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Abstract: Hydrosilylation reactions, the (commonly) anti-Markovnikov additions of silanes to
unsaturated bonds present in compounds such as alkenes and alkynes, offer numerous unique
and advantageous properties for the preparation of polymeric materials, such as high yields and
stereoselectivity. These reactions require to be catalyzed, for which platinum compounds were
used in the initial stages. Celebrating the 50th anniversary of hydrosilylations in polymer science
and, concomitantly, five decades of continuously growing research, hydrosilylation reactions have
advanced to a level that renders them predestined for transfer into commercial products on the
large scale. Facing this potential transfer, this review addresses and discusses selected current trends
of the scientific research in the area, namely low-cost transition metal catalysts (focusing on iron,
cobalt, and nickel complexes), metal-free catalysts, non-thermally triggered hydrosilylation reactions
(highlighting stimuli such as (UV-)light), and (potential) industrial applications (highlighting the
catalysts used and products manufactured). This review focuses on the hydrosilylation reactions
involving alkene reactants.
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1. Introduction

Hydrosilylation reactions are widely implemented for the production of functional silanes and
siloxanes. Preceded by the first report of hydrosilylations in 1947 (70 years ago) [1] and the first
report of Speier’s platinum catalyst in 1957 (60 years ago) [2], the first application of a hydrosilylation
reaction in polymer science dates back to 1967 (according to a Web of Science research; Figure 1) with
an on-going research impetus at its 50th anniversary [3]. Concomitantly, academia and industry
seek for price-efficient and durable catalysts that meet the increasing demand for silicon-based
polymers. Targeted properties of such catalysts are their selectivity; activity, which is quantified
by the turnover-frequency (TOF); and stability, which is defined by the turnover-number (TON).
The majority of industrial hydrosilylation reactions are performed using the so-called Speier’s catalyst
(H2PtCl6) and Karstedt’s catalysts (Figure 2) due to their high activity and selectivity. Hydrosilylation
reactions catalyzed by platinum catalysts commonly follow Chalk–Harrod and modified Chalk–Harrod
mechanisms (Figure 3), rendering side-reactions possible that yield unfavorable by-products and,
correspondingly, lower the yield of the targeted product(s) and increase the production costs. Due to
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its low abundance, platinum and the corresponding compounds are high-priced; hence, research
for alternative platinum-free catalysts containing low-cost-transition metals and/or metal-organic
compounds [4,5] is performed extensively.
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Due to the increasing demand for silanes and siloxanes by industrial manufacturers, novel
hydrosilylation methods [6,7] have been in the focus of research over the last years, particularly since
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the beginning of the millennium. In a comprehensive review article [6], Troegel and Stohrer have
summarized the state-of-the-art of olefin hydrosilylation from an industrial point of view, focusing
on the years 2000–2010. In recent years, further developments have been made in low-cost transition
metal catalysis and non-metal catalysis, triggered hydrosilylation, and novel applications of silanes
and siloxanes, which will be presented in this review article. Hence, a section dedicated to novel
platinum-based catalysts is excluded from this overview; the interested reader is referred to a current
review article [8]. Instead, the main focus of this article is directed towards the hydrosilylation of olefin
reactants; only selected examples of the hydrosilylation of other substrates will be discussed. Included
in the section of hydrosilylation catalysis, triggered catalysis, such as photo-initiated hydrosilylation,
will also be discussed. With special respect to the huge application potential, one section of this review
is dedicated to the recent advances on hydrosilylated products for industrial applications. In summary,
the main part of this review has been divided into four sections, namely on low-cost transition metal
catalysts for hydrosilylation reactions (focusing on iron, cobalt, and nickel complexes; for a review on
this research area exclusively, the reader is referred to a recent research article [9]), metal-free catalysts
for hydrosilylation reactions, non-thermally triggered hydrosilylation reactions (highlighting stimuli
such as (UV-)light, microwave irradiation, sonication, and electro-chemical activation), and industrial
applications (highlighting the catalysts used and products manufactured). Notably, in the case of
the transition metal catalysts, the terms “cheap” and “economic” always refer to the metal ion of the
catalyst; the ligands, on the other hand, may require multi-step organic syntheses (with eventually low
overall yields) and, concomitantly, may not necessarily be regarded as “cheap” and “economic”.

2. Low-Cost Transition Metal Catalysts for Hydrosilylation

Platinum-based catalysis is abundantly used in the silicon industry and for hydrosilylation
reactions themselves. Although prices for platinum have dropped by roughly 40% (from 58 to
32 k$ per kg) over the last five years [10], it remains a precious high-priced metal. Up to date,
platinum catalysts are unmatched in catalytic activity, rendering them (still) the first choice for the
hydrosilylation industry. To further reduce the costs of catalysis for hydrosilylation, it is necessary
to replace platinum by, e.g., low-cost transition metals. This section of the review focuses on recent
advances in hydrosilylation reactions catalyzed by low-cost metals such as iron, cobalt and nickel.

2.1. Iron Catalysts

With special respect to the pricing and potential for the large-scale production of consumer goods,
Chirik et al. reported iron dinitrogen compounds with bis(imino)pyridine ligands [11] for the selective
anti-Markovnikov additions of sterically hindered tertiary silanes to alkenes. These types of catalysts
could be used under mild conditions: The crosslinking of commercially available silicone fluids could
be accomplished at temperatures as low as 23 ◦C.

Nagashima et al. reported the application of iron complexes with cyclo-octatetra-1,3,5,7-enyl COT
ligands as well as the ferrocene-based η5-3-methylpentadienyl and η5-2,4-dimethylpentadienyl ligands
as precursors for the hydrosilylation of styrene [12]. As auxiliary ligands, bis(imino)pyridine ligands
as well as alkylisocyanides such as adamantly isocyanide could be used, yielding iron-isocyanide
species in the latter case, which were found to be efficient catalysts for the hydrosilylation reactions
of styrene derivatives with, e.g., PhMe2SiH. In the temperature range from room temperature r.t. to
50 ◦C, the anti-Markovnikov products were selectively formed. The turn-over numbers TONs were
higher than 100 and, for selected reactants investigated in this study, reached values as high as 5000.

Mariciniec and coworkers [13] have employed a novel class of Fe complexes containing
multivinyl-silicon ligands (Figure 4) for the hydrosilylation of poly(vinylsiloxane)s with
poly(hydrosiloxane)s, yielding crosslinking polysiloxane networks. It was shown that these complexes
efficiently catalyze the dehydrogenative silylation of tri(vinylsiloxane)s with tri(hydrosiloxane)s [14].
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Figure 4. Iron complexes containing multivinyl-silicon ligands.

An iron-disilyl-dicarbonyl complex carrying a 1,2-bis(dimethylsilyl)benzyl ligand that (weakly)
coordinated to the iron center in η2-(H–Si) was reported by Nagashima and coworkers [15].
This complex successfully catalyzed the hydrosilylation of alkenes (as well as the catalytic
hydrogenation of alkenes and the hydrosilane-mediated reduction of carbonyl compounds).

For the catalytic hydrosilylation of alkenes, Kamata and coworkers [16] used terpyridines and
derivatives as ligands for the iron-catalyzed hydrosilylation (Figure 5). Upon the addition of NaH·BEt3,
such iron compounds catalyzed the reaction of hex-1-ene with PhSiH3. It was also shown that
non-substituted terpyridines did not exhibit any catalytic activity. Dibromo/iron complexes displayed
higher activities (up to 95% yield) than dichloro/iron complexes. Interestingly, the change of the
reactant from hex-1-ene to oct-1-ene on the one hand as well as the change from symmetric to
asymmetric catalysts complexes on the other led to increased TONs of 1500. Notably, using higher
amounts of the iron complex (up to 0.3 mol % Fe), the hydrosilylation reaction of oct-1-ene and PhSiH3

occurred as double addition, yielding the product PhSi(Oct)2H.
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The application of Iron complexes with iminobipyridine ligands was also reported by
Nakazawa et al. [17,18]. Preceded by activation with NaBHEt3, these catalysts were found to exhibit
high catalytic activity for the hydrosilylation of terminal olefins with primary and secondary
silanes [17]; several catalysts showed additional high activity for the hydrosilylation of terminal
olefins with tertiary silanes as well [18].

Chen and coworkers [19] achieved a key breakthrough in the hydrosilylation of alkenes using an
iron-based catalyst system capable of regio- and enantioselective hydrosilylation of 1,1-disubstituted
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aryl alkenes. Among the dichloro/iron compounds tested (Figure 6), one catalyst (namely 1b)
hydrosilylated 2-phenyl-but-1-ene with Ph2SiH2 in excellent yields of 92% and 94% enantiomeric
excess ee. It was shown that bulkier ligands (namely 1c) decreased the catalytic activity (<5% yield),
while lower steric hindrance (namely in 1d) reduced the enantioselectivity (62% ee). The system did not
tolerate carbonyl groups such as ketones and aldehydes unless they were protected by acetal groups.
The hydrosilylation of such protected carbonyl-functionalized alkenes yielded 78–92% with 79–93% ee.
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Zuo and coworkers developed iminopyridine-oxazoline/iron complexes for the asymmetric
hydrosilylation of ketones [20]. The complexes were applied in the reaction of 4-iso butylacetophenone
with the secondary silane Ph2SiH2. It was shown that the catalyst with sterically demanding groups
showed the highest yield of up to 97% with 93% ee.

Ruddy and coworkers investigated the hydrosilylation of carbonyl compounds at room
temperature r.t. [21], and developed an FeII N-phosphinoamidinate complex capable of catalyzing
the hydrosilylation of ketones, aldehydes, and esters to yield secondary alcohols (Figure 7).
The hydrosilylation of acetophenone with PhSiH3 proceeded with 99% yield. Notably, this iron
compound catalyzed the reactions with 0.01–1 mol % Fe loading, while only the stochiometric 1
equivalent of the hydrosilane reductant needed to be added. Additionally, it was shown that the
catalyst may be used along with 37 different substrates. To the best of our knowledge, this is the
broadest range of substrates for one type of iron-based catalysts.
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By combined hydrosilylation experiments and density functional theory DFT calculations,
Metaänen, Gallego and coworkers [22] investigated the hydrosilylation of a silylene/iron complex
that was developed by Driess and coworkers [23]. According to these combined studies, a peripheral
mechanism that does not directly involve the metal core was proposed for the hydrosilylation
of ketones (Figure 8). The silyl group acts as Lewis acid coordinating the ketone, yielding a
penta-coordinated silicon. After forming a Lewis pair, the hydrosilane coordinates to the carbonyl
group. The hydrosilylated product is subsequently released after cleavage of the carbonyl-silicon-bond.
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2.2. Cobalt Catalysts

Due to a recent review by Sun and Deng on this topic [5], this section focuses on the most recent
advances on hydrosilylation of alkenes and alkynes during the last years.

