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Abstract: In the present work, a simple simulation is advanced based on a Callister equation
considering the impacts of interphase and carbon nanotube (CNT) nets on the strength of
nanocomposites after percolation onset. The advanced model can analyze the strength of
nanocomposite by filler aspect ratio (α), percolation beginning (ϕp), interphase depth (t), interphase
power (σi), net density (N), and net power (σN). The empirical consequences of several samples agree
with the estimations of the industrialised model. The nanocomposite strength straightly depends
on “α”, “t”, “σi”, “N”, and “σN”, while the radius and percolation onset of CNT play the inverse
characters. The reasonable impacts of net and interphase possessions on the nanocomposite strength
rationalise the accurate progress of the Callister equation.

Keywords: polymer CNT nanocomposites; mechanical percolation; interphase properties; filler
network; tensile strength

1. Introduction

Many researches have been conducted on carbon nanotubes (CNT) and polymer CNT
nanocomposites, because of their large aspect ratio, low density, acceptable chemical stability, excellent
thermal conductivity, and mechanical possessions [1–14]. Therefore, CNT show a good potential in
polymer nanocomposites, because the various defects of neat polymers limit their applications in
different fields. However, some challenges occur in the synthesis of polymer CNT nanocomposites.
For example, van der Waals attractions create aggregates/agglomerates during the fabrication of
nanocomposites [15–17]. The CNT can be modified with strong acid or strong oxidization agents to
disrupt the agglomerates and provide the noble dispersal of filler at the nanoscale in the polymer
medium, which are obligatory to develop the sample properties [18–20].

The big nanoparticles surface part per volume and the robust linkage at the matrix–nanoparticles
interfacial interface construct the interphase zone in the nanocomposites [21–24]. The properties of
interphase such as depth, power, and modulus were investigated in the previous papers [25,26]. It was
revealed that a dense and sturdy interphase causes a substantial modulus and power in polymer
nanocomposites [27]. The simulation papers for the mechanical possessions of nanocomposites
simplify the characterization of interphase, because the experimental handling of interphase involves
the characterization of interfacial interaction at the nanoscale [28–30].

Polymer CNT nanocomposites generally display high conductivity whenever the CNT volume
portion is higher than the percolation beginning [31,32]. In fact, the percolation onset is the smallest
portion of nanofiller in the nanocomposites, which can form the net structures. So, it is impossible
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to gain the electrical conductivity in an insulated polymer below the percolation threshold, because
the network of nanoparticles can conduct the electric current. It can be concluded that the electrical
percolation onset is the critical content of nanofiller improving the electrical conductivity, meaningfully.

By the addition of filler concentration in polymer nanocomposites, a significant increment
was described for mechanical possessions referred to as mechanical percolation onset [33,34].
The quick growths of mechanical powers is scarcely explained by electrical percolation beginning,
but both electrical and mechanical percolations were correlated to the size of nanoparticles [35,36].
The mechanical percolation was also explained in the literature. Ouali et al. [37] established an equation
for the stiffness of polymer composites supposing the filler percolation. It was widely utilized by
the previous researchers to estimate the nanocomposites modulus after percolation inception [38,39].
However, Ouali and other conventional models cannot estimate the mechanical performance of
nanocomposites, because they do not reflect the excellent possessions of nanoparticles such as big
surface area and networking capability. It was reported that the nanoparticles such as CNT produce
the net in the nanocomposite samples at very small filler loadings [40–42]. This means that the
percolation threshold for conductivity and mechanical behavior commonly happens in polymer
CNT nanocomposites.

The simple Callister model [43] disregards the interphase and net features for the tensile/yield
strength of nanocomposites. In this paper, the Callister model is expanded by interphase and filler
network characteristics for CNT-reinforced samples. Two interphase and network terms are defined to
assume the interphase and network properties. The experimental results of various samples are used
to assess the calculations of the original and industrialized equations. Also, the established equations
are applied to display the dependencies of interphase and network terms as well as the nanocomposite
strength on the nanoparticle size, percolation onset, interphase depth, and network properties.

