conditions [38]. rGO is
mainly produced to restore the electrical conductivity and optical absorbance in GO while reducing
the oxygen content, surface charge, and hydrophilicity [42].

Due to their chemical, mechanical and electrical properties, these classes of CNMs present
applications in different fields such as microelectronic devices [43,44], coatings and films [18,45],
energy storage [15,46,47], biomedicine [22,24,48–51], and in catalysis [52–54].

As far as medical applications are concerned, CNM can act as drug carriers, as they can adsorb
or encapsulate a variety of organic molecules including pharmaceutical compounds [55–57]. In this
way drugs can be delivered on the site of action, protected from degradation, showing increased
efficacy [58,59]. Drugs can be loaded into these carriers both by covalent bonds or non-covalent
interactions [60–63]. CNM functionalization can be achieved with covalent modification via
carboxylation and oxidation [64,65], fluorination [66–68], amidation [69–71], thiolation [72–74],
and esterification [75,76]. Molecules can be bound by different bond types such as amide [77–80],
disulfide [81–83], ester [78,84,85], and carbamate bonds [86,87]. Non-covalent bonding (van der Waals
(vdW), H-bonds, electrostatic interactions) has the advantage to maintain the peculiar properties of
these materials [8,33,63] and at the same time a good reversibility of the binding which can be realized
by varying environmental conditions, such as pH [88–97] or temperature [98–101].

Due to the above mentioned chemical and physical features, (high surface/mass ratio, ease of
functionalization, cost, mechanical properties), CNMs have been also widely studied for their
application as sorbents in water treatment processes, and in particular for the removal of pharmaceuticals
from liquid samples [102,103]. The specific treatment of drug-containing wastewaters has become in
recent years an important process, as the dispersion of persistent pharmaceutical pollutants in the
environment poses serious threats for living organisms [104–107]. The application of adsorption in
water treatment presents several advantages (versatility, efficiency, easy implementation in existing
plants and low cost [103,108,109]) with respect to other techniques, such as advanced oxidation
process (AOP) [110,111], bioremediation [112], coagulation [113,114], ozonation [115–117] and reverse
osmosis [118,119].

Most of the experimental studies focused on adsorption of a multitude of organic and
inorganic drugs such as antibiotics [102,120–122], platinum-based cytostatic drugs (Pt-CD) or other
organic antitumor compounds [123–126]. Both kinetic and thermodynamics of adsorption have
been investigated deeply. Adsorption equilibrium data were usually fitted with Langmuir [127],
Freundlich [128], Temkin [129], Langmuir-Temkin [130], Langmuir-Freundlich [131], Hill [132]
isotherms. Several kinetic models have been applied to model the adsorption process, in particular,
the pseudo-second-order (PSO) model was shown to better describe the adsorption of drugs by the
CNMs [133]. The PSO kinetics was usually associated with the direct adsorption/desorption rate
controlling the overall sorption kinetics [134]. However cases that differ from this model are also
reported in the literature [127,132,135,136].

The interpretation of kinetic and equilibrium data requires to make hypotheses on the nature of
the molecular interactions at play. Different mechanisms have been proposed to control the adsorption
of these molecules by CNMs (Figure 3): covalent bonding, hydrophobic interactions, π–π interactions,
electrostatic interactions, H-bonding [102,120,121,133]. The relative importance of these contributions
is very complex and is still a challenge to be assessed. Spectroscopic studies, such as electronic
spectroscopy (UV-Vis) [137], Fourier Transform Infrared Spectroscopy (FT-IR) [138] and Raman [127],
X-ray photoelectron spectroscopy (XPS) [127] have been used to provide structural information on
adsorption mechanisms. In this respect, theoretical studies have also been demonstrated to be a useful
toolbox to disclose the nature and the relative importance of the interactions at play.
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Figure 3. Adsorption mechanisms of drugs on carbon nanomaterials (CNMs).

Quantum mechanical methods, ab-initio and classical molecular dynamics simulations have been
the most used techniques employed to study. The nature as well as the size of the studied system
guides the type of approach [139,140].

The most used quantum mechanical approach in this field is density functional theory (DFT),
which allows one to describe medium to relatively small molecular systems (up to hundreds of atoms)
with good accuracy and reasonable computational cost [141,142]. In order to study not only equilibrium
structures, but also dynamical behavior, nuclear motion is taken into account in ab-initio molecular
dynamics (AIMD) where the forces are obtained by DFT [143]. Typically, such calculations are carried
out for replicated supercell structures treated with periodic boundary conditions (PBCs).

In classical molecular dynamics (MD) simulations electronic degrees of freedom are not considered
and the motion of the particles is described only through classical mechanics with a physics-based
potential energy function, based on the principles of physics. The analytical expression of potential
energy (force field) describes intramolecular and intermolecular interactions [144,145]. The most
commonly force fields which have been for modelling CNMs are CHARMM [146,147], AMBER [148,149]
and GROMOS [150].

Such different computational approaches can provide complementary pieces of information
on molecular aspects of adsorption phenomena. For example, quantum chemical methods can be
used to calculate adsorption energy (Eads, i.e., the difference between the energy of the CNM with
the molecule adsorbed and the separated components), structural parameters of minimum energy
configurations, electronic and spectroscopic properties. On the other hand, MD simulations allow to
calculate adsorption free energies (∆Gads), structural averages, loading, time-dependent properties
(elastic moduli, diffusion coefficients) surface accessible area.

The purpose of this review is to analyze the most recent works concerning theoretical studies
of the interactions between several classes of drugs and CNMs and compare them with available
experimental data.

The following sections are organized according to the class of compounds interacting with
CNMs: (i) Interaction of simple organic compounds with molecular CNMs models; (ii) Adsorption of
antimicrobials; (iii) Adsorption/release (delivery) of cytostatic compounds; (iv) Conclusions.

2. CNMs Models

A first approach for the theoretical study of the interaction of organic compounds with CNM
has been to employ small molecular models which are able to represent portions of their surface.
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In this context, benzene dimer is of key importance as a prototype of aromatic π–π interactions, and it
has been extensively studied both experimentally [151] and theoretically [152–163] a quite common
building block of complex organic molecules. Quantum mechanical calculations [157,158,161–163]
established that there are two main structures, reported in Figure 4, for the benzene dimer: the first
one corresponds to two benzene molecules perpendicular to each other (T-shape) while in the second
structure the benzene rings are parallel but their centers are displaced by about 1.6 Å (PD-shape).

Figure 4. T-shape (a) and PD-shape (b) structures of the benzene dimer and (c) minimum energy
structures for graphene-benzene model.

The first model (Figure 4a) is favored by the static quadrupole−quadrupole interaction; dispersion
effects favor the second one (Figure 4b) [157,164]. The two structures result almost isoenergetic, and the
benzene dimer potential energy surface (PES) is quite flat with several local minima separated by small
interconversion barriers [152–163].

Other papers [165–169] concern the study of the interaction between benzene and graphene models
such as coronene (C24H12), circumcoronene (C54H18) and larger systems like C294H42. In contrast to
what was observed for the benzene-benzene interaction, when using graphene models, the lowest
energy configuration became the face to face orientation, where the global minimum in potential
energy surface (PES) is characterized by the structure shown in Figure 4c that differs from PD-shape
structure [170]. The Eads of a molecule on a graphene surface involves π–π interactions that explain
this kind of arrangement.

The DFT calculation protocol, for systems that are characterized by π–π type interactions, must use
functionals that include dispersion corrections functions. An example is given by the work of
Ershova [170] where experimental [171] and theoretical desorption energy (Edes = −Eads) of benzene,
napthalene, coronene (C24H12) and ovalene (C32H14) on C116H28 graphite model have been compared.
Two functionals were used; ωB97X [172] which does not include dispersion corrections and the
ωB97X-D [173] which provides them. The results (Figure 5) show that ωB97X underestimates the Edes

values while the values obtained withωB97X-D are in much better agreement with the experimental
ones, demonstrating the importance of inclusion of dispersion corrections for a correct estimation
of Edes.
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Figure 5. Experimental (red) and theoretical (ωB97X-D blue,ωB97X green) Edes.