Gorczynski and coworkers employed a new tridentade Schiff-base ligand for alkene
hydrosilylation [24], which was formed by the condensation reaction of 2-(1-methylhydrazinyl)
pyridine and 1-methyl-2-imidazolecarboxaldehyde (Figure 9). The catalyst itself was obtained by
adding the ligand L to CoCl2·6H2O, yielding [CoLCl2]. From the screening of various hydrosilane
substrates, it was revealed that, depending on the substrate, either hydrosilylation or dehydrogenative
silylation may occur. It was shown that hydrosiloxanes mostly undergo dehydrogenative silylation,
while phenyl-hydrosilanes are hydrosilylated in a reaction with terminal alkenes. However,
triethylsilanes were not affected by the catalyst.
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Ibrahim and coworkers described the use of a bis(carbene) CoI/di-nitrogen complex for
the hydrosilylation with tertiary silanes [25]. The mechanism using this catalyst followed the
Chalk–Harrod path and exhibited high anti-Markovnikov selectivity for all substrates tested.
The reaction of terminal alkenes with either Me2PhSiH or 1,1,1,3,5,5,5-heptamethyltrisiloxan in toluene
showed high yields of up to 99% at r.t. In the reactions of alkenes with functional groups, the
catalyst showed selective hydrosilylation of unsaturated alkene bonds, while functional groups such
as unprotected alcohols, primary and tertiary amines as well as ketones and esters were tolerated.

Noda and coworkers demonstrated the hydrosilylation of alkenes with hydrosiloxanes and
tertiary silanes [26]. They used pivaloyl Pv ligands for the generation of Co(OPv)2, allowing a
reaction of styrene and α-methylstyrene with tertiary silanes in the presence of 1-adamantyl isocyanide.
The resulting hydrosilylation reaction exhibited yields of up to 99% with TONs of up to 10,000. It was
discovered that hydroalkoxysilanes enhanced the catalytic activity as co-catalysts, while they were
less reactive towards the hydrosilylation reactions themselves. In one prominent example of this
co-catalytic activity, the yield of the hydrosilylation of styrene with poly(dimethylsiloxane) (PDMS)
was increased from 88% to 96% using (EtO)2MeSiH. The catalysts have been successfully used for
the cross-linking of vinyl-functionalized PDMS and poly(dimethylhydroxysiloxane)s with yields up
to 97%.

Raya and coworkers reported the hydrosilylation of alkenes using a 2,6-bis(arylimino)-pyridine/CoCl2
complex (Figure 10) [27]. Employing NaH·BEt3 as activator, the complex showed high catalytic activity
(up to 98% yield) towards the hydrosilylation of 4-methylstyrene with PhSiH3, Et2SiH2 and MePhSiH2

and moderate activity (50% yield) towards the hydrosilylation along with Ph2SiH2.
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Figure 10. Cobalt catalyst for the hydrosilylation of alkenes.

Guo and Lu developed a cobalt catalyst with an unmatched turn-over frequency TOF of 65,520 h−1

for the hydrosilylation of alkynes (Figure 11) [28]. Being highly chemo-, regio- and stereoselective,
the catalyst showed tolerance towards a variety of functional groups such as alcohols and anilines,
esters and ketones, as well as nitriles and amides, yielding conversion rates of up to 99% in the
presence of NaH·BEt3. It was also shown that the hydrosilylation of alkynes can be followed by
an anti-Markovnikov hydroboration of the vinylsilane to yield a hydroborated and hydrosilylated
product. If this reaction is performed as one-pot reaction, a double-Markovnikov addition product
is obtained.
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Lu et al. used complexes of CoCl2 with bulky iminiopyridine ligands for the sequential
hydrosilylation and hydrogenation of alkynes, yielding chiral silane products [29]. Similar to the
work described above, activation of the catalyst was accomplished by the addition of NaHBEt3.
The syntheses, starting from reactants as simple as alkynes, silanes and hydrogen, were found to be
highly regio- and enatioselective.

Mo and coworkers [30] reported the hydrosilylation of alkynes with a three-coordinated CoI complex
with bulky N-heterocyclic carbene ligands, aiming to improve the stereo- and regioselectivity of the
hydrosilylation. The catalyst [Co(IAd)(PPh3)(CH2TMS)] (IAd = 1,3-di-adamantylimidazol-2-ylidene)
was obtained from the alkylation of Co(IAd)(PPh3)Cl with LiCH2TMS. Reacting according to the
modified Chalk-Harrod mechanism, the catalyst efficiently catalyzed the hydrosilylation yielding 98%
syn-adducts of vinylsilanes.

Ge and coworkers described the cobalt-catalyzed Z-selective anti-Markovnikov hydrosilylation
of terminal alkynes (ethynylarenes as well as aliphatic alkynes) [31]. The catalysts were prepared from
the reaction of equimolar amounts of cobalt acetate and pyridine-2,6-diimine ligands. The addition of
phenol was required to suppress the isomerization of the Z-vinylsilanes and, consequently, maintain
high Z selectivity. Huang et al. reported the Z-selective hydrosilylation of terminal alkenes with
Ph2SiH2 by pincer cobalt complexes derived from CoCl2 [32]. Of special praise is the selective
formation of Z-β-vinylsilanes in combination with the high tolerance of functional groups. Huang also
reported the synthesis of α-vinylsilanes with high Markovnikov selectivity from the reaction of
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terminal alkynes with Ph2SiH2 using iminopyridine CoCl2 complexes [33]. Again, high selectivity
could be observed concomitant with high functional group tolerance; the vinylsilanes could be reacted
to germinal borosilanes in subsequent reactions.

The hydrosilylation of monosubstituted as well as 1,1-disubstituted allenes with high regio- and
Z-selectivity by cobalt catalysts has been described by Huang, Ma, and coworkers (Figure 12) [34].
A pincer complex of the composition (tBuPCNNiPr)CoCl2 was found to deliver highest yields with
respect to the regio- and Z-selectivity after activation by NaH·BEt3.
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Lu et al. reported an iminopyridine complex of cobalt dichloride as catalyst for the combined
hydrosilylation and cyclization of 1,6-enynes (Figure 13) [35]. This reaction could be scaled-up to
the gram scale. A large variety of functional groups such as (among others) amines, esters, and free
anilines were tolerated.

Polymers 2017, 9, 534  8 of 37 

 

selectivity could be observed concomitant with high functional group tolerance; the vinylsilanes 

could be reacted to germinal borosilanes in subsequent reactions. 

The hydrosilylation of monosubstituted as well as 1,1-disubstituted allenes with high regio- and 

Z-selectivity by cobalt catalysts has been described by Huang, Ma, and coworkers (Figure 12) [34]. A 

pincer complex of the composition (tBuPCNNiPr)CoCl2 was found to deliver highest yields with respect 

to the regio- and Z-selectivity after activation by NaH·BEt3. 

 

Figure 12. Cobalt catalyst for the hydrosilylation of allenes with high regio- and Z-selectivity. 

Lu et al. reported an iminopyridine complex of cobalt dichloride as catalyst for the combined 

hydrosilylation and cyclization of 1,6-enynes (Figure 13) [35]. This reaction could be scaled-up to the 

gram scale. A large variety of functional groups such as (among others) amines, esters, and free 

anilines were tolerated. 

 

Figure 13. Cobalt catalyst for the combined hydrosilylation and cyclization of 1,6-enynes. 

2.3. Nickel Catalysts 

Srinivas and coworkers used commercially available Ni(acac)2 (acac: acetylacetonate) and 

derivatives to explore their catalytic activities in hydrosilylation [36]. It was demonstrated that, in the 

presence of NaH·BEt3 at r.t., the catalyst system showed catalytic activity towards the hydrosilylation 

of 1,3-dienes and α-alkenes giving yields from 75% to 85%. For the hydrosilylation of 1,3-dienes, the 

catalysts exhibited high 1,4-regioselectivity. In addition, the catalysts were tested for alkyne 

hydrosilylation, resulting in moderate yields of up to 64%.  

The group of Srinivas and coworkers investigated (salicylaldiminato)NiII catalysts and 

suggested a mechanism of th catalytic activity for the hydrosilylation of various olefins (Figure 14) 

[37]. The Ni complex exhibited high catalytic activity towards the hydrosilylation of secondary 

hydrosilanes with yields of up to 93% and high selectivity for mono-hydrosilylation. 

Figure 13. Cobalt catalyst for the combined hydrosilylation and cyclization of 1,6-enynes.

2.3. Nickel Catalysts

Srinivas and coworkers used commercially available Ni(acac)2 (acac: acetylacetonate) and
derivatives to explore their catalytic activities in hydrosilylation [36]. It was demonstrated that, in the
presence of NaH·BEt3 at r.t., the catalyst system showed catalytic activity towards the hydrosilylation
of 1,3-dienes and α-alkenes giving yields from 75% to 85%. For the hydrosilylation of 1,3-dienes,
the catalysts exhibited high 1,4-regioselectivity. In addition, the catalysts were tested for alkyne
hydrosilylation, resulting in moderate yields of up to 64%.

The group of Srinivas and coworkers investigated (salicylaldiminato)NiII catalysts and suggested
a mechanism of th catalytic activity for the hydrosilylation of various olefins (Figure 14) [37]. The Ni
complex exhibited high catalytic activity towards the hydrosilylation of secondary hydrosilanes with
yields of up to 93% and high selectivity for mono-hydrosilylation.
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Figure 14. Suggested mechanism for the olefin hydrosilylation by (salicylaldiminato)NiII catalysts.