2. Theoretical Views

The tensile strength of nanocomposites is a function of material possessions and interface
interaction according to the Callister model [43] as:

σR = 1 + (
αs
σm
− 1)ϕ f (1)

where “σR” shows the relative strength (σR = σc/σm), “σc” and “σm” denote the strengths of
nanocomposite and polymer medium, individually. “α” is filler aspect ratio defined as α = l/d;
“l” and “d” are the filler length and diameter, in that order. Also, “S” is an interfacial stress transfer
factor demonstrating the extent of interfacial linkages and “ϕ f ” is filler volume portion.

Pukanszky [44] also simulated the strength of polymer nanocomposites as:

σR =
1−ϕ f

1 + 2.5ϕ f
exp(Bϕ f ) (2)

where “B” as interfacial parameter reflects the capacity of stress transferring from matrix toward
nanoparticles. “B” is a function of the depth and power of interphase district as:

B = (1 + Acd f t) ln(
σi
σm

) (3)

where “Ac” and “df” are filler specific surface area and density, correspondingly. Also, “t” and “σi”
show the depth and strength of interphase region. So, “B” parameter can express the possessions of
interphase in the nanocomposites by the strength experimental measurements.

Pukanszky model can be restructured to:

ln(σR
1 + 2.5ϕ f

1−ϕ f
) = Bϕ f (4)
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where the plot of ln(σR
1+2.5ϕ f

1−ϕ f
)against “ϕ f ” results in a linear correlation with slope of “B”.

In our previous work [45], it was shown that the “B” parameter for polymer CNT nanocomposites
can be expressed by:

B = (1 +
2t
R
) ln(

σi
σm

) (5)

where “R” is the radius of nanotubes. Similarly, it was reported that the maximum level of “B” as
“Bmax” can be given by:

Bmax = (1 +
80
R
) ln(

25000
σm

) (6)

where “R” and “σm” get nm and MPa units, correspondingly.
“B” parameter was also related to “S” for the nanocomposites containing long fillers such as clay

and CNT [46] as:
B =

αs
σm

+ 2.4 (7)

By restructuring of above equation, the “S” parameter is calculated by:

s =
(B− 2.4)σm

α
(8)

The “S” parameter can be expressed by the interphase properties through the replacement of “B”
from Equation (7) in the above equation as:

sI =
(1 + 2t

R ) ln( σi
σm

)σm − 2.4σm

α
(9)

Also, the “Smax” parameter can be given assuming the “Bmax” as:

smax =
(1 + 80

R ) ln( 25000
σm

)σm − 2.4σm

α
(10)

In our previous study [45], the “BN” parameter was defined to capture the network role in
Pukanszky model as:

BN =
αN
105 ln(

σN

σm
) (11)

where “N” is the CNT number in a unit part as network density and “σN” is the network power.
The “S” parameter can be also expressed by the properties of filler network. In this regard, the

“BN” definition is replaced from Equation (11) into Equation (8) as:

sN = σm
N

105 ln(
σN

σm
) −

2.4σm

α
(12)

When the interphase and net effects are taken into account in the Callister model (Equation (1)), a
developed model is obtained as:

σR = 1 + (
αsI

σm
+
αsN

σm
− 1)ϕ f (13)

By substituting of “SI” and “SN” parameters from Equations (9) and (12) into above equation, the
developed Callister model is proposed as:

σR = 1 + [(1 +
2t
R
) ln(

σi
σm

) + α
N

105 ln(
σN

σm
) − 5.8]ϕ f (14)

which expresses the strength of nanocomposites by interphase and net characteristics.
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As indicated, the percolation for electrical conductivity and rigidity of nanocomposites are
adversely correlated to “α”. Chen et al. [47] suggested the percolation onset for the stiffness of CNT
net as a function of “α” as:

ϕp =
2.2
α

(15)

By this expression, the “SN” parameter (Equation (12)) can be given by percolation threshold as:

sN = σm
N

105 ln(
σN

σm
) −

1.2σmϕp

1.1
(16)

Similarly, the “ϕp” significance on the nanocomposites strength can be evaluated by replacing of
“SN” from the latter equation into Equation (13) as:

σR = 1 + [(1 +
2t
R
) ln(

σi
σm

) +
2.2N
105ϕp

ln(
σN

σm
) − 5.8]ϕ f (17)

which reveals the correlations of nanocomposites strength to the dimension and percolation onset of
CNT in addition to the physical characteristics of filler net and interphase.