The interaction between CNMs models and substituted benzenes has been also investigated to
clarify how the different functional groups can influence the adsorption of these molecules [174–180]
and the most interesting works are discussed below.

Edes of 25 small molecules on graphene has been calculated by means of empirical force fields
(FF), semiempirical quantum mechanics, and DFT [176]. The Edes values obtained were compared with
the experimental ones obtained by temperature programed desorption (TPD) experiment [176,181,182].
The method that best replicated experiments was found to be the dispersion-corrected semiempirical
method PM6-DH+. The Edes of some aromatic molecules (benzene naphthalene and o-dichlorobenzene)
were in excellent agreement with the literature data (mean squared errors < 1 kcal mol−1) while slightly
larger deviations were observed (~2.5 kcal mol−1) for toluene end ethylbenzene as can be seen in
Figure 6.

Figure 6. Experimental [181,182] (red) and theoretical [176] (PM6-DH+ blue) Edes.
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In particular, the calculated Edes are systematically lower than the experimental ones. This should
be due to the formation of 2D supramolecular structures: if so, the experimental Edes could
actually correspond to the desorption of dimers or trimers, or to the energy required to destroy
the supramolecular structure before desorption.

Similarly, the individual and competitive adsorption of benzene, aniline and naphthylamine
on rGO were investigated experimentally and by DFT calculations by Yu et al. [178]. Experimental
results indicate that the maximum adsorption capacity follows the order naphthylamine > aniline >

benzene both for systems consisting of a single component and for systems consisting of two or three
components. DFT calculations well agree with experiments predicting Eads values that follows the
order benzene < aniline < naphthylamine and indicates that the intramolecular interactions between
the aromatic compounds themselves have an important influence on their adsorption on the rGOs.

Combined experimental and computational (DFT, MD) techniques were employed also for the
study of the adsorption of a set of pyrene derivatives (guest) on the surface of a SW-CNT (host) in
order to clarify the mechanisms that originate the host-guest recognition of SW-CNT by small aromatic
molecules [180]. The influence of the solvent in the adsorption process was also analyzed: two solvents
with markedly different polarity, namely 1,1′,2,2′-tetrachloroethane (TCE) and N,N-dimethylformamide
(DMF) were used in the experiments. In the nonpolar solvent (TCE), the binding constants resulted to
be highly correlated with the contact area between the SW-CNT and the guests. When polar solvent
(DMF) is added the binding constants show a complex dependence on the chemical nature of the
pyrene substituents: MD simulation confirmed the experimental binding constants measured by means
of a thermogravimetric protocol.

Lazar et al. [183] quantified the adsorption enthalpies (∆Hads) of seven small organic molecules on
graphene using theoretical calculations and inverse gas chromatography experiment (Figure 7, red bars).
The best description of dispersion interactions is obtained using the computationally expensive Coupled
Cluster (CCSD(T)) method [184]. The Eads calculated with this method has been used as reference and
were compared with those obtained with different methods. The SCS(MI)-MP2, MP2.5, and MP2.X
methods gave reliable results (mean errors of 0.4, 0.7, and 0.7 kcal mol−1 respectively), however MP2
method show a tendency to overestimate the dispersion contribution to the correlation energy has been
already observed [185]. The best DFT functional able to reproduce the Eads obtained with CCSD(T)
method was the hybrid meta-GGA (generalized gradient approximation) M06-2X functional [186,187]
with a means error of 0.9 kcal mol−1. Comparison of Eads calculated by DFT GGA functionals shown that
best was the non-local optB88-vdW functional (means error = 1.8 kcal mol−1) [188] and it was employed
to perform ab initio MD and obtained the ∆Hads values (Figure 7, blue bars). B97D functional [189]
shown means error of 2.4 kcal mol−1, while the semi-local PBE functional [190–192] shown a slightly
negative Eads.

The experimental ∆Hads ranged from −5.9 kcal mol−1 for dichloromethane to −13.5 kcal mol−1 for
toluene indicating that in all the reported cases the adsorption process is exothermic. Data obtained from
ab initio MD showed that all molecules remained bound to the graphene surface during the simulations
in contrast to what has been observed with PBE functional, where the molecules spontaneously detached
from the graphene surface and this underlines the importance of dispersion [193]. Additionally the
average surface molecule distance correspond to physisorption [194], which is a “weak” adsorption
process where the single atom holding energy is a few tens of meV’s, with no apparent chemical bond
formation (chemisorption) [195]. Moreover, the resulting calculated ∆Hads (Figure 7, blue bars) were
in excellent agreement with the experimental data [183], indicating that the functional can reproduce
chemical phenomena behind adsorption of organic molecules on graphene sufficiently well.
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Figure 7. Experimental (red) and theoretical (ab initio molecular dynamics (MD) optB88-vdW, blue)
∆Hads, no theoretical data has been reported for hexane (C6H14).

Similarly, the adsorption of about 30 small aromatic compounds on native and hydroxylated
SW-CNT was studied and the associated equilibrium constants calculated [177]. The adsorption
equilibrium constants (Kads) was determined by free-energy calculations and were directly compared
to those derived from experiments providing an excellent correlation (r > 0.9) [177].

The adsorption capacity of bisphenol A and 17α-ethinylestradiol on graphene, SW-CNT and
MW-CNT was studied by DFT and MD simulations, with the aim to provide insights for the removal of
these endocrine disrupting compounds [174]: a preferential sorption of 17α-ethinyl estradiol onto these
materials compared to bisphenol A was showed. This observation was consistent with experimental
results proving higher removal efficiencies for 17α-ethinylestradiol than for bisphenol A. Moreover,
MD simulations indicated that the binding free energies, calculated by means of the MM/PBSA
approach [196], of bisphenol A and 17α-ethinyl follow the order: graphene > MW-CNTs > SW-CNTs.
Experimental results are in line with this trend.

The pH-dependent adsorption of bisphenol A on GO using DFT calculation and MD simulations
indicated that the numbers of H-bond between GO or bisphenol A and water were higher than the
number of H-bond found between bisphenol A and GO [179]. This indicated that the water-mediated
H-bond acted as a steering force in the adsorption process. Upon adsorption, the configurations of
ionizable organic compounds (IOCs) and GO were changed, and the hydrophilicity was decreased,
which may in turn affect their fate and toxicity in the environment.

Nine polybrominated diphenyl ethers (PBDEs) adsorbed on graphene were studied by DFT
and MD simulations [175]: the interaction strength between the PBDE molecules and graphene was
explained by physisorption and increased with the degree of bromination due to the relatively strong
interactions between the bromine atoms. The Eads exhibited a positive linear correlation with the
hydrophobicity of PBDE molecules, while for the PBDEs with 6 or 6′-substitution, the steric hindrance
effect leads to the formation of single π–π stacking interactions with the graphene surface and thus to a
different adsorption behavior.

3. Antimicrobials

One of the most significant achievements of the 20th century is the discovery of antimicrobial
pharmaceuticals, which have revolutionized both human (Figures 8a, 9 and 10) and veterinary
medicine (Figure 8b) [197]. In addition, antibiotics are used at a global scale in livestock and
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aquaculture to increase the production by preventing infections and promoting growth [198]. The global
consumption of antibacterial drugs is directly reflected in their presence in various compartments
of the environment, including the aquatic one [199]. The excessive use of such antibiotics has led to
the emergence of a global environmental pollution problem due to the emergence of drug-resistant
bacteria [200–203]. Surface water plays an important role in the emergence and spread of antibiotic
resistance, so the development of strategies to improve water quality has become a permanent
necessity [197]. In conventional water treatment plants, antimicrobials may predominantly undergo
transformation, biodegradation or sorption onto the activated sludge and precipitation, depending on
the technology employed [204,205], but, in most cases, they are not completely eliminated and can still
be detected in the treated water [206]. Antimicrobial removal through adsorption by using CNM has
been widely investigated in the last years, by experimental [102,127,133,198,207–212] and theoretical
works [127,132,136,207,211,213–218].