Buslov and coworkers [38] reported the hydrosilylation of alkenes catalyzed by nickel-based
pincer complexes (Figure 15). This type of complexes was found to be efficient (up to 93% yield) for the
anti-Markovnikov hydrosilylation of terminal alkenes as well as for functionalized alkenes. The pincer
complexes exhibited high catalytic activity towards secondary silanes with TOFs of 83,000 h−1

and TONs of 10,000, while the complex showed low activity towards primary and tertiary silanes.
To explore the limits of this system, the catalysts were tested along various functional groups, showing
that epoxides, aryl and alkyle bromides as well as primary and tertiary amides were tolerated. However,
the catalysts showed little tolerance towards allylhalides, carboxylic acids, and alcohols. However, the
catalyst could be used for the hydrosilylation of ketones and aldehydes. For the hydrosilylation of
hex-5-en-2-one with Ph2SiH2, the selectivity was 9:1 alkene:ketone. If tetrahydrofuran THF as solvent
was exchanged with dimethyl acetamide DMA, the selectivity could be further improved to 15:1.
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Chakraborty et al. used bis(phosphinite) ligands (POCOP) to stabilize nickel-based pincer
complexes [39]. The as-formed catalyst was highly efficient for the hydrosilylation of ketones and
aldehydes. The cyanomethyl nickel complex showed TONs up to 82,000. In addition to its catalytic
hydrosilylation activity, this complex system is capable of hydroboration of CO2 to methanol derivatives.

The group of Buslov expanded the study of pincer-complexes to the development of novel
catalysts based on nickel nanoparticles for the hydrosilylation of alkenes with tertiary silanes [40].
The hydrosilylation of tertiary silanes still is a challenging task for most hydrosilylation catalysts.
One possible approach is an in-situ generated nickel alkoxide catalyst generated from stable and easy
accessible reagents. In their study, the catalysts were prepared from nickel tetramethyl-ethylenediamine
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dichloride [(Ni-TMEDA)Cl2] and a metal alkoxide in THF as solvent. Experiments revealed
Ni(OtertBu)2·KCl as most active catalysts for the anti-Markovnikov hydrosilylation of dec-1-ene with
trimethoxysilane TMS at yields of up to 88% using catalyst loads of 1 mol % with a TON of 850
and TOF of 1700 h−1. Additionally, this catalyst system showed high efficiency towards the tandem
isomerization-hydrosilylation of internal alkenes with yields of up to 97% for the reaction of n-octene
(both cis and trans). The hydrosilylation of hydrolyzed fatty acids protected with tertbutylmethylsilyl
TBS was investigated as well (Figure 16). Using a catalyst load of 10 mol %, protected oleyl alcohols
were converted at 0 ◦C to yield saturated linear and ω-silylated protected alcohols with a yield of 45%
and a terminal selectivity > 10:1. Hence, this catalyst is a potential candidate for the hydrosilylation of
renewable resources.
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Figure 16. Hydrosilylation of TBS-protected oleyl alcohols.

Pappas and coworkers focused on the hydrosilylation of alkenes using an α-diimine
nickel complex [41]. Stoichiometric studies indicated the presence of the catalyst as dimer
[(2,6-isoPr2-C6H3)NiH]2, while studies with deuterium labeling suggested the dissociation of the
dimeric nickel complex which gives rise to the fast and reversible alkene insertion into the complex
system. The catalyst showed high activity towards the hydrosilylation of oct-1-ene with TMS and
derivatives up to 97% yield and 98% selectivity. Additionally, the reaction can be performed at r.t. and
does not need pyrophoric activators. Along with its air stability and inexpensiveness, this complex is
suitable for the commercial hydrosilylation of silanes and siloxanes.

Wei et al. employed a number of nickel catalysts based on NiIIcp2, which were reacted with
triazoles that carried alkyl, aryl pyridyl and methoxy groups as substituents (Figure 17) [42]. The choice
of substituents played a major role for the selectivity towards the hydrosilylation reaction of carbonyl
groups. Among the synthesized catalysts, one catalyst (namely 3e; Figure 17) was found to be the
fastest and most efficient for the hydrosilylation of 4-methoxy benzaldehyde with TONs of up to 6000
and TOFs of 23,000 h−1. All catalysts showed high selectivity towards the hydrosilylation of aldehydes,
even when large quantities of ketones were present. The catalysts can be easily prepared and are stable
towards air and moisture; other functional groups are tolerated during the hydrosilylation.
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Steiman and Uyeda [43] investigated binuclear nickel catalysts. They found that the nickel-nickel
bonds (along with redox-active ligands) constitute an excellent basis for catalytic activation. While these
catalysts did not show any catalytic activity towards tertiary silanes, it may be argued that for activation
binding to both nickel cores is required. The NiI–NiI complex was tested for the hydrosilylation of
alkynes, showing significantly higher yields (of up to 93%) for the reaction of Ph2SiH2 with alkynes
than mononuclear nickel complexes.

Wang and coworkers [44] studied the reaction of NiMe2(PMe3)3 with fluoroarylimines that yields
a binuclear imine/nitrogen-bridged nickel catalyst for hydrosilylation. These catalysts were tested with
respect to catalytic activity towards the hydrosilylation of aldehydes. Among various silanes tested,
Ph2SiH2 was found to be the best hydrogen source for the hydrosilylation of aldehydes, exhibiting
conversions of up to 99%. A possible mechanism for the hydrosilylation of aldehydes catalyzed by
binuclear catalysts was proposed (Figure 18). The authors suggested that the binuclear bond is first
cleaved to form a mononuclear species containing the (µ2-Si–H)NiII motif. Preceded by cleaving
one Si–H bond, the aldehyde is inserted. A second Ph2SiH2 molecule is engaged in the reductive
elimination, while the silane-nickel species is recovered back into the cycle.
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3. Non-Metal Catalysts for Hydrosilylation Reactions

Among the most commonly used non-metal catalysts are organic bases such as trialkylamines and
Lewis acids, which will be discussed in the following paragraph. In the last few years, significant progress
has been made in the development and utilization of novel Lewis acid catalysts for hydrosilylation reactions.

Hydrosilylation reactions using equimolar amounts of organic bases were reported by Benkeser
and coworkers [45]. They used tri-n-propylamine in the hydrosilylation reaction between
benzylchloride and trichlorosilanes. For the reaction mechanism, the authors proposed the existence of
trichlorosilyl anions, generated by interaction between the amines and silanes. The use of the silanes
in combination with bases for the reduction of carbonyl compounds were discussed as well; here, the
trichlorosilyl group can be easily cleaved under alkaline conditions [46]. Employing a L-serine derived
(hence chiral) Lewis base, Zhang and coworkers reported a synthetic strategy for the asymmetric
hydrosilylation of substituted benzophenone N-aryl imines with high yields and moderate to high
stereoselectivity (Figure 19) [47].
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Pike reported the addition of trichlorosilane to hydrocarbon olefins, catalyzed by tertiary amine
and tertiary phosphine compounds (loads of 4–6 mol %) [48]. The trichlorosilane was added to
terminal olefins; with non-terminal olefins such as pent-2-ene, branched-chain alkyltrichlorosilanes
were obtained. On the contrary, platinum-catalyzed additions would yield straight-chained adducts
in the latter case. Using the bases in a nitrile solvent system, trichlorosilane adds to hex-1-yne and
phenylacetylene to yield the trans-adducts.

Jung and coworkers reported a novel high-yielding hydrosilylation method using catalytic
amounts of phosphonium salts [49]. The reaction proceeded even with non-activated chlorides
such as methyldichlorosilane, which was not feasible under Benkeser reaction conditions, in which
stoichiometric amounts of amines are required as hydrochloride scavangers. Using Bu4PCl, Jung et al.
obtained the highest yields and conversions. Quantitative conversions of various benzyl chlorides with
HSiCl3 were achieved at 130 ◦C within 4 h. Quarternary organoammonium chlorides were much less
effective catalysts; non-activated alkyl chlorides together with ammonium catalyst failed to catalyze
the product formation. With activated chlorides such as benzylchlorides, yields of the product were
significantly lower (47% vs. 88% yield). A mechanism in which the phosphoric salts react with SiHCl3
to yield hydridotetrachlorosilane anions which eliminate HCl upon heating was proposed, according to
which tetralkylphosphonium cation/trichlorosilylalanion pairs are formed (Figure 20). The as-formed
intermediate can attack the alkyl chloride, achieve Si–C coupling, and regenerate the catalyst. Yoo and
coworkers employed Bu4PCl for reactions wit HSiCl3 affording bis(chlorosilyl)methanes in moderate
yields (up to 70%) [50].
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Oertle and Wetter reported the hydrosilylation of tetrasubstituted olefins with chlorinated
hydrosilanes employing AlCl3 as catalyst [51]. They suggested a mechanism cycle initiated by the
formation of hydroalane species from the reaction of AlCl3 with chlorinated hydrosilanes, followed by
the hydroalumination of olefins and the transmetallation of alkyl alanes with hydrosilanes (Figure 21).
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Figure 21. Mechanism of the hydrosilylation reaction catalyzed by AlCl3, proposed by Oertle
and Wetter.

A different mechanism for the hydrosilylation reaction catalyzed by aluminum compounds was
proposed by the groups of Yamamoto [52] and Jung [53]. Their alternative mechanisms (Figure 22),
unlike the originally proposed mechanism by Oertle and Wetter, differ in the nature of the key
intermediates, for which they propose ionic species.
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Figure 22. Mechanism of the hydrosilylation reaction catalyzed by aluminum compounds, proposed
by: Yamamoto (a); and Jung (b).

Unlike transition metal catalysts, which catalyze the oxidative insertion of alkenes into the Si-H
bonds, the Lewis acid non-metal catalysts activate the Si–H bonds via η1-coordination (Figure 23).

Chang and coworkers reported the metal-free hydrosilylation polymerization of dienes and with
disilanes using the tris(pentafluorophenyl)borane catalyst [54]. Their method provided polymers with
high polymerization degrees; various poly(carbosilane)s could be produced with a broad range of
structures and properties. The reaction may be performed at r.t. with low catalyst loading of the
commercially available catalyst, which can be easily removed from the product.