3. Results and Discussion

Firstly, the predictability of the original and industrialised models are assessed by various
experimental results from literature. After that, the effects of interphase and net possessions on
the “SI” and “SN” and the strength of nanocomposites are designed by 3D and contour plots using
MATLAB software.

Figure 1 exhibits the experimental results of relative strength for polyacrylonitrile
(PAN)/multi-walled CNT (MWCNT) nanofiber (σm = 70 MPa) [48], polysilsesquioxane (PSQ)/MWCNT
(σm = 6 MPa) [49], PP/MWCNT (σm = 28.2 MPa) [50] and chitosan/MWCNT (σm = 11.6 MPa) [51]
and the calculations of original Callister model at different filler volume fractions. It is observed that
the calculations correctly fit the experimental outputs, which authorize the general rationality of the
Callister model. However, the slopes of the lines for PAN/MWCNT, PSQ/MWCNT, PP/MWCNT,
and chitosan/MWCNT samples are calculated as 70, 236, 26, and 146, respectively, which are equal
to( αs

σm
− 1)according to Equation (1). Assuming the “σm” values of samples and an average α = 300,

the “S” is calculated as 16.6, 4.74, 2.54, and 5.7 MPa for PAN/MWCNT, PSQ/MWCNT, PP/MWCNT
and chitosan/MWCNT samples, respectively. Nevertheless, Equation (10) obtains the “Smax” values
for PAN/MWCNT, PSQ/MWCNT, PP/MWCNT and chitosan/MWCNT samples as 11.8, 1.5, 5.5, and
2.6 MPa, respectively (average R = 10 nm). The “Smax” is the maximum level of “SI”, which is calculated
by the highest ranges of interphase properties.

While the “S” values are higher than the “Smax” calculations, a different strengthening agent
beside interphase as filler network is effective in these samples. In other words, the filler net plays a
strengthening role in polymer nanocomposites alongside the interphase. Therefore, the developed
Callister model (Equation (14)) can express the tensile strength of samples and the original model
cannot predict the strength above percolation threshold. The satisfactory predictability of the developed
model is due to the suppositions of interphase and filler network by “SI” and “SN” parameters, while
the original model only accounts the interphase belongings.
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Figure 1. The experimental relative strength and the calculations of Callister model for (a) PAN/MWCNT,
(b) PSQ/MWCNT, (c) PP/MWCNT and (d) chitosan/MWCNT examples.

Figure 2a illustrates the influences of “R” and “t” terms on the “SI” at σm = 40 MPa, α = 300
and σN = 5000 MPa. The “SI” values of about 1 are calculated at the high levels of “R” and small
“t”. It mentions that the big particles and thin interphase reduce the “SI” in nanocomposites. Also,
the smallest nanoparticles as well as the densest interphase produce the best “SI” level as 8. Therefore,
the small nanoparticles and dense interphase are wanted for a good level of “SI” parameter. On
the other hand, Figure 2b shows that the “N” and “α” parameters directly change the level of “SN”
calculated by Equation (12) at σm = 40 MPa and σN = 5000 MPa. The negative levels of “SN” are
observed by the low ranges of “N” and “α”, whereas the highest “SN” is achieved by the great
levels of these factors. Hence, the higher levels of “N” and “α” are required for a higher “SN” in
the nanocomposites.