3.1. Fluoroquinolones

Fluoroquinolones (FQs) are a group of synthetic antimicrobial agents (Figure 8) with high
antibacterial activity against both Gram-negative and Gram-positive bacteria through inhibition of
deoxyribonucleic acid DNA gyrase [219].

Numerous research studies on the occurrence and ecotoxicology of FQs in aquatic
environments [220] evidenced that FQs are difficult to be biodegraded due to the stable naphthol ring
in their structures [221]. In recent years, the alarming increase in the antimicrobial resistance towards
FQ has been observed [219,222], thus their removal from water. A selection of adsorption studies
on different CNMs, including data related to the loading capacity (LC), adsorption thermodynamic
parameters and experimental conditions is reported in Table 1.

Figure 8. Cont.
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Figure 8. Fluoroquinolones commonly used in human medicine (panel (a)), in veterinary medicine
(panel (b)) and protonation equilibria involving micro-species of fluoroquinolones (FQs panel (c)).

The thermodynamic data in Table 1 indicate that, in general, FQs are spontaneously adsorbed by
the CNMs with ∆Gads values enclosed in the −2–−10 kcal mol−1 range. These ∆Gads, as well as the
LC and the type of interactions, depend both on the nature of the CNMs and on the environmental
conditions. Especially the pH has a strong impact on adsorption efficiency of the CNM and this is likely
to be linked to the ampholyte nature of FQ. These compounds can exist in five different pH-dependent
protonation species, namely: anion (FQ−), zwitterions (zHFQ), neutral (nHFQ), cation (H2FQ+) and in
some cases dication, (H3FQ2+) [223]. A scheme of the equilibria involving such species is reported in
Figure 8c.

In particular, it is known that at pH = 7.0 the zHFQ form is largely dominant over the nHFQ one,
while at pH < 6 and pH > 9 the mono-positive and negative species prevail [223], being likely that
these species interact differently with the carbon based materials. In agreement with this hypothesis,
Li et al. [207] studied experimentally the adsorption of ciprofloxacin (CFX) and found that its adsorption
on SW and MW-CNTs was greatly affected by pH. It was proposed that hydrophobic interactions control
adsorption for nHCFX and zHCFX, while electrostatic interactions were the dominant mechanism
for ionic CFX sorption. In the same study, CFX adsorption resulted thermodynamically favorable for
all CNTs used. In the case of SW-CNTs the sorption process is entropy driven (i.e., positive ∆Hads),
while it is enthalpy driven on MW-CNTs.

Norfloxacin (NOR) and ofloxacin (OFL) adsorption on MW-CNTs was investigated to evaluate
the role of structural and hydrophobic properties in regulating their adsorption [208]. A relationship
between adsorption coefficients and specific surface area (highly hydrophobic) was observed, but not
between adsorption coefficients and oxygen content of MW-CNT’s. This result suggested that
site-specific adsorption was not important, but hydrophobic effect may have an important contribution
to OFL and NOR adsorption on MW-CNTs.

The normalization of the adsorption coefficients by OFL and NOR solubilities enlarged their
adsorption difference indicating that hydrophobicity was not the only factor controlling the difference
between OFL and NOR adsorption on MW-CNTs. Both molecules could interact with CNT surface
thanks to an electron-donor–acceptor mechanism (EDA). This mechanism was correlated with the
different adsorption of OFL and NOR on functionalized MW-CNTs.
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Table 1. Experimental adsorption parameters of FQs on CNMs: Pondus Hydrogenii (pH), Temperature
(K), LC (loading capacity (mg g−1), ∆X (kcal mol−1). NA (nalidixic acid), LEV Levofloxacin. G (graphene),
G-NS (graphene nano-sheet), GO-MP (graphene oxide magnetic nanoparticle), rGO-MP (reduced
graphene oxide magnetic nanoparticle), GO-SA (graphene oxide sodium alginate), GO-CA (graphene
oxide calcium alginate), G-H (graphene hydrogel), G-KOH (activated graphene with KOH), SW-CNT
out (adsorption on outer surface), SW-CNT in (adsorption on inner surface). EMT (external mass
transfer), IPD (intra particle diffusion).

CNM Compound Method pH T LC ∆X Type of Interaction Reference

MW-CNT

NA HPLC 7.0 303

169.08
∆Gads = −3.1

π–π int.
H-bond

[224]

∆Hads = −31.6

MW-CNT-COOH 188.68
∆Gads = −3.0

∆Hads = −32.1

MWCNT-NH2 135.14
∆Gads = −3.1

∆Hads = −32.3

SW-CNT
OFL UV–vis 7.0 298

288.40 -
π–π int.
H-bond

[208]MW-CNT 74.13
SW-CNT

NOR HPLC 7.0 298
151.35 -

MW-CNT 53.70

GO-MP
NOR UV-vis - 298

127.80 - π–π int.
H-bond

[225]
rGO-MP 97.80 -

GO LEV HPLC - 298 256.6 - Electro.
π–π int. [226]

GO
NOR

UV-vis
24.93

- π–π int.
H-bond

[227]OFL 2–12 - 40.65
CFX 18.65

SW-CNT

CFX UV–vis 7.0 298

907.19 ∆Gads = −9.1

π–π int. [207]MW-CNT-COOH 60.15 ∆Gads = −9.3
MW-CNT 382.10 ∆Gads = −9.0

MW-CNT-OH 62.59 ∆Gads = −7.8

SW-CNT
CFX UV–vis 3–11 298

724.00 ∆Gads = −6.2
π–π int. [209]DW-CNT 605.00 ∆Gads = −5.9

MW-CNT 475.00 ∆Gads = −5.4

G CFX FT-IR 7.0 298 322.6 ∆Gads = −2.7 π–π int. [228]

GO CFX Florescence 5.0 298 379.00 ∆Gads = −6.3
Electro.
π–π int.

chemi ads.
[131]

GO-SA CFX UV-vis 2–12 298 86.12 - π–π int. [229]

GO-CA CFX UV-vis 3–9 - 66.2 - IPD [230]

G-H CFX UV-vis - 298 235.64 -
H-bond
π–π int.

IPD
[231]

G
CFX UV-vis 2–10 298

145.90 - π–π int. [232]
G-KOH 194.60 H-bond

π–π int. EMT

G-NS CFX UV-vis - 298 147.90
∆Gads = −1.8 vdW

Electro.
[132]

∆Hads = −4.2

MW-CNT CFX UV-vis 5.0 298 135.00 - π–π int. [233]

MW-CNT 2% O

CFX UV-vis 2–10 298

150.60 ∆Gads = −8.4
π–π int.

physic ads. [234]MW-CNT 3.2% O 178.90 ∆Gads = −7.7
MW-CNT 4.7% O 206.00 ∆Gads = −7.6
MW-CNT 5.9% O 181.20 ∆Gads = −8.4

SW-CNT out
zCFX

MD 7.0 298 -

∆Gads = −9.5
π–π int. [214]nCFZ ∆Gads = −3.6

SW-CNT in
zCFX ∆Gads = −12.2
nCFZ ∆Gads = −20.9
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Experiments conducted on the removal of CFX and oxytetracycline (OXY) (Figure 9) by SW-CNTs,
double-walled (DW-CNTs) and MW-CNTs agglomerates [209] revealed a moderate increase in
adsorption between pH 3 and 7, in particular the LC values, for SW-CNT and DW-CNT, while MWCNTs,
the pH did not influence the removal process over the range 3–9 for MW-CNT. The highest removal
capacities were registered using SW-CNTs as characterized by the higher value of LC found.

Figure 9. Tetracyclines commonly used in human medicine.