Polymers 2017, 9, 534 14 of 37
Polymers 2017, 9, 534  14 of 37 

 

 

Figure 23. Possible mechanism of the hydrosilylation reaction catalyzed by B(C6F5)3. 

The borane catalyst B(C6F5)3 was successfully used in low loadings (5 mol %) for the 

homopolymerization of dienes such as styrenes [55]; however, such types of homopolymerizations 

could be successfully suppressed if silanes were additionally present in the reaction mixture (Figure 

24). It was argued that the η1-coordination of silane to B(C6F5)3 suppresses the polymerization of 

alkenes, which is unique for B(C6F5)3: if, alternatively, AlCl3, is used as catalyst, large amounts of 

alkene homopolymerization by-products are formed. 2,2 -́Dialkyl-substituted diene monomers are 

highly reactive towards polymerization, whereas the polymerization of less reactive non-substituted 

terminal dienes only yields oligomers of low molecular weight. The stabilization of the β-silylium 

cation intermediates is important to maintain high reactivity during the polymerization. The fact that 

tertiary carbocations are more stable than secondary ones (the latter formed in-situ from non-

substituted dienes) is reflected in the difference of attainable polymerization degrees.  

 

Figure 24. Borane-catalyzed hydrosilylation polymerization. 

Using organofluorophosphonium salts as catalyst in relatively low catalyst loading of  

1.5 mol %, Stephan and coworkers reported high yields (above 89%) for the hydrosilylation of various 

olefins and alkynes [56]. The reactions were performed at r.t. Based on calculation studies, they 

proposed a mechanism of the hydrosilylation and the phosphonium activation of hydrosilane. The 

same research group reported the use of another type of Lewis acids as catalysts, namely dicationic 

imidazolium phosphonium salts (Figure 25), for the hydrosilylation of olefins [57]. This type of 

catalysts does not require strongly electron-withdrawing substituents at the phosphonium center, 

paving the way to broad structure variations. Using 2 mol % of this catalyst, various olefins and 

alkynes could be hydrosilylated in high yields. 

 

Figure 25. Hydrosilylation using Lewis acidic dicationic phosphonium salts. 

Figure 23. Possible mechanism of the hydrosilylation reaction catalyzed by B(C6F5)3.

The borane catalyst B(C6F5)3 was successfully used in low loadings (5 mol %) for the
homopolymerization of dienes such as styrenes [55]; however, such types of homopolymerizations
could be successfully suppressed if silanes were additionally present in the reaction mixture (Figure 24).
It was argued that the η1-coordination of silane to B(C6F5)3 suppresses the polymerization of alkenes,
which is unique for B(C6F5)3: if, alternatively, AlCl3, is used as catalyst, large amounts of alkene
homopolymerization by-products are formed. 2,2′-Dialkyl-substituted diene monomers are highly
reactive towards polymerization, whereas the polymerization of less reactive non-substituted terminal
dienes only yields oligomers of low molecular weight. The stabilization of the β-silylium cation
intermediates is important to maintain high reactivity during the polymerization. The fact that tertiary
carbocations are more stable than secondary ones (the latter formed in-situ from non-substituted
dienes) is reflected in the difference of attainable polymerization degrees.
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Figure 24. Borane-catalyzed hydrosilylation polymerization.

Using organofluorophosphonium salts as catalyst in relatively low catalyst loading of 1.5 mol %,
Stephan and coworkers reported high yields (above 89%) for the hydrosilylation of various olefins
and alkynes [56]. The reactions were performed at r.t. Based on calculation studies, they proposed a
mechanism of the hydrosilylation and the phosphonium activation of hydrosilane. The same research
group reported the use of another type of Lewis acids as catalysts, namely dicationic imidazolium
phosphonium salts (Figure 25), for the hydrosilylation of olefins [57]. This type of catalysts does
not require strongly electron-withdrawing substituents at the phosphonium center, paving the way
to broad structure variations. Using 2 mol % of this catalyst, various olefins and alkynes could be
hydrosilylated in high yields.

Polymers 2017, 9, 534  14 of 37 

 

 

Figure 23. Possible mechanism of the hydrosilylation reaction catalyzed by B(C6F5)3. 

The borane catalyst B(C6F5)3 was successfully used in low loadings (5 mol %) for the 

homopolymerization of dienes such as styrenes [55]; however, such types of homopolymerizations 

could be successfully suppressed if silanes were additionally present in the reaction mixture (Figure 

24). It was argued that the η1-coordination of silane to B(C6F5)3 suppresses the polymerization of 

alkenes, which is unique for B(C6F5)3: if, alternatively, AlCl3, is used as catalyst, large amounts of 

alkene homopolymerization by-products are formed. 2,2 -́Dialkyl-substituted diene monomers are 

highly reactive towards polymerization, whereas the polymerization of less reactive non-substituted 

terminal dienes only yields oligomers of low molecular weight. The stabilization of the β-silylium 

cation intermediates is important to maintain high reactivity during the polymerization. The fact that 

tertiary carbocations are more stable than secondary ones (the latter formed in-situ from non-

substituted dienes) is reflected in the difference of attainable polymerization degrees.  

 

Figure 24. Borane-catalyzed hydrosilylation polymerization. 

Using organofluorophosphonium salts as catalyst in relatively low catalyst loading of  

1.5 mol %, Stephan and coworkers reported high yields (above 89%) for the hydrosilylation of various 

olefins and alkynes [56]. The reactions were performed at r.t. Based on calculation studies, they 

proposed a mechanism of the hydrosilylation and the phosphonium activation of hydrosilane. The 

same research group reported the use of another type of Lewis acids as catalysts, namely dicationic 

imidazolium phosphonium salts (Figure 25), for the hydrosilylation of olefins [57]. This type of 

catalysts does not require strongly electron-withdrawing substituents at the phosphonium center, 

paving the way to broad structure variations. Using 2 mol % of this catalyst, various olefins and 

alkynes could be hydrosilylated in high yields. 

 

Figure 25. Hydrosilylation using Lewis acidic dicationic phosphonium salts. Figure 25. Hydrosilylation using Lewis acidic dicationic phosphonium salts.



Polymers 2017, 9, 534 15 of 37

Nikonov and coworkers reported the hydrosilylation of olefins catalyzed by the cationic
[CH{C(Me)N(2,6-isoPr2C6H3)}2–AlH]+ aluminum complex [58]. Quantitative hydrosilylation of
terminal alkenes and cyclohexene at r.t. within 10 min using 1 mol % of catalyst was observed.
Despite the facile olefin insertion into the Al–H bond (as proposed by Oertle and Wetter; see above),
the catalysis does not proceed via the insertion mechanism. Since no reaction of the alkene-inserted
product with the silane could be observed, a mechanism that proceeds via Lewis acid activation was
proposed; the activation of silanes in the same manner as by boranes as previously reported by Piers
and Oestreich was argued [59–64]. The [Et3Si-H···Al(C6F5)3] complex (Figure 26) has been reported by
Chen and coworkers [65] who have suggested a detailed mechanism of hydrosilylation. The initial
activation of the silane is followed by the alkene attack of the silylium ion, yielding a carbocation
intermediate that undergoes hydride abstraction from [CH{C(Me)N(2,6-isoPr2C6H3)}2-AlR]+ to yield
the alkylsilane. The drawback of the applicability of this catalyst is the limitation of solvents as reaction
media: in many nonpolar solvents, the catalyst precipitates, while, on the other hand, it decomposes in
polar solvents such as dichloromethane and tetrahydrofuran. Stability of the catalysts for at least 1 d
was verified in chlorobenzene.

Polymers 2017, 9, 534  15 of 37 

 

Nikonov and coworkers reported the hydrosilylation of olefins catalyzed by the cationic 

[CH{C(Me)N(2,6-isoPr2C6H3)}2–AlH]+ aluminum complex [58]. Quantitative hydrosilylation of 

terminal alkenes and cyclohexene at r.t. within 10 min using 1 mol % of catalyst was observed. 

Despite the facile olefin insertion into the Al–H bond (as proposed by Oertle and Wetter; see above), 

the catalysis does not proceed via the insertion mechanism. Since no reaction of the alkene-inserted 

product with the silane could be observed, a mechanism that proceeds via Lewis acid activation was 

proposed; the activation of silanes in the same manner as by boranes as previously reported by Piers 

and Oestreich was argued [59–64]. The [Et3Si-H∙∙∙Al(C6F5)3] complex (Figure 26) has been reported by 

Chen and coworkers [65] who have suggested a detailed mechanism of hydrosilylation. The initial 

activation of the silane is followed by the alkene attack of the silylium ion, yielding a carbocation 

intermediate that undergoes hydride abstraction from [CH{C(Me)N(2,6-isoPr2C6H3)}2-AlR]+ to yield 

the alkylsilane. The drawback of the applicability of this catalyst is the limitation of solvents as 

reaction media: in many nonpolar solvents, the catalyst precipitates, while, on the other hand, it 

decomposes in polar solvents such as dichloromethane and tetrahydrofuran. Stability of the catalysts 

for at least 1 d was verified in chlorobenzene.  

 

Figure 26. Hydrosilylation reaction of cyclohexene catalyzed by a cationic aluminum complex. 

N-heterocyclic carbenes NHCs have as well been demonstrated to catalyze hydrosilylation 

reactions. They have been employed by Lacôte and coworkers in the chemoselective reduction of 

olefins and alkynes, which contained α-hydroxy substituent, through silyl ether formation (Figure 

27) [66]. They demonstrated that not only NHCs, but also cyclic alkylaminocarbene CAACs can 

catalyze these reactions. The reactions are limited to aryl-substituted reactants. 

 

Figure 27. Reduction of 3-aryl allyl alcohols. 

Simonneau and Oestrich [67] reported the use of 3-silylated cyclohexadi-1,4-enes as precursors 

for the in-situ generation of the gaseous hydrosilanes Me3SiH and Me2SiH (Figure 28). They used  

5 mol % of the Lewis acid catalyst B(C6F5)3 with various alkene and styrene derivatives at r.t. In a 

subsequent study, they performed a systematic study of various Lewis acids that could be used for 

this particular reaction [68]. 

Figure 26. Hydrosilylation reaction of cyclohexene catalyzed by a cationic aluminum complex.

N-heterocyclic carbenes NHCs have as well been demonstrated to catalyze hydrosilylation
reactions. They have been employed by Lacôte and coworkers in the chemoselective reduction
of olefins and alkynes, which contained α-hydroxy substituent, through silyl ether formation
(Figure 27) [66]. They demonstrated that not only NHCs, but also cyclic alkylaminocarbene CAACs
can catalyze these reactions. The reactions are limited to aryl-substituted reactants.
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Figure 27. Reduction of 3-aryl allyl alcohols.

Simonneau and Oestrich [67] reported the use of 3-silylated cyclohexadi-1,4-enes as precursors for
the in-situ generation of the gaseous hydrosilanes Me3SiH and Me2SiH (Figure 28). They used 5 mol %
of the Lewis acid catalyst B(C6F5)3 with various alkene and styrene derivatives at r.t. In a subsequent
study, they performed a systematic study of various Lewis acids that could be used for this particular
reaction [68].
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Figure 28. Reaction path for the hydrosilylation of olefins with in-situ generated Me3SiH or Me2SiH2.

A novel method for obtaining α-silyl carbonyl products using B(C6F5)3 as catalyst was reported
by Kim and Chang [69]. Unlike previously reported hydrosilylations of unsaturated polar bonds
(such as carbonyls, imines, and nitriles [70–72]), the authors demonstrated the feasibility of the
chemoselective α-silylation of conjugated esters and amides, in which the carbonyl group was left
intact (Figure 29). According to preliminary mechanistic studies, the reaction proceeds in two steps,
namely rapid 1,4-hydrosilylation of conjugated carbonyls and slow silyl group migration of a silyl
ether intermediate.
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Oestreich and coworkers reported the highly enantioselective hydrosilylation of acetophenone
derivatives (up to 99% ee) [73], employing an axially chiral cyclic borane that contained only one C6F5

group at the boron atom. It was demonstrated that the borane catalyst promoted the hydrosilylation
without a need for an additional Lewis base.

4. Non-Thermal Stimuli for Hydrosilylation Reactions

Intense research has been dedicated to the development of catalysts that can be switched by
external triggers and demonstrate different activity and selectivity [74,75]. Making a hydrosilylation
reaction switchable represents a huge challenge as it commonly proceeds immediately at high speed
in the presence of most catalysts at r.t. For some industrial applications, however, it is required to
have a curable formulation composed of catalyst and crosslinking components that are shelf-stable
(storable) for multiple months. Such specialized and growing demands for polysiloxane products
were the main drive to develop hydrosilylation systems that can be started upon the application of a
certain external trigger. Heat has been the most commonly used trigger in industrial applications so far.
Various examples of thermally activated hydrosilylation have already been covered in the review by
Troegel and Stohrer [6], where various inhibitors of platinum catalysts, platinum catalysts containing
inhibiting ligands and encapsulated catalysts were described. In this review, advances in the field of
non-thermally triggered hydrosilylation reactions will be described.

4.1. Light-Initiated Hydrosilylation Reactions

Light/irradiation presents a very attractive stimulus as it allows precise spatiotemporal
control, which makes it a highly favorable trigger for industrial applications. Initial approaches
towards photo-triggerable hydrosilylation reactions involved the photo-activation of various metal
hexacarbonlys, namely Cr(CO)6, Mo(CO)6, Fe(CO)6 and Ni(CO)6. However, these catalysts tend
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to agglomerate, are often non-selective, and only achieve mediocre degrees of conversions [76].
Most commonly used and well-studied photo-initiatable catalysts are platinum-based ones such as a
pioneer example, namely the platinum/oxalate complex Pt(C2O4)L2, which can be photochemically
reduced [77,78], yielding a reactive platinum center (commonly bound to triaryl or trialkyl phosphines).

Platinum complexes of triazenes are both heat-sensitive and photolabile. Wokaun and coworkers
demonstrated that tetrakis(1-phenyl-3-hexyl-triazenido)platinumIV can be activated by a XeCl excimer
laser at 308 nm to subsequently catalyze the reaction between a divinyl-disiloxane and a dihydro
disiloxane [79]. In addition to the targeted (AB)n polymer chains, by-products such as cyclic
compounds, isomers, and hydrogenated vinyl groups were observed as well.

Lewis and Salvi studied PtII-bis(β-diketonates) as photo-activatable hydrosilylation catalysts
(Figure 30) [80]. They found that irradiation initially yields a highly active homogenous catalyst,
which is thermally converted to a less active heterogeneous catalyst. They demonstrated that the
formation of the active catalyst requires the presence of one of the reactants during a brief period of
irradiation. It was suggested that the primary photoproduct was not the catalytically active species,
but that a secondary photochemical reaction resulted in the loss of one of the two β-diketonate ligands,
which finally yields the active catalyst. If the irradiation was terminated after the conversion of, e.g.,
Pt(acac)2 to the primary photoproduct, and the complementary reactant was added only at that stage,
hydrosilylation did not occur. In the presence of excess hydrosilane or olefin, however, the activated
catalyst maintained its activity for several hours at r.t. and was slowly converted to colloidal Pt.
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Figure 30. Proposed mechanism for the photo-initiated generation of a highly active platinum catalyst
from Pt(acac)2.

The platinum catalyst (η5-C5H4CH3)PtIV(CH3)3 was studied by Lees and Jakubek [81], who
characterized its photochemistry in detailed fashion. Dissolved in methylcyclohexane and pentane
at 293 K, the complex showed high quantum efficiencies at 311 and 366 nm ranging from
0.34 to 0.41; upon incorporation of Et3SiH, it even exhibited quantum efficiencies in the range from
0.79–0.85. The compounds were effective photo-initiators for the hydrosilylation reactions involving
vinyl/hydride silicone mixtures for catalyst loadings higher than 520 ppm.



Polymers 2017, 9, 534 18 of 37

Boardman investigated (η5-cp)PtIVR3 complexes as photoactive hydrosilylation catalysts; they
argued that the active catalyst species were platinum colloids since the catalyst could be poisoned by
elementary mercury but was not inhibited by dibenzo [a,e] cyclooctatetraene [82].

Fouassier and coworkers employed various β-dicarbonyl-PtIVR3 complexes (Figure 31) as
useful photoinitators for hydrosilylation reaction of silicone polymers containing Si–H/Si–vinyl and
Si–H/Si–epoxide moieties [83]. During photolysis of the initiator, colloidal platinum was generated.
The reactivity of the photoninitiators was enhanced by the presence of electron donors at the carbonyl
C-atom of the β-dicarbonyl ligand. Thieulux, Meille and coworkers reported that colloidal suspensions
of monodisperse platinum nanoparticles of 2 nm were able to catalyze the hydrosilylation of oct-1-ene
with poly(methylhydroxysilane) [84]. The nanoparticles were found to be as efficient as Karstedt’s
complex, showing that colloid formation from homogenous species during hydrosilylation is not
necessarily a deactivation pathway.
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Fry and Neckers employed Pt(acac)2 for the photoactivated hydrosilylation polymerization of
vinyldimethylsilane [85]. They observed a significant degree of heterogeneous platinum catalysis in
the mechanism of the polymerization: The polymers doubled molecular weights during ageing due to
the reaction of telechelic residual vinyl and hydride groups; this reaction was apparently catalyzed by
platinum colloids formed after photolysis.

Vekki and Skvortsov studied the hydrosilylation of vinylsiloxanes in the presence of thermo- and
photo-activatable PtII-phosphine complexes [86]. Using thermal activation, the reaction rate decreased
in the order: cis-[Pt(PMe2Ph)2Cl2)] > cis-[Pt(PPh3)2Cl2)] > cis-[Pt(PBu3)2Cl2)]. The induction period
shortened in the following ligand order: Ph3P < PhMe2P < Bu3P. The influence of the phosphine ligands
on the efficacy of the photoactivated siloxane notably differed from that in the dark, and the induction
period shortened in the order: Ph3P > Bu3P >> PhMe2P. Oxygen accelerated the hydrosilylation
catalyzed by photoactivated PtII-phosphine complexes, whereas the reaction rate decreased in argon
atmosphere. This observation was explained by oxidation of one of the phosphine ligands, which
disabled it from coordinating to the platinum ion and helped forming the active species faster.

The hydrosilylation of low-molecular siloxanes in the presence of various photoactivated
sulfoxide-PtII complexes was investigated by the same research group [87]. Additional photosensitive
centers, such as oxalate ligands, yielded more efficient photo-initiatable systems. High selectivity and
conversions could be achieved with short irradiation times.

Neckers and coworkers employed Pt(acac)2 for the crosslinking of oligo [(methylsilylene)-
methylene] OMSM [88]. The formation of crosslinked polysilanes from liquid mixtures could be
completed within a minute (solidification of the reaction mixture).

Marchi and coworkers reported hydrosilylation reactions using (η5-C5H4CH3)PtIV(CH3)3 in the
presence of various amounts of the 2-chlorothioxanthen-9-one CTX sensitizer. Activation of this system
could be accomplished by visible light [89]. Using 2.4 mol % of the platinum catalyst, minimum
dosage of CTX had to be at least 4000 ppm to reach reasonable silane conversion upon irradiation with
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wavelengths of 380–515 nm. Even with loadings of photosensitizer that high, the silane conversion
was lower in comparison to the UV-activated hydrosilylization (85%).

Huang and coworkers performed the synthesis of hyperbranched poly(carbosilane)s
(Figure 32) [90]. The UV-activated hydrosilylation using PtII(acac)2 catalyst was found to be more
efficient (reaction finished in 40 min) than the classical thermal activation using Karstedt’s catalyst
(5–6 h duration of the reaction). Since the reactions were performed in small scale in toluene only
(1.26 g of the reactant methyldiallylsilane), it is hard to predict if the effect could be reproduced on
large scale relevant for industrial applications.
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Marchi and coworkers demonstrated in how far (in terms of energy and time saving)
photo-activation is the favorable way for (crosslinking) hydrosilylation catalysis employing PtII(acac)2

as catalyst [91]. They used the catalyst for photo- and thermal activation and monitored the silane
conversion at various temperatures. UV activation was applied at r.t. and the reaction was completed
within 5 min (conversion of 98%), whereas, after 150 min of thermal curing at 150 ◦C, the reaction
showed a lower conversion of 82%. The increase of the glass-transition temperature Tg revealed that
the UV route led to more densely crosslinked materials. The same research group employed Pt(acac)2

catalysts for the curing of various silicone composites such as PDMS composites by UV-triggered
hydrosilylation [92]. In the absence of any inorganic fillers, they performed the UV-triggered curing of
4 cm thick samples of silicone polymers based on, e.g., vinyldimethylsiloxane-terminated PDMS [93].
They reported the UV-induced curing of samples of up to 2 cm of silicone composites containing
inorganic fillers, obtained via hydrosilylation and in-situ formed inorganic particles [94].