Several computational works related to the interactions between CFX and CNT are present
in the literature [132,136,207,214,217]. A comparative experimental/theoretical investigation on the
interaction between some antibiotics (norfloxacin (NOR), sulfadiazine (SDZ), tetracycline (TC)) and
graphene-based material (GO and rGO) have been carried out by Zhang et al. [225]. The experimental
results showed that the optimal adsorption pHs for NOR, SDZ, and TC are 6.2, 4.0, and 4.0, respectively;
moreover, the adsorption of NOR is favored on rGOs while SDZ preferred GOs. They concluded that
carboxylic groups of GO and rGO exert an electrostatic attraction with NOR and TC, but not with SDZ.
DFT calculations were used to clarify the interactions between antibiotics and the two graphene-based
materials characterized by a different percentage of sp2 and sp3 regions. The presence of sp3 carbons
on the surface is due to chemical modification that introduces the presence of functionals groups which
alter the conjugated structure. The results showed that both forms of NOR (H2NOR+ and zNOR)
interact via H-bonds with the sp3 region, while, when attached to the sp2 region, the π–π interactions
dominate. The obtained Eads for sp2

−NOR cluster are higher than for sp3
−NOR cluster, which explains

higher adsorption capacities of rGOs, which is characterized by larger amounts of sp2 regions. Similar
interactions have been observed for SDZ: however, a larger binding energy is found for sp3 region
in line with the predominant role of H-bonds and the higher adsorption amount found for SDZ on
GO. For the cationic form of TC, adsorption is favorable in sp3 regions with the formation of H-bonds,
while neutral forms prefer sp2 regions and π–π type interactions. The two opposite effects lead to the
similar adsorption amount of GO and rGO at the optimal pH [225].

In another study [132], CFX adsorption capacity on graphene reached a maximum at pH = 6.0
and occurs in the physisorption regime. Adsorption of CFX, NOR, and OFL, on GO were studied by
experimental methods and DFT calculations [227]. CFX and NOR present the maximum adsorption
at pH = 7.0, while for OFL at pH = 4.0. DFT calculations reveal that π–π interactions induce an
orientation of the FQs parallel to the GO plane, but it is not the most stable configuration found. Strong
H-bonds between FQs and oxygen group of GO are instead established and are accompanied by an
exothermic process.

The heat-driven desorption process of CFX from a SW-CNT was studied by MD simulations [217]
to explore the potential application of CNTs as drug carrier, where the adsorbed drug molecule is later
released by near-infrared radiation heating [235].
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The CFX molecules were found to remain initially mostly confined inside the SW-CNT with a low
diffusion coefficient. This suggested that the storage of CFX molecules inside the SW-CNT is feasible.
Results indicate that SW-CNT heating by NIR radiation can potentially be used for effective drug
release thank to the fast (<10 ps) vibrational energy transfer among SW-CNT, water, and CFX which
increases the diffusion coefficient of the latter by a factor of 5–7. However, it should be underlined that
in the work of Chaban V.V. et al. [217] only nHCFX was considered which, at physiological pH, is only
a small fraction of the total species (Figure 8c).

Both neutral and zwitterionic form of CFX remain adsorbed parallel to the SW-CNT surface
interacting via π–π stacking [214]. However, when multiple molecules are presents, other arrangements
are observed due to CFX–CFX interactions which allow the formation of stacked structures
(“sandwich-like”) in the confined space inside the SW-CNT [214]. The calculation of the Eads suggests a
preferential adsorption on the internal wall of the SW-CNT. This is also confirmed by the calculation of
the adsorption Gibbs free energy (∆Gads). Negative ∆Gads show that CFX adsorption is a spontaneous
process on both sides of the wall, even if more favorable on the inner surface. The ∆Gads were in good
agreement with the experimental values as can be observed in Table 1.

The Eads for the CFX–SW-CNT adducts are significantly more negative than the obtained ∆Gads.
This suggested a strong contribution of desolvation upon adsorption as indicated by net decrease of
the number of water molecules released upon adsorption [214].

3.2. Other Antimicrobials

Tetracycline (TC) (Figure 9) is the second most used antimicrobial worldwide [236]. It exhibits
broad-spectrum antibacterial activities by blocking DNA replication enzymes and inhibiting bacterial
growth [237]. TC has a planar structure consisting of four fused rings with hydrophilic groups on
one face, hydrophobic groups on the other face and each ring including phenol, alcohol, ketone and
amino [236]. In recent years TC has raised a serious environmental concern, as incompletely metabolized
TC has been detected in wastewater treatment plants and soils [102,238]. Hence, the removal of TC is
of great interest as evidenced by the number of experimental works related to the adsorption of TC on
carbon-based materials [127,136,211,215,225,239–242]. In Table 2 available experimental data related
to the adsorption of TC and other antimicrobials on different CNMs are reported.

Also in this case, negative ∆Gads values are observed which depend on the type of molecule
adsorbed by the adsorbent material and the pH. Ghadim et al. [211] studied the adsorption and
release of TC onto GO from an experimental and theoretical point of view and found that tetracycline
strongly binds to GO surface via π–π and cation–π interaction. Thermodynamic parameters obtained
showed positive ∆H and negative ∆G indicating that the adsorption process was entropy-driven.
MD simulations showed the presence of π–π stacking interactions between tetracycline and graphene’s
surface which results in an equilibrium distribution between bound and free compound.

Another experimental/theoretical DFT study [127] on the competitive interactions of TC and
sulfamethazine (SMZ, Figure 8) on reduced graphene oxides showed some cooperative effect due
to co-adsorption. Several techniques (scanning electron microscope (SEM), FT-IR, UV-Vis and XPS)
revealed that the highly efficient sorption of TC and SMZ on rGOs was mainly due to the π–π interaction
and cation-π interactions, high surface energy sites derived from defects, edges and groove areas [127].

The Eads, for TC resulted to be higher than that for SMZ, indicating that TC have a higher affinity
to rGO than SMZ. Adsorption and dynamics of TC, oxytetracycline (OC), and chlortetracycline (CC)
(Figure 9) on rGO and GO surface were investigated by DFT calculations and MD simulations [218].

DFT calculations showed that the π–π interaction and H-bond play significant roles when TCs
adsorbed on graphene materials. Moreover, the authors proposed that weaker C-H· · ·π interaction
might contribute to the adsorption mechanism. Additionally, the effects of the pH on the adsorption
process was investigated and it emerged that low pH values were suitable for the adsorption of TCs on
these materials due to the reinforced π–π interaction, H-bonds and cation–π interaction. The calculation
of the Eads revealed that the adsorption affinity follows the order: CC > TC > OC and TC > CC > OC
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in the GO and rGO systems, respectively. In addition, the adsorption efficiency was higher when the
pH of the solution was lower and when less polar solvent environments are present.

A comparative study on TC adsorption by graphite, GO, rGO and MW-CNT was carried
out by He et al. [215]. The experimental results revealed that adsorption capacity followed the
order: GO > rGO > MW-CNT > graphite. DFT calculations indicated that the oxygen functional
groups on GO reduced its π–electron-donating ability, indeed higher HOMO (highest occupied
molecule orbital) energy corresponded to higher π–electron-donating ability [243,244]; rGO had the
highest HOMO energy, showing the highest π–electron-donating ability. Nevertheless, the presence of
oxygen-containing functional groups decreased the HOMO energy of GO. Accordingly, π–π interactions
between GO and tetracycline were weakened as a result of the decreased π–electron-donating ability
of GO surface. The comparison of adsorption efficiency at different pH indicated that electrostatic
interaction also played an important role in TC-GO interactions. Site energy analysis, the difference
of sorption energies between the solute and solvent for a given sorption site, confirmed a highly
heterogeneous distribution of the binding sites and strong TC binding affinity of GO surface.

Table 2. Some experimental adsorption parameters of TC and other antimicrobials drugs on CNMs
(T(K), LC (mg g−1), ∆X, kcal mol−1). Sulfadiazine (SDZ), sulfamethazine (SMZ), sulfadimethoxine
(SDM), sulfamethizole (SMT), sulfamethoxazole (SMX).

CNM Compound Method pH T LC ∆X Type of Interaction Reference

SW-CNT
OC UV-vis 3–11 298

554.00 ∆Gads = −6.4
Electro.
π–π int.

[209]DW-CNT 507.00 ∆Gads = −6.1
MW-CNT 391.00 ∆Gads = −6.3

rGO
OC

UV-Vis 3–11 298
212.00 - Electro. [239]

TC 313.00

GO TC UV-vis 7.0 298 322.43
∆Gads = −0.50

π–π int. cation–π int [211]
∆Hads = 10.52

rGO TC UV-vis 3–10 298 558.66 ∆Gads = −24.3 vdW, π–π int. cation–π
int. [240]

GO-MP TC UV-vis - 298 95.00 - π–π int. [241]

MW-CNT 2% O

TC UV-vis 2–10 298

217.80 ∆Gads = −7.7
Electro.