Sangermano and coworkers demonstrated why the curing of comparably thick samples of up to
4 cm is possible with UV-activated Pt(acac)2 [95]. They argued that a (thermal) polymerization front
may be generated as the polymerization reaction is exothermic, in which the UV-generated homogenous
catalyst is converted to a heterogeneous colloidal catalyst. The UV-induced frontal polymerization
mechanism may also be used to explain the dark curing process observed in the UV-activated
hydrosilylation reaction. They demonstrated that according to the same mechanisms samples of
even up to 5 cm could be cured using the photoactivated (η5-C5H4CH3)PtIV(CH3)3 complex [96].

Neckers and coworkers demonstrated the use of various bis(β-diketonato)PtII complexes for the
hydrosilylation cross-linking reaction of oligo [methyl-silylene)-methylene] with tetravinylsilane.
The platinum catalysts contained ligands such as benzylacetonate, trifluoroacetylacetonate, and
benzoyltrifluoroacetonate and could be photoactivated by visible light [97].

The same research group reported the photocatalytic generation of silyl radicals from
trisubstituted silanes by tetrabutylammonium decatungstate TBADT (Figure 33) [98]. Hence, the
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photocatalytic hydrosilylation of electron-poor alkenes could be performed. The reactions could be
triggered by light of 350 nm wavelength; in some cases (e.g., addition to maleates), the reaction also
proceeded efficiently under sunlight as well as under flow conditions.
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Figure 33. TBADT-photocatalyzed hydrosilylation of electron-poor olefins.

UV-triggered catalysis, even though intensively explored for decades, is not yet fully understood,
and only a few catalysts relying on it are described in detailed fashion in the literature [99]. Ruhland
and coworkers developed a novel platinum-based catalyst for hydrosilylation that contained the
photo-active moiety in the outer ligand sphere Figure 34 [100]. Upon irradiation at 300 nm, this
moiety could react with the inner ligand sphere, yielding a free coordination site at the metal center.
They developed three novel ligands based on azo compounds and showed that the as-derived catalysts
can be triggered by UV stimuli.
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Figure 34. Catalytic hydrosilylation of p-fluoro-acetophenone using novel light-sensitive
platinum-based catalysts.

Stimuli-induced iron-catalyzed hydrosilylation of carboxylic acids was reported by Darcel and
coworkers (Figure 35) [101]. (COD)Fe(CO)3 (COD: cyclooctadiene) efficiently catalyzed the reduction
of carboxylic acids to alcohols at r.t. under UV irradiation (350 nm) if phenylsilanes were present as
silane source. On the other hand, the reduction of the carboxylic acids to aldehydes could selectively
be obtained using 1,1,3,3-tetramethyldisloxane TMDS as silane source and (t-PBO)Fe(CO)3·(t-PBO:
trans-4-phenyl-but-3-en-2-one) as catalyst under thermal activation. If TMDS was used with
(COD)Fe(CO)3 in THF under UV irradiation, the major products were aldehydes and not alcohols,
revealing that the silane source has significant role in determining the reduction pathway.
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Figure 35. Selective reduction of carboxylic acids to either alcohols or aldehydes using
iron-catalyzed hydrosilylations.

A reversibly switchable hydrosilylation process (that can be turned ON and OFF by stimuli)
was reported by Grzybowski and coworkers [102] on the example of the hydrosilylation reaction
of 4-methoxybenzaldehyde with diphenylsilane in toluene. As catalyst, photo-switchable gold
nanoparticles were used. The gold nanoparticle surfaces were covered with photoresponsive
azobenzene-thiol ligands and a surfactant. Non-aggregated nanoparticles have a large surface area and
may catalyze the reaction. Upon irradiation at 365 nm, azobenzene undergoes trans-cis isomerization,
enhances its electric dipole, and causes the particles to aggregate, which switches off the reaction. It can
be reactivated upon exposure to the visible light. The drawback of this system is that the switchability
is based on aggregation mode of the catalyst. That means it only works in certain solvents, making it
unattractive for industrial applications or any larger scale initiations of hydrosilylation.

4.2. Solvent as a Trigger to Influence the Stereochemical Configuration of Hydrosilylated Products

Suginome and coworkers reported the asymmetric hydrosilylation of styrene [103]. They employed
a polymeric ligand based on poly(quinoxaline phosphine) as catalyst in the platinum-catalyzed
hydrosilylation reaction; depending on the solvent used as reaction medium, the polymer formed
different secondary structures (different helicity), which translated into the different enantiomers of
the product. Using very low catalyst loadings, silylated products were obtained in very high yields
and enantioselectivities (Figure 36); the catalysts could be used in eight consecutive catalytic cycles
without any loss of activity or selectivity.
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The same group reported another copolymer based on poly(quinoxaline-2,3-diyls) and employed
it in a switchable asymmetric hydrosilylation reaction [104]. However, unlike the previous
copolymer which was synthesized from a chiral monomer, the novel copolymer was prepared from a
monomer derived from (R)-octan-2-ol (23% ee) and a monomer bearing a PPh2 group that adopted a
single-handed helical structure. The helical structure of the ligand could be modified as the previous
by changing the solvents. Asymmetric hydrosilylation was demonstrated on the platinum-catalyzed
example of the reaction of β-methylstyrene with trichlorosilane using this polymeric ligand; excellent
yields and enatiomeric selectivity (93% ee for the S product and 94% ee for the R product) were obtained.

4.3. Microwave-Initiated Hydrosilylation Reactions

While microwave irradiation transfers heat to any materials with pronouncedly separated (partial)
charges such as metals, ions and dipoles, it is hard to discriminate between “regular” thermal
initiation and the so-called non-thermal microwave effects. Ozin and coworkers demonstrated that
microwave-assisted heating had no evident acceleration effect on the hydrosilylation rate relative to
conventional thermal heating (hydrosilylation kinetics of hydride-capped silicon nanocrystals with
dec-1-ene) [105].

Boukherroub and coworkers reported the functionalization of hydrogen-terminated porous
silicon surfaces with functional alk-1-enes under microwave irradiation [106]. Organic monolayers
covalently attached to surface by Si–C bonds were argued to originate from microwaves as a source of
energy that accelerated the hydrosilylation reaction and yielded a higher surface coverage compared
to conventional heating; performance of the reaction at 180 ◦C in an oil bath hardly yielded any
chemical grafting on the particles’ surfaces. Under microwave irradiation for 30 min at 170 ◦C,
the reaction efficiency was reported to be 38%, but was not further improved upon increasing the
temperature. Porter and coworkers as well reported the alkyl-functionalization of porous silicon via
multimode-microwave assisted hydrosilylation [107].

4.4. Sonication-Triggered Hydrosilylation Reactions

Various activation methods have been developed for the hydrosilylation reaction on
hydrogen-terminated surfaces (e.g., silicon surfaces in the wafer industry) including the use of radical
initiators such as diacyl peroxides [108], catalysts such as H2PtCl6 [109], as well as electrochemical [110],
photochemical [111], thermal [112,113], and microwave-assisted activation methods.

A sonochemical activation method was reported by Zhong and Bernasek [114], who used
an ultrasonic bath at r.t. for the performance of a hydrosilylation reaction; catalyst and/or radical
initiator did not need to be added. They achieved high degrees of functionalization with various alkenes.
The surfaces could be selectively functionalized with bifunctional alkenes such as undecenol, undecylenic
acid and even heat/UV sensitive alkenes bearing an activated leaving group such as N-succinimidyl
undecylenate. The authors suggested that acoustic cavitation activates the hydrogen-terminated silicon
surfaces for hydrosilylation selectively with the vinyl group, forming a self-assembled monolayer SAM
terminated by a second group available for further chemical modifications. The proposed mechanism
(Figure 37) suggests that the radical formed by sonication reacts with the alkene forming an alkyl
radical intermediate. The newly formed radical intermediate then abstracts hydrogen from an adjacent
Si atom, forming another surface Si radical available for further reaction.

Bernasek and coworkers investigated the substituent effects in bifunctional styrenes on the
SAM formation on hydrogen-terminated silicon surfaces [115]. They studied methylstyrene, styrene,
chlorostyrene, cyanostyrene, and trifluoromethylstyrene. Except for trifluoromethylstyrene, all styrenes
were bound to the surface only through the alkene moiety.
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Figure 37. Proposed mechanism of the sonochemical activation of hydrogen-terminated silicon surfaces
for hydrosilylation reactions with terminal alkenes.

4.5. Electrochemically Initiated Hydrosilylation Reactions

Buriak and coworkers demonstrated that terminal alkynes can be electrochemically grafted to
porous silicon surfaces with either positive or negative bias [110]. Via cathodic electrografting CEG,
alkynes were directly attached to the surface, whereas with anodic electrografting AEG an alkyl
surface was generated. The authors proposed that CEG proceeded via a silyl anion intermediate
formed by the reduction of surficial Si–H bonds. The subsequent in-situ generation of a carbanion
from deprotonation of weakly acidic alkyne leads to a nucleophilic Si–Si bond attack. It is likely that
surface-initiated cationic hydrosilylation mechanism is responsible for Si–C bond formation in AEG
reactions (Figure 38).
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5. Industrial Applications

As demonstrated in the previous paragraphs, numerous catalysts are currently present with which
hydrosilylation reactions can be successfully performed. For the implementation of hydrosilylations
into industrial processes, catalysts have to be low-priced and show high selectivity, efficiency and
stability. However, highly-functional products may be calculated on an elevated price scale [6]. Hence,
apart from high efficient/low-cost catalysts possibly paving the way for industrial exploitation, recent
advances in hydrosilylation reactions of functional products will be presented.