π–π int. hydrophobic [242]MW-CNT 3.2% O 269.25 ∆Gads = −6.2
MW-CNT 4.7% O 217.56 ∆Gads = −6.4
MW-CNT 5.9% O 210.43 ∆Gads = −6.6

G-NS TC - - 298 78.60
∆Gads = −11.9 Electro.

π–π int.
[136]

∆Hads = −13.0

GO
TC HPLC - 293

844.00
- π–π int. Electro. [215]rGO 308.00

MW-CNT 298.00

GO-MP
TC

UV-vis - 298

115.30

-

H-bond

[225]rGO-MP 302.40 π–π int.
GO-MP

SDZ
12.43 H-bond Hydrophobic

π–π intrGO-MP 11.54

rGO
TC

HPLC - 298
219.10 ∆Gads = −5.6

π–π int. cation–π int. [127]
SMZ 174.42 ∆Gads = −5.7

SW-CNT

SMD

HPLC 5.0 298

16.30 ∆Gads = −10.0

π–π int. [213]SMT 312.00 ∆Gads = −5.9
SMZ 12.70 ∆Gads = −8.3
SMX 7.88 ∆Gads = −7.9

GO SMX Florescence 5.0 298 240.00 ∆Gads = −5.7
Electro.
π–π int.

chemi ads.
[131]

G-NS
SMX UV-vis - 298

103.00 ∆Gads = −0.4 π–π int. [225]
GO-NS 122.00

Electrostatic and π–π interactions were shown to be at the origin of an efficient TC adsorption
on a graphene nano-sheet (G-NS) [136]. Experimental, quantum mechanical semi-empirical method
(neglect of diatomic differential overlap (NDDO) and Austin Model 1 (AM1)) and MD simulations at
two different temperatures 298.15 and 318.15 K were carried out. MD simulations showed that vdW
interaction energy at 298.15 K reaches equilibrium state in ~ 0.2 ns while at 318.15 K, the vdW energy is
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stable in ~ 1 ns. Moreover, the values of vdW energy at 298.15 K is more negative than 318.15 K, indeed
the distance between TC and G-NS increased at higher temperatures (more molecular vibrations);
indicated that the optimal temperature for the adsorption was 298.15 K.

Sulfonamides are antimicrobials largely used in human and veterinary medicine [245,246] and
their metabolic products are frequently detected in wastewater, surface water and ground water [210].
SW-CNTs were studied as adsorbents for this class of antimicrobials, in particular the effect of different
oxygen-containing surface functional groups on adsorption of sulfamethazine (SMZ), sulfadimethoxine
(SDM), sulfamethizole (SMT), sulfamethoxazole (SMX) (Figure 10) [213] was investigated.

Figure 10. Sulfanilamides commonly used in human medicine.

Experimental results indicated that adsorption capacity increases with the decreasing in oxidation
degree of SW-CNTs, and follows the order of SDM > SMT > SMZ > SMX. The predominant adsorption
mechanisms are related to the π–π between the heterocyclic rings in sulfonamides and the benzene-type
rings of SW-CNTs. DFT calculations revealed that the oxygen group presents on the SW-CNT surface
inhibited the sulfonamides adsorption, and this effect follows the order -COO- > -C=O > COC.
Moreover, -COO- and -C=O groups located on the center of SW-CNTs, damage the conjugated structure
of benzene-type ring, consequently, defects appeared on the surface in excellent agreement with the
TEM data. These defects reduce the possibility of π–π interactions between sulfonamides and SW-CNT
and the interaction results to be weaker. However, when the functional groups (-OH and -COC-) were
placed on the terminal atoms of the SW-CNT the conjugated structure of rings was not affected.

The combination of different compounds (lincomycin hydrochloride (LMH), chloramphenicol
(CPC) and gentamycin sulfate (GMS) (Figure 11) with GO was proposed [216] with the aim to obtain a
synergistic effect in the antibacterial activity. The combination of GO with different antibiotics provided
different extents of antibacterial efficiency. DFT calculations employing plane wave approach revealed
that GO presents higher Eads for GMS than CPC and LMH, indicating that the desorption capacity
of the three antibiotics follows the order: LMH > CPC > GMS. According to these results, GO could
adsorb antibiotics with a strength depending on the number of aromatic rings and on the presence
of different functional groups in the antibiotics. The authors assigned [216] the increased microbial
inhibition ability found for the LMH/GO combination to the lowest calculated Eads. As a consequence,
LMH becomes the most effective among the three antibiotics, as it is the easiest to desorb from GO.
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Figure 11. Lincomycin hydrochloride, chloramphenicol and gentamycin sulfate antimicrobial agents.

4. Cytostatic Compounds

The use of nanocarriers such as carbon-based materials has been shown to improve the
pharmacological properties of traditional chemotherapeutics [247,248], the main advantages of using
nano-particles relate to their ability to target tumor tissue in an active or passive approach [49,248,249].
Most of the conventional chemotherapeutic agents have poor pharmacokinetics and are distributed
non-specifically in the body, thus leading to severe side-effects and decrease of efficacy. For these
reasons, the targeted transport of a drug is highly desirable and nano-carriers can improve the delivery
to a tumor either passively through the vasculature surrounding the tumors (enhanced permeability
and retention effect) or by active targeting of overexpressed receptors of cancer cells [250]. CNMs
could also represent a good option for their removal from wastewaters [251]. Indeed, cytostatic drugs
are usually found in hospitals or manufacturing plants wastewaters in the ppb range [251]. Despite
these concentrations are quite low, the effect of chronical exposure of living organisms to low dosages
is unknown and the efficiency of conventional water treatment plants in their degradation is uncertain.

4.1. Platinum Anticancer Compounds

Fifty years after its discovery, cisplatin (Figure 12) is still one of the most used drugs in
chemotherapy [252]. To overcome its limitations (high toxicity, tumor resistance), other platinum drugs
have also been developed (Figure 12). The accepted mechanism of action [253] of such compounds
consists in two stages: (i) intracellular activation by the hydrolysis of the ligand; (ii) formation of
intra-strand cross-links in DNA through the covalent binding of the Pt complex to purine bases.
The result is a bent DNA that causes the generation of defective proteins and ultimately leads to cell
death. Despite the high efficacy, these compounds present several serious side-effects and acquired or
intrinsic resistance of tumors [253].

The use of nano-carriers has been proposed as one of the possible strategies to resolve the
drawbacks of platinum-based drugs and to reduce the systemic dose while increasing the amount of
active molecule reaching the target site [248,254–256]. Numerous experimental and theoretical studies
(as an example see [257–263] and references therein) were directed either at describing the reactivity of
such compounds as well as the interactions with nanocarriers [57,125,264–271].
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Figure 12. Platinum anticancer drugs approved worldwide.

Ajima et al. [266] studied the interaction between cisplatin and a SW-carbon nanohorns (SW-CNH):
cisplatin was incorporated inside the SW-CNH and about 70% of the load was released by SW-CNH
when they presented holes with hydrogen-terminated edges. When SW-CNH presented holes with
oxygen-containing functional groups only 15% of cisplatin was released. The release of cisplatin
from a SW-CNH in vitro and in in vivo experiment was also studied [265] and it was shown that
solvent is an important factor influencing the incorporation process of cisplatin on SW-CNH: indeed,
the use of water instead of DMF increased the quantity of cisplatin incorporated from the 15% up to
46%. Moreover, the release of cisplatin was slow, in agreement with previous studies [266], but the
total released quantity increased from previous 60 to 100% [266]. in vitro experiment, the anticancer
efficiency of cisplatin-SW-CNH complex increased to 4÷6 times greater than that of the free cisplatin.
The enhancement of anticancer efficiency was realized by the adherence of SW-CNH to the cells,
which would increase the local concentration of cisplatin leading to effective cell killing. Similar results
have been obtained also in vivo experiment; the cisplatin-SW-CNH suppressed the tumor growth more
than free cisplatin in mice. The cisplatin-SW-CNH complex stayed in the tumor tissues for a considerable
period, up to 25 days, which contributed to the higher anticancer efficiency compared to the drug alone.
The interaction between CNH and cisplatin has been investigated by MD simulations [272]: it was
found that when the drug is absent, the CNH contains on average 36 water molecules, while when
cisplatin is included most of water molecules were expelled out to the bulk. The calculated binding free
energy indicated that the inclusion of the cisplatin inside the CNH was thermodynamically favorable
in water, mostly due to van der Waals and electrostatic interactions.