5.1. High Efficient/Low-Cost Hydrosilylation (Solvent-Free Conditions)

The vast majority of hydrosilylation processes in industrial manufacturing are still performed
using platinum-based catalysts. Platinum itself is one of the most expensive metals and,
correspondingly, many hydrosilylation processes suffer from the disadvantage that the platinum
catalyst cannot be recovered. It is desirable to employ different transition metals which could replace
expensive platinum. The replacement of expensive, sensitive and hazardous chemicals such as
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reducing agents and solvents with stable and easy-to-handle chemicals will further decrease the
process costs.

Chen et al. reported a cobalt-based catalyst for the anti-Markovnikov alkene hydrosilylation under
solvent-free conditions at low temperatures and low catalyst loadings (Figure 39) [116]. Additionally,
the catalysts can be synthesized in-situ from commercially available, low-cost precursors under
ambient conditions giving high yields/selectivity for functionalized alkenes (namely 1a = 89%/>98%,
1b = 94%/98%, 1c = 89%/98%).
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Figure 39. Hydrosilylation of alkenes under solvent-free conditions.

The reduction of esters to aldehydes is often performed with nucleophilic hydride agents such as
di-isobutylaluminium hydride DIBALH. However, these agents are air and moisture sensitive, toxic, and
tend to reduce the aldehyde directly towards the alcohol [117]. To prevent over-reducing and provide
easier process conditions, Cheng et al. proposed a simple and highly efficient method of reducing
esters to aldehydes using hydrosilylation (Figure 40). The iridium-based catalyst [{Ir(COE)2Cl}2]
(coe = cyclooctene) is commercially available, offers high conversion (99%) at low catalysts loading
(0.1 mol %), and shows good compatibility towards functional groups such as aryl and alkyl halides,
alkenes and alkynes, tertiary amines and nitrides as well as hydroxyl and sulfonyl groups [118].
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Wekesa et al. reported the use of a bis(arylimino)acenaphthene BIAN complex based on iron
that could be used for the solvent-free hydrosilylation of ketones and aldehydes with up to a 99%
yield [119]. The hydrosilylation of benzaldehyde with mono- and diphenylsilane was completed
within 1 h. The complex shows high catalytic activity towards various other ketones and aldehydes
with high yields ranging from 85–98%.

The use of renewable feedstocks is a generally favorable pathway towards greener standards
in industrial applications. Motokura et al. proposed to use a copper catalyst for the hydrosilylation
of CO2 to generate silanols and formic acid in a one-pot reaction (Figure 41) [120]. The high yield
of up to 95% and TONs of 8100, however, are counterbalanced by the high prices of hydrosilanes.
Zhang et al. also proposed to use a NHC-copper alkoxide complex for the hydrosilylation of CO2 with
triethoxysilyl compounds [121]. Although the yield dropped to 75% and the TON to 7500, the whole
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reaction benefited from the fact that it could be carried out at 60 ◦C under solvent-free conditions
instead of using high temperature such as 100 ◦C in solvents.

Polymers 2017, 9, 534  25 of 37 

 

CO2 to generate silanols and formic acid in a one-pot reaction (Figure 41) [120]. The high yield of up 

to 95% and TONs of 8100, however, are counterbalanced by the high prices of hydrosilanes. Zhang 

et al. also proposed to use a NHC-copper alkoxide complex for the hydrosilylation of CO2 with 

triethoxysilyl compounds [121]. Although the yield dropped to 75% and the TON to 7500, the whole 

reaction benefited from the fact that it could be carried out at 60 °C under solvent-free conditions 

instead of using high temperature such as 100 °C in solvents. 

 

Figure 41. Hydrosilylation of CO2 yielding silanols and formic acid. 

It is still a big challenge for other complex systems to compete with the high catalytic activity of 

Speier’s and Karstedts’s catalysts. However, a possible route to lower process costs is to minimize the 

consumption of catalyst. Cririminna et al. reported the use of platinum nanoparticles incorporated 

into a silicate porous matrix for the hydrosilylation of long-chained alkenes (Figure 42) [122]. The 

benefit of the system is the minimized leaching of catalyst during reaction, preventing loss of the 

catalyst and contamination of the product. The catalyst can be restored by sonication in CH2Cl2 and 

be reused at least three times. Scale-up experiments from 2 to 100 mmol substrate indicate no loss of 

selectivity or conversion degree at higher amounts. [123] 

 

Figure 42. Immobilized platinum nanoparticles for the hydrosilylation of oct-1-ene. 

Other approaches to improve the durability of platinum-based catalysts and to further optimize 

the hydrosilylation process is the use of ionic liquids ILs as well as microreactors. Microreactors 

enable the performance of continuous chemical reaction process in tubes with small diameter, which 

results in higher yields due to a high surface:volume ratio and therefore increased mass transfer [124]. 

Studies performed by Kukawa et al. indicate higher yields (98%) for the hydrosilylation of 

1,1,1,3,5,5,5-heptatrimethylsiloxane with oct-1-ene in ILs when using a continuous flow reactor 

(Figure 43). This set-up enables the continuous substrate addition and continuous product separation, 

which is a great advantage considering the potential for industrial application. Additionally, no 

catalyst was found in the product after the reaction allowing a reuse of the IL and catalysts [125]. 

 

Figure 43. Hydrosilylation of 1,1,1,3,5,5,5-heptatrimethylsiloxane with oct-1-ene in ILs using the 

platinum-based Karstedt’s catalyst. 

Maciejewski and coworkers proposed an easy and highly efficient hydrosilylation for the 

synthesis of organofunctional polyhedral oligomeric silsesquioxanes oPOSS (Figure 44) [126]. As 

catalyst, PtCl4 immobilized in 1,2,3-trimethylimidazolium methylsulphate was used. The product is 

Figure 41. Hydrosilylation of CO2 yielding silanols and formic acid.

It is still a big challenge for other complex systems to compete with the high catalytic activity of
Speier’s and Karstedts’s catalysts. However, a possible route to lower process costs is to minimize the
consumption of catalyst. Cririminna et al. reported the use of platinum nanoparticles incorporated into
a silicate porous matrix for the hydrosilylation of long-chained alkenes (Figure 42) [122]. The benefit of
the system is the minimized leaching of catalyst during reaction, preventing loss of the catalyst and
contamination of the product. The catalyst can be restored by sonication in CH2Cl2 and be reused at
least three times. Scale-up experiments from 2 to 100 mmol substrate indicate no loss of selectivity or
conversion degree at higher amounts. [123]

Polymers 2017, 9, 534  25 of 37 

 

CO2 to generate silanols and formic acid in a one-pot reaction (Figure 41) [120]. The high yield of up 

to 95% and TONs of 8100, however, are counterbalanced by the high prices of hydrosilanes. Zhang 

et al. also proposed to use a NHC-copper alkoxide complex for the hydrosilylation of CO2 with 

triethoxysilyl compounds [121]. Although the yield dropped to 75% and the TON to 7500, the whole 

reaction benefited from the fact that it could be carried out at 60 °C under solvent-free conditions 

instead of using high temperature such as 100 °C in solvents. 

 

Figure 41. Hydrosilylation of CO2 yielding silanols and formic acid. 

It is still a big challenge for other complex systems to compete with the high catalytic activity of 

Speier’s and Karstedts’s catalysts. However, a possible route to lower process costs is to minimize the 

consumption of catalyst. Cririminna et al. reported the use of platinum nanoparticles incorporated 

into a silicate porous matrix for the hydrosilylation of long-chained alkenes (Figure 42) [122]. The 

benefit of the system is the minimized leaching of catalyst during reaction, preventing loss of the 

catalyst and contamination of the product. The catalyst can be restored by sonication in CH2Cl2 and 

be reused at least three times. Scale-up experiments from 2 to 100 mmol substrate indicate no loss of 

selectivity or conversion degree at higher amounts. [123] 

 

Figure 42. Immobilized platinum nanoparticles for the hydrosilylation of oct-1-ene. 

Other approaches to improve the durability of platinum-based catalysts and to further optimize 

the hydrosilylation process is the use of ionic liquids ILs as well as microreactors. Microreactors 

enable the performance of continuous chemical reaction process in tubes with small diameter, which 

results in higher yields due to a high surface:volume ratio and therefore increased mass transfer [124]. 

Studies performed by Kukawa et al. indicate higher yields (98%) for the hydrosilylation of 

1,1,1,3,5,5,5-heptatrimethylsiloxane with oct-1-ene in ILs when using a continuous flow reactor 

(Figure 43). This set-up enables the continuous substrate addition and continuous product separation, 

which is a great advantage considering the potential for industrial application. Additionally, no 

catalyst was found in the product after the reaction allowing a reuse of the IL and catalysts [125]. 

 

Figure 43. Hydrosilylation of 1,1,1,3,5,5,5-heptatrimethylsiloxane with oct-1-ene in ILs using the 

platinum-based Karstedt’s catalyst. 

Maciejewski and coworkers proposed an easy and highly efficient hydrosilylation for the 

synthesis of organofunctional polyhedral oligomeric silsesquioxanes oPOSS (Figure 44) [126]. As 

catalyst, PtCl4 immobilized in 1,2,3-trimethylimidazolium methylsulphate was used. The product is 

Figure 42. Immobilized platinum nanoparticles for the hydrosilylation of oct-1-ene.

Other approaches to improve the durability of platinum-based catalysts and to further optimize
the hydrosilylation process is the use of ionic liquids ILs as well as microreactors. Microreactors
enable the performance of continuous chemical reaction process in tubes with small diameter,
which results in higher yields due to a high surface:volume ratio and therefore increased mass
transfer [124]. Studies performed by Kukawa et al. indicate higher yields (98%) for the hydrosilylation
of 1,1,1,3,5,5,5-heptatrimethylsiloxane with oct-1-ene in ILs when using a continuous flow reactor
(Figure 43). This set-up enables the continuous substrate addition and continuous product separation,
which is a great advantage considering the potential for industrial application. Additionally, no catalyst
was found in the product after the reaction allowing a reuse of the IL and catalysts [125].
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Figure 43. Hydrosilylation of 1,1,1,3,5,5,5-heptatrimethylsiloxane with oct-1-ene in ILs using the
platinum-based Karstedt’s catalyst.