The covalent interaction between cisplatin and GO functionalized with polyethylene glycol
(PEG, GO-PEG) was investigated in vitro against several cell lines [270]. Cisplatin-GO-PEG system
demonstrated a controlled in vitro release of the drug and exhibited remarkable toxicity to MCF-7 and
CAL-27 cells and the drug vehicle resulted nontoxic.

The FT-IR and TEM investigation of interaction between cisplatin and functionalized MW-CNT
with carboxyl (-COOH) group proved that the surface of MW-CNTs is coated with cisplatin and that
the release of platinum is higher from functionalized MW- CNTs than MW-CNTs [271].

Cisplatin was also loaded on GO with two regulatory sequences, BRCA1 (Breast Cancer Type
1 susceptibility protein) and BRCA2 (Breast Cancer Type 2 susceptibility protein), synthesized from
ssDNA [268]: the efficiency of GO-cisplatin complex in quenching of the sequence synthesized was
significantly reduced compared to cisplatin [268].

Fullerene C60 was loaded with cisplatin in in physiological solution (0.9% NaCl) [273] to determine
the mechanism by which this mixture can potentially exert a biological synergy. Two type of structures
was found: (i) the island-like growth was obtained by the deposition of cisplatin from physiological
solution, (ii) the filament-like nanostructures was acquired by deposition from the mixture of fullerene
with cisplatin in the same solution. The isothermal titration calorimetry (ITC) showed that the
complexation had a purely entropic character. Finally, DFT calculations confirmed the stability of
these complexes. As far as carboplatin is concerned, adsorption and desorption on MW-CNT was
experimentally studied [267]: carboplatin-filled MW-CNTs in vitro inhibited growth of bladder cancer
cells whereas, unfilled, open MW-CNTs barely affected cancer cell growth.

In summary, all CNMs cisplatin system demonstrated higher in vitro activity than cisplatin
alone: also, in vivo testing showed that, cisplatin-CNMs systems, in particular SW-CNH, had higher
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anticancer effect than the free cisplatin [57,265,266,274]. However, it seems that also CNMs had certain
anticancer effects compared to simple saline injection [265].

The interaction between platinum-based drugs and CNM has been extensively studied also from
a theoretical point of view [273,275–285]. DFT calculations showed formation of a stable complex
between CNH and cisplatin [275], moreover the calculated NMR (Nuclear Magnetic Resonance)
chemical shifts (1H and 15N) exhibits a shift of ~20 ppm when cisplatin was adsorbed to CNH that was
experimentally checked. Similar results were observed when CNH was replaced by SW-CNT [276]
or oxidized SW-CNT [278]. The inclusion of cisplatin on SW-CNT was found to be energetically
favorable (Eads = −5.0 kcal mol−1) [277]. Moreover, calculated Raman spectra showed a decrease
of the wavenumber in the spectral range of the radial breathing modes with the insertion of the
cisplatin molecules in excellent agreement with experimental data [277]. Capped and opened SW-CNTs
of different diameters can also adsorb strongly cisplatin [285], as revealed by DFT calculations,
which showed that the parallel orientation relative to SW-CNT surface was preferred. Binding energies
are dependent on SW-CNT curvature. Moreover, cisplatin changes shape when encapsulated into
CNTs’ whose diameters are less than 7.6 Å and it is destroyed when placed into the narrowest CNT (8, 0)
with the formation of Pt, Cl2 and N2H5· · ·H· · ·CNT (8, 0). The simulated 195Pt-NMR spectra reveal that
Pt chemical shift is sensitive to SW-CNT’s diameter and is linearly correlated to confinement energies:
195Pt-NMR could be a useful technique to control the amount of cisplatin loaded in SW-CNTs [285].

The interaction between cisplatin and graphene prototypes was studied in detail using
DFT-symmetry adapted perturbation theory (DFT-SAPT) and second order Møller–Plesset perturbation
theory (MP2) calculations [279]. The dispersion corrected MP2 (MP2C) potential energy surface scan of
the cisplatin-pyrene dimer distance revealed that parallel orientations showed the strongest interaction
(as also found by Hosni Z. et al. [285]). These calculations were used as reference data to validate different
DFT levels: the best DFT functional reproducing MP2C energy resulted to be PBE-D3(BJ) [160,190–192]
while poor results were obtained with pure PBE [190–192], B3LYP [286], B3LYP-(D3(BJ)) [160,286]
and M06-2X [186,187] functionals, which account for different percentages of Hartree–Fock exchange.
In particular, the B3LYP and PBE underestimate the reference MP2C energy profiles. The inclusion of
the dispersion correction leads to better agreement with the reference MP2C energy profiles although
the B3LYP-(D3(BJ)) provides a systematic overestimation. The M062X functional display a systematic
underestimation of the reference MP2C energy profiles. The best functional was finally used to study
the interaction between cisplatin and larger graphene prototypes, in particular ovalene (C32H14), as t
represents a good compromise between computational cost and accuracy. Moreover, the adsorption
enthalpy of cisplatin on graphene prototype was particularly favorable (~ −20 kcal mol−1) being twice
that estimated for the corresponding benzene adsorption.

A “carbon nanotube bottle” (CNB) built by capping a MW-CNT with gold nanoparticles [57]
showed a higher drug loading in respect to open SW-CNT reported in literature [274]. Such carriers
were shown to deliver cisplatin to cells under physiological conditions. Approximately 89% and 93% of
encapsulated cisplatin was released at pH 7.4 and 5.5 during 6 h, respectively in agreement with literature
data [274], in which drug release is reported after 48 h. The kinetics of release of cisplatin from MW-CNT
capped by magnetic nanoparticles (MNP) was studied by MD simulations and experimentally [280].
When the MNP are detached from the nanotube tips, the initially encapsulated cisplatin molecules
diffuse out of the nano-tube interior. The release of cisplatin was found to be an activated process with
the activation barrier of 6 kcal mol−1 in this ideal system where, however by experimental point of
view, this activation energy is ~20 kcal mol−1 [57]. This discrepancy can be attributed to the existence
of numerous surface defects in the case of experimental system. Similar discrepancy was also found
for the release of cisplatin calculated by Ficks equation: it predicts that release is completed in few
milliseconds while the experiment shows that the process is much slower (~3 h) [280]. The study
on the stability of these carbon nano-containers (MW-CNT-MNP) in water revealed that it depends
on the direction of the collision and the MW-CNT-MNP are always stable and the intermolecular
collisions do not lead to leakage of drug molecules [281]. The estimated range of intermolecular
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interactions suggests that the current architecture of the nano-containers is unstable in terms of colloidal
stability. Further functionalization of nano-tubes sidewalls is necessary in order to reduce strong
hydrophobic interactions between nano-containers [281]. The optimization of nano-containers based
on MW-CNT capped with magnetic nano-particles by surface functionalization was then evaluated
by MD simulations [282]. Surface modifications proposed were: adsorption of colloid nano-particles;
covalent functionalization of polar amide groups. These differently modified sidewalls provided
distinct energy profiles associated to the decapping/capping processes. The non-covalent approach
turned out to be too weak to make the whole system stable for a long time and resulted not to be
preferred in the design of magnetically triggered drug delivery systems. On the contrary, covalent
modification provided the required energetic balance between the capped and uncapped forms.