Maciejewski and coworkers proposed an easy and highly efficient hydrosilylation for the synthesis
of organofunctional polyhedral oligomeric silsesquioxanes oPOSS (Figure 44) [126]. As catalyst, PtCl4
immobilized in 1,2,3-trimethylimidazolium methylsulphate was used. The product is insoluble in the
IL, hence product isolation is fast and easy, and the catalyst can be reused for further reactions without
loss of activity.
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5.2. Recent Advances in Functional Materials Using Hydrosilylation

Hydrosilylation is a versatile reaction delivering materials for fields of application
comprising anti-fouling coatings and coatings for medic(in)al applications [127,128], as well as
functionalized surfaces and packaging materials for electronic applications [129,130], organic, and
hybrid-organic/inorganic semiconductors [131,132].

5.2.1. Coatings

Liu et al. prepared an anti-graffiti film by incorporating a poly(methyl hydro siloxane) PMHS
polymer grafted with hexa-fluorobutyl acrylate into polyurethane (Figure 45) [133]. The free surface
energy was reduced from 30.7 (polyurethane) to 21.4 mN·m−1 (anti-graffiti-polyurethane). Due to the
lower free surface energies, the wetting capabilities were correspondingly deteriorated. Cleaning tests
revealed that anti-graffiti-coated areas could be completely cleaned using water and isopropanol.
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Figure 45. Grafting of PMHS with hexa-fluorobutyl acrylate using a Karstedt’s catalyst.

Wang et al. developed a method for synthesizing a highly transparent, durable, superhydrophobic,
and nanoporous coating: As a precursor, they used a polysiloxane containing Si–H and vinyl–Si
groups as well as a methyl-terminated PDMS as reagents (Figure 46) [134]. Due to the Si–CHn groups
abundantly present in the polymer, further fluorination to enhance the hydrophobicity is not required,
enabling economically friendly production by phase-separation. Due to its physical and mechanical
properties, the siloxane-coating may possibly be applied in windshields, safety goggles, etc.
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Polysiloxanes and derivatives are susceptible to fouling due to bacterial adhesion on the
hydrophobic surface. Therefore, for bioapplications, it is necessary to apply coatings to the
polysiloxanes’ surfaces by chemical modification of grafting. [135–138] Nguyen and coworkers
proposed the grafting of polysilazane PSZ with poly(ethylene oxide) PEO by hydrosilylation using
Karstedt’s catalysts [139]. They investigated marine bacteria and found that the grafting density of
PEO onto PSZ strongly influenced the bacterial adhesion. The chain length of PEO played a major
role: longer chains exhibited higher anti-fouling activities. Zhang et al. used allyl-carboxybetain
as grafting reagent on elastomeric PDMS via a Karstedt-catalyzed hydrosilylation to increase the
anti-fouling properties. Their protein/bacterial adhesion indicated improved biocompatibility and
reduced adsorption and adhesion properties regarding proteins and bacteria [140]. For a systematic
description of the influence of long hydrophobic side-chains on antimicrobial activity, the reader is
referred to a recent research article on that topic [141].

5.2.2. Printing and Inks

Micro-contact printing is a method to transfer a master mold pattern onto a substrate. The master
mold is often created by 2.5-dimensional photolithography (the term “2.5-dimensional” addresses the
fact that, by this technique, a surface is generated by the projection of a plane into the third dimension,
and that such objects exhibit no overhanging elements despite the fact that they are 3-D). The transfer
mold is created by applying a layer of PDMS followed by curing it via hydrosilylation reactions at
elevated temperatures to yield an elastomeric PDMS mold (Figure 47) [142]. PDMS (non-crosslinked
or only moderately crosslinked) has the disadvantage of swelling in common organic solvents,
rendering the necessity of thermal curing. In addition, due to the hydrophobic surface of PDMS,
the use of water-based inks containing compounds such as biomolecules or inorganic complexes is
challenging [143].
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To overcome these disadvantages, Kastner et al. substituted PDMS by functionalized POSS [144].
For functionalization, they used epoxy and carboxylic as well as bifunctional epoxy-carboxylic groups
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that were covalently attached by platinum-catalyzed hydrosilylations. Epoxy-functionalized POSS
could be cured under UV-light under ambient conditions. Masuda et al. developed an amorphous
silicon carbide ink for wide-band-gap films to be used in opto-electronics such as LEDs and solar
cells [145]. They used cyclopentasilane, cyclohexene and decaborane as source for p-type SiC:H films;
however, instead of a classic coating process they applied vapor depositioning by heating the substrate
and ink up to 380 ◦C. After 5 min, the film was approximately 100 nm high, and, depending on the
volume ratio of cyclopentasilane to cyclohexene, the band gap Eg varied from 1.56 to 2.11 eV, while the
conductivies ranged from 1.1 × 10−4 (semiconductor) to 7.1 × 10−11 S/cm (insulator).

Pi et al. prepared solar cells using a silicon-based quantum-dot Si-QD ink [146]. First, Si-QDs
were synthesized in a SiH4 plasma, then the Si-QDs were hydrosilylated in a solution of octadec-1-ene
and mesitylene at 165 ◦C under argon atmosphere. By printing the Si-QD ink onto the silicon solar
cell, the efficiency was increased from 17.2% to 17.5% due to anti-reflective and spectral down-shifting
properties. This increase might seem numerically low, but still means a huge economic benefit for the
photovoltaic industry.

5.2.3. Microelectronic Applications

With respect to packaging materials for electronic applications, Gao et al., as well as Zong et al.,
synthesized cycloaliphatic epoxy-silicon hybrid resins using 1,3,5,7-tetramethylcyclotetrasiloxane and
1,2-epoxy-4-vinyl-cyclohexane as reagents in different compositions (Figure 48). Methyl hexahydrophthalic
anhydride was used as curing agent with dodecyl trimethylammonium bromide as accelerant.
The fabricated resins showed transmittances >90% at 800 nm and >85% at 400 nm, as well as 5%
decomposition temperatures >330 ◦C and water absorption of less than 2% within the first 12 h in
boiling water. UV- and temperature-mediated (120 ◦C) ageing tests showed no yellow coloring of the
samples, rendering these materials candidates for LED-packaging and electronic sealings [147–149].
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Figure 48. Synthesis of a cycloaliphatic epoxy-silicon hybrid resin by hydrosilylation reactions.

Contrary to sealing with low electrical conductivity, polymer-derived ceramics offer great
potential for application in micro-electrical systems as they exhibit higher conductivities [150,151].
Dalcane et al. performed the hydrosilylation of allylhydrido-poly(carbosilane) SMP10® with
divinylbenzene followed by pyrolysis at 800–1400 ◦C, yielding ceramics with electrical conductivities
ranging from 10−6 S·cm−1 (semiconductor) to 1 S·cm−1 (conductor) [152]. Electroactive polymers
can undergo actuation if they are exposed to an electric field. Dascalu et al. developed a vinyl
end-functionalized polysiloxane from 1,3,5-tris(3,3,3-trifluoropropyl)-1,3,5-trimethylcyclotrisiloxane
and octamethylcyclotetrasiloxane (Figure 49) [153], yielding an elastomer with strains of break of up
to 850%, a maximum dielectric permittivity of ε′= 6.4, and an actuation strain of 5.4% at 7.8 V·(µm)−1.
Although the commercially available acrylic foil VHB-4905 (ε′ = 4.4) exhibits higher maximum
achievable actuation strain and dielectric breakdown, the newly developed siloxane shows higher
actuation strain within the desired 24 V range. With further research on upscaling and mechanical
properties, this siloxane is a promising candidate for actuators and sensors.
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Figure 49. Synthesis of vinyl end-functionalized polysiloxanes.

For the increase of dielectric permittivity, Madsen et al. [154] proposed the incorporation of high
dielectric permittivity molecules such as 1-ethynyl-4-nitrobenze followed by hydrosilylation to receive
a dielectric elastomer. Using a PDMS spacer (that inherently offers high elastic properties) and 5.6 wt %
of 1-ethynyl-4-nitrobenze (that raises the dielectric permittivity by 70%), the dielectric elastomer can
be used in the field of transducers.

6. Conclusions

Hydrosilylation is a key strategy for the synthesis of various organosilicon substrates for
functionalized products (or precursors thereof). By careful choice of the catalyst, diastereomerically
pure products can be synthesized in high yields. Commonly, these catalysts are platinum-based; recent
developments have addressed metal catalysts based on (comparably) inexpensive nickel, iron, and
cobalt compounds. Metal-free catalysts such as Lewis acids have also been developed. Notably, stimuli
other than heat (such as the application of UV light) can be utilized to start the hydrosilylation in a
formulated reaction mixture. For the industrial exploitation of this reaction, adequately-priced catalysts
have to be tailor-made to suit the industrial process: High-tech polymers and organofunctional silanes
mainly require highly selective catalysts which can be easily recovered. An analysis of potential
applications of materials derived from hydrosilylation revealed the fields of base chemicals, coatings
and electronics.

Despite the progress of the recent years, challenges exist to be overcome for industrial applications.
In our opinion, the five approaches listed hereinafter inherently bear a huge potential to advance the
applicability of the hydrosilylation:

• Low-cost catalysts: Non-platinum transition metal catalysts have drastically lower the catalyst
prices compared to platinum, and can be used in very low catalyst loadings.

• Non-metal catalysts: In addition to their cost efficiency, catalysts such as borane-based Lewis
acids can be easily separated from the final (polymeric) products. They meet demands of the area
of microelectronics, in which traces of metals may cause issues of performance.

• Triggered hydrosilylation: Stimuli other than heat give further flexibility to the processing
schedule and eventually enhance the storage stability. Light is a favorable stimulus, as it allows
for spatiotemporal control and specific activation.

• Solvent-free processes: These hydrosilylation reactions represent a big step towards green chemistry.
• Selectivity: Chemoselective hydrosilylation can pave the way to novel materials from a broad

range of different substrates.

Hence, at the beginning of the second half of its first century, hydrosilylation reactions have
advanced to a level that renders them predestined for transfer into commercial products. With ongoing
scientific developments, this transfer is likely to occur in the very near future.
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