MD simulations were also employed to study the diffusion of a cisplatin-loaded SW-CNT through
a cell membrane [283]. Free energy profiles of the diffusion of SW-CNT with several cisplatin molecules
adsorbed inside were obtained. Moreover, the simulation indicated the release of cisplatin near the cell
membrane model is extremely rapid. The first molecules were released in 2.5 ns while the second one
in 5.3 ns. The authors explain this rapid extraction by the nanocarrier solvation. The SW-CNT diffuses
easily close to the lipid bilayer due to its hydrophobicity, and the water molecules are progressively
released, allowing the cisplatin molecules to exit.

The delivery of cisplatin from different type of NTs such as carbon, boron nitride and silicon
carbide forced by Ag-nano-wire was studied by MD simulations to understand the effects of diameter,
chirality, and composition of the nano-tube [284]. Results indicated that NT composition and diameter
are more important than the chirality and temperature of the system. The composition plays an
important role; silicon carbide NTs have the lowest efficiency for drug release, due to their stronger
interaction with the drug. Moreover, the release process is mainly thermodynamically controlled rather
than kinetically controlled (i.e., no energetic barriers for the release process are found).

4.2. Doxorubicin

Doxorubicin (DOX) (Figure 13) is a widely used anticancer drug that belongs to a class of
compounds with similar structures, called anthracyclines [287]. DOX has shown great efficacy in
killing cancer cells for in solid and liquid tumors. This molecule presents two confirmed mechanisms
of action: (i) intercalation into DNA bases with consequent inhibitions of the topoisomerase-II enzyme,
(ii) generation of free radicals, causing oxidative damage to cellular membranes, proteins and DNA [287].
However in spite of the antitumor activity, DOX presents several undesired side effects [288–290] and
the use of nanocarriers could improve its pharmacological properties. For this reason, interaction
between DOX and carbon-based materials have been subject of numerous studies [101,137,291–297] in
order to assess their application as nanocarriers.

Figure 13. Doxorubicin and paclitaxel anticancer drugs.
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The adsorption and desorption of DOX on oxidized MW-CNT indicated a high LC of this material
even though the process was quite slow [293]. In the same work, the desorption process was shown to
be pH dependent, and at pH 7.4 this process occurred in very small quantities, while at pH = 5.5 an
increase in the quantity of desorbed DOX was observed. The presence of serum proteins facilitated the
desorption of DOX significantly thanks to the formation of strong bond with oxidized MW-CNT with
an occupation of the surface.

DOX resulted to be efficiently adsorbed by GO following a Langmuir isotherm with a maximum
LC of 1428.57 mg g−1, kinetics fits to a PSO model [295]. Moreover, it was found that adsorption
was spontaneous and endothermic, thus also in this case the process was entropy-driven. The same
authors [296] studied the cytotoxicity of GO and GO-DOX on human multiple myeloma cells. The results
showed that GO-DOX system significantly inhibited cell proliferation as compared with pure DOX.
Moreover, the authors found that GO caused low cytotoxicity and did not affect the antitumor activity
of DOX. In conclusion, GO seemed to be suitable as nano-carrier for an anticancer drug with potential
use to treat hematological malignancies.

The adsorption of DOX on PEG-functionalized MW-CNTs (MW-CNT-PEG) was investigated
by Farahani et al. [137]. Contrarily to the GO-DOX system [295], adsorption, which followed a PSO
kinetics, is better described by the Freundlich model, suggesting the presence of an heterogeneous
nature of the interaction sites. The release of DOX from MW-CNT-PEG was pH dependent and the
release rate was much higher at pH 5.5 than that at pH 7.4 in agreement findings in Wang Y. et al. [293].

Adsorption on GO was characterized using transition electron microscopy, zeta potential,
Raman spectroscopy, UV–vis spectroscopy, and FT-IR spectroscopy [101]. The authors showed
that the optimized pH and temperature to load a largest amount of DOX was 7.8 and 309 K.

MD simulations were employed to study DOX adsorption on functionalized SW-CNT in
water [298]: DOX could be entrapped within the CNT, attachment to the sidewall of the SW-CNT,
and adsorption on the SW-CNT inner cavity. Simulation results indicated that Langmuir isotherm
could predict the adsorption behavior more accurately than Freundlich one [298].

MD simulation of the adsorption process of DOX onto graphene and GO showed that the
interaction becomes stronger with the increase of the surface density of oxygens [299]. The influence
of pH on the DOX interactions resulted to be negligible in acidic or neutral conditions, while more
significant interactions occurred at basic pH and in the presence of a certain oxygen density to carbon
(O/C) ratios of 1:6 and 1:3. Moreover, the adsorption and release of 24 DOX molecules on the GO
surface at variable pH were simulated, showed that pH = 7 is optimal for loading while pH = 5 is
better for drug release [299].

MD simulations were also useful for studying the adsorption of DOX and functionalized
graphene, in particular comparing hydroxyl (-OH), carboxyl (-COOH), methyl (-CH3) and amine
(-NH2) groups [300]. The results showed that G-COOH adsorbed DOX more effectively in comparison
to other functionalized graphene thanks to a higher binding energy.

A recent MD work where DOX adsorption on SW-CNT was studied [301] provided several
interesting conclusions: (i) armchair, zig-zag and chiral nano-tubes with a 14 Å diameter present
optimal DOX–SW-CNT interactions; (ii) the encapsulated DOX interacts more strongly with the SW-CNT
(as also found for other drugs) [214]); (iii) the presence of bumpy defects on the SW-CNT influence the
DOX–SW-CNT interactions, depending on the SW-CNT chirality; (iv) PEG functionalization favors
interactions with DOX; (v) formation of a double π–π interactions of the encapsulated DOX can
be established, depending on the SW-CNT diameter; (vi) DOX–SW-CNT interactions can induce
deformation of the SW-CNT.

Adsorption and encapsulation of DOX on covalently functionalized SW-CNT was studied by
MD simulations and DFT calculations [302]: functionalization seemed to increase the LC of SW-CNT;
moreover, LC was increased when the DOX molecules were non-protonated. It was concluded that,
intersection of carboxyl and amine functionalization can be used to design a pH sensitive drug carrier
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where their protonation in acidic condition can decrease the electrostatic interactions of the loaded
drug with the functionalized SW-CNT and as a result can promote the drug release.

DFT and ab-initio MD simulations were employed also to study the adsorption of DOX also on
graphene [303] and a binding energy of ~11.5 kcal mol−1 was found for the most stable configuration.

The interaction between DOX and graphene or GO was studied using experiments and DFT
calculations [304]. Results showed that graphene is a better support for DOX in respect to GO thank to
the formation of strong π–π stacking interactions. Moreover, DOX has been placed in the two type of
region the sp2 and sp3 region (due to the presence of O and OH group). The calculations showed that
DOX interacts stronger with sp2 region than sp3 region where the binding site is characterized by π–π
and H-bonding interactions, respectively.

4.3. Paclitaxel

Paclitaxel (PAX, Figure 13) is an anticancer drug targeting β-tubulin and interferes with the
cancer cell division process by inducing cell cycle arrest and the programmed cell death [305].
Recently, numerous studies were aimed at developing nano-carriers to deliver PAX to overcome its
major drawbacks (low solubility, diffusion from cells and side effects) [306]. Some examples include PAX
conjugation to PEG-coated SW-CNTs [307], loading through non-covalent interactions to PEGylated
hydrophobic carbon clusters which associates to an antibody to obtain a targeted delivery [308].

Rezaian et al. [309] studied the co-adsorption and release of DOX and PAX by SW-CNT, fullerene,
and GO in combination with N-isopropylacrylamide. Results of MD simulations indicate that SW-CNT
is a better carrier for the co-adsorption and co-release of DOX and PAX in respect to fullerene and GO.

The interaction between PAX and different graphene materials, such as graphene GO and
functionalized GO with chitosan (GO-CS),was studied by MD simulations [310]. The interaction
between PAX and graphene is stronger in respect to other system studied and the π–π stacking
and hydrophobic interactions are the main driving forces for the adsorption of the drug. For the
GO-CS and GO, the main driving forces for the adsorption was the formation of H-bond, and the
number of H-bond is higher in GO-CS than in GO, consequently chitosan in improving the adsorption
of the drug onto nanomaterial. The same authors investigated adsorption mechanism of PAX on
pristine and functionalized SW-CNT; three different type of group were investigated, in particular PEG,
carboxyl group (-COOH) and amine group (-NH2) [311]. In the latter system, PAX was adsorbed in
non-functionalized SW-CNT through by π–π interactions while polar interactions are the main driving
forces for the adsorption on functionalized SW-CNT. The calculation of van der Waals energy and the
number of contacts indicate that the PEG-SW-CNT system has the best performance in drug adsorption.
Moreover, the functionalization increases the solubility of SW-CNT thanks to the formation of H-bonds
between functional groups of SW-CNTs and water molecules.

Computational results showed that the PAX drug could be adsorbed by π–π stacking in
non-functionalized SW-CNT while polar interactions are the main driving forces for the adsorption
on functionalized SW-CNT. The calculation of Van der Waals energy and the number of contacts
indicate that the PEG-SW-CNT system has the best performance in drug adsorption. Moreover,
the functionalization increases the solubility of SW-CNT thanks to the formation of H-bonds between
functional groups of SW-CNTs and water molecules.

4.4. Other Cytostatics

Flutamide (FLU) (Figure 14) is a non-steroidal, synthetic, and antiandrogenic drug widely used
in prostate cancer [312]. FLU was found to block the action of both endogenous and exogenous
testosterone and, in addition, to be a potent inhibitor of testosterone-stimulated prostatic DNA synthesis.
Moreover, it is capable of inhibiting prostatic nuclear uptake of androgen [313].
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Figure 14. Flutamide, hydroxyurea, alectinib anticancer agents.

Adsorption of FLU on SW-CNT’s was studied by two articles of published by Kamel et al. [314,315].
In the first work [314] adsorption of FLU on SW-CNT was investigated by MD simulations and DFT
calculation. The latter (employing B3LYP functional) calculations were carried in gas phase and water,
represented by a polarized continuum (PCM) model [316]. The latter approach is one of the most
currently employed continuum solvation methods [317] in quantum chemical calculations to introduce
solvent effects. Solvent effect becomes important for accurate estimations of thermochemical and
spectroscopic properties (see for example [257,318,319]). However, it should be underlined that with
these methods H-bonding between solute and solvent is somewhat underestimated [261,319–321].
In MD simulations the effect of the ethanol (EtOH) as a co-solvent in different concentrations (1, 0.5 and
0.1 M) have been investigated. EtOH is considered as a model to explore the balance of hydrophobic
interactions and H-bonds in the biological systems [322]. DFT calculation showed that the negative
values of the Eads and solvation energies (Esol), the difference between the energy obtained in solution
and the energy obtained in gas, demonstrate that all studied configurations are stable. On going from
the gas phase to water, an increase of the polarity of the considered configurations were observed,
this is a desired property for drug delivery systems in the human body. Moreover, natural bond
orbital (NBO) analysis showed that adsorption involves a charge transfer from the SW-CNT to FLU
MD simulations indicated that the presence of 0.5 M of ethanol solution increased the stability of the
simulation system.

In the second work [315], the interaction between FLU and functionalized SW-CNT with carboxylic
acid group ware investigated, again, by DFT calculations and MD simulations.

DFT calculations reveals that FLU is physisorbed on the surface. The formation of H-bond between
FLU and COOH group of functionalized SW-CNT had an important role in the stabilization of the
adduct. MD simulations were useful for to examine the effect of SW-CNT chirality on the adsorption
process. The results indicated that FLU on the SW-CNT with presented a (10, 5) chirality as reflected
by the most negative Eads and a high number of H-bonds between the functionals group of SW-CNT
and drug molecules.

Hydroxyurea (HUR) (Figure 14) is another anticancer drug used in the treatment of several
types of tumors [323]. The interaction between this drugs and carboxyl-functionalized SW-CNT were
investigated using DFT calculations [324]. DFT calculations indicated that the complex formation
is energetically favorable and it is exothermic as demonstrated by the enthalpy energy values.
In addition, the H-bonding between -COOH and HUR play an important role for the different kinds of
adsorption observed.

The interaction between new anticancer drug alectinib (ACB) (Figure 14) and SW-CNT have been
studied using DFT calculations [325]. The results reveal that the adsorption of ACB over the SW-CNT
change the calculated UV-vis spectra, in particular, the value λmax was shifted from 261 to 452 nm and
it is a bathochromic shift. Similar results have been obtained from calculated NMR spectra. Finally,
the adsorption is governed by non-bonded interaction.
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The interaction between SW-CNT or their functionalization (with valine or phenylalanine moieties)
and three anticancer drugs sorafenib (SRF), streptozotocin (STR) and sunitinib (SNB) (Figure 15)
have been investigated by MD simulations [326]. SRF and SNB are a dual-action inhibitor that
targets the RAF (rapidly accelerated fibrosarcoma)/MEK (mitogen-activated protein kinase kinase)/
extracellular signal-regulated kinase (ERK) pathway in tumor cells and tyrosine kinases VEGFR
(vascular endothelial growth factor receptor)/PDGFR (platelet-derived growth factor receptors) in
tumor vasculature. Although the mechanism was not fully elucidated and may vary between cell lines,
a commonly observed theme is the inhibition of phosphorylation of the initiation factor eIF4E and loss
of the antiapoptotic protein myeloid cell leukemia-1 (MCL-1) [327–329].

Figure 15. Streptozotocin, sunitinib and sorafinb anticancer agents.

STR is an alkylating agent [330], the alkylating activity is related to its nitrosourea moiety.
Moreover STZ is a nitric oxide (NO) donor and is liberated when STR is metabolized inside cells,
NO-synthase protein is not required; this molecule contributes to STR induced DNA damage. However,
there is so evidence that NO is not the only molecule responsible for the cytotoxic effect, indeed STR
generate reactive oxygen species, which also contribute to DNA damage [331].

MD results showed that the type and the position of functional group influenced the van der
Waals interaction energy between drugs and SW-CNT and the adsorption of drug molecules on its
surface [326]. These three drugs interact with SW-CNT by π–π stacking and H-bonding, however
for STR the π–π stacking are less strong. Results suggest that altering the functionalization of the
nano-tube surface can affect the drug-nano-tube interaction [326].

5. Conclusions and Outlook

The interaction of pharmaceutical drugs with carbon nanomaterials has been studied in the last
two decades in a high number of experimental and computational works. As far as the latter approach
is concerned, quantum mechanical methods and classical MD simulations have been demonstrated to
be able to provide data on drug-CNM interactions at different scales.

In general, drug-CNM interactions are non-covalent and especially van der Waals forces acting
between the aromatic surface and the adsorbed drug are driving the process with non-modified CNM.
This should be considered when choosing the type of functional in DFT calculations, by preferring
dispersion-corrected ones. The effect of pH needs to be also taken into account when running
calculations for two main reasons: (i) the drug indeed can be distributed among differently protonated
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species which, in principle, have different adsorption properties; (ii) the presence of ionizable groups
alters the surface charge. Free energy calculations suggest that desolvation upon adsorption/desorption
is important, and thus the associated entropic contribution, as also observed from several available
experimental and theoretical thermodynamic data (negative ∆Gads and positive ∆Hads).

Finally, a good agreement between experimental and theoretical data has been observed,
for: (i) values of Eads in most of the cases; (ii) values of ∆Gads; (iii) trends in IR, Raman, UV-vis
and NMR spectra; iv) sorption and desorption time; (v) type of interaction (π–π stacking, H-bond,
electrostatic) involved in the adsorption process; (vi) the adsorption isotherm and kinetic model
used to fit the data; (vii) influence of pH and solvent in the adsorption process. However, some
discrepancies between experimental and theoretical data are found, in particular they seem to be due
to the application of ideal models used in the experimental works, which do not take into account
defects in the surface of the CNMs or the presence of supramolecular structures.

Therefore, computational studies provide a useful tool for investigating such systems and
obtain molecular level details of the observed phenomena, and ultimately provide indications to guide
CNM-bases nano-carriers development design. As far as MD simulations are concerned, the availability
of more powerful high performance computing platformsallows to treat increasingly complex systems
along with longer simulation times.
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