Figure 3 also shows the significances of different parameters attributed to interphase and filler net
on the relative strength. Figure 3a illustrates the roles of “R” and “t” parameters as the dimensions
of nanoparticles and interphase in the relative strength at ϕ f = 0.02, σm = 40 MPa, α = 300, N = 300,
and σi = σN = 5000 MPa. The greatest strength is expectedly observed by the minimum “R” and
the uppermost “t” demonstrating that the thinnest nanotubes and the thickest interphase cause the
highest “σR” in polymer CNT nanocomposites. Furthermore, the poorest strength is revealed at dense
nanoparticles and reedy interphase. The slight diameter of CNT can strengthen the nanocomposites,
because the small nanofiller provides the robust and huge interfacial district with the polymer chains,
which significantly improve the tensile strength [52,53]. On the other hand, it is clear that a profuse
interphase yields a high content of interphase in the samples, which powerfully strengthens the
nanocomposites [54,55]. As a result, a better strength owing the thinner nanotubes and the thicker
interphase are expected in polymer nanocomposites containing CNT.
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Figure 3. Dependence of “σR” on (a) nanoparticle and interphase dimensions (ϕ f = 0.02, σm = 40 MPa,
α = 300, N = 300 and σi = σN = 5000 MPa and (b) “N” and “α” parameters at ϕ f = 0.02, σm = 40 MPa, R
= 10 nm, t = 20 nm and σi = σN = 5000 MPa.

Figure 3b also reveals the influences of “N” and “α” factors on the relative tensile strength at
ϕ f = 0.02, σm = 40 MPa, R = 10 nm, t = 20 nm and σi = σN = 5000 MPa. The “σR” level of about 1.32
is detected at the slight heights of both “N” and “α”, but the maximum relative strength as 1.52 is
achieved by N = α = 500. So, the finest level of strength is found by the highest levels of “N” and
“α” parameters. These results are anticipated, because the “N” and “α” parameters demonstrate the
network density and aspect ratio of CNT in nanocomposites. The high ranges of “N” demonstrate the
great density of CNT network, which strongly strengthens the nanocomposites, due to the excellent
tensile strength of CNT as 10–50 GPa. Also, a high “α” shows the long and thin nanotubes incorporated
in the polymer matrix. Obviously, the longer and thinner nanotubes play a better strengthening role in
the nanocomposites, because of the greater and stronger interfacial districts [56]. Therefore, a greater
“α” rationally causes a higher strength in polymer nanocomposites. The reasons for the impacts of
different interphase and network parameters on the polymer nanocomposites strength justify the right
expansion of the Callister model.

Figure 4a represents the “σm” and “σi” effects on the “SI” at R = 10 nm, t = 20 nm, and α = 300
according to Equation (9). The high ranges of “σm” and “σi” increase the “SI”, where the low levels
of these parameters decrease it. The best “SI” as 3.5 is obtained by σm = 60 MPa and σi = 5000 MPa,
but “SI” decreases to 1.5 at σm = 30 MPa and σi = 1000 MPa. Consequently, “σi” shows a positive
character in “SI” parameter, because the “SI” as an interphase parameter directly relates to the strength
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of interphase. Moreover, Figure 4b displays the dependence of “SN” on “σm” and “σN” parameters
at N = 300 and α = 300. Generally, “SN” is directly correlated to both “σm” and “σN” parameters in
polymer nanocomposites. In other words, the “SN” as a network parameter directly depends on the
strengths of polymer medium and nanoparticles net. The greatest “σm” and “σN” ranges introduce the
highest level of “SN”, while a low “SN” is observed at low “σN”. So, a low level of network strength
results in a poor “SN” at dissimilar values of matrix strength. This trend is sensible, because a poor
network should give a small level of network parameter based on the definition of “SN”.
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Figure 5 displays the influences of “σi” and “σN” factors on the relative strength at ϕ f = 0.02, σm

= 40 MPa, R = 10 nm, t = 20 nm, α = 300, and N = 300 by 3D and contour illustrations. The highest
strength is obtained by the highest levels of interphase and network strengths. In addition, the lowliest
strength is observed by the smallest values of “σi” and “σN” parameters. At the same conditions, the
relative strength improves from 1.26 at σi = σN = 1000 MPa to 1.44 at σi = σN = 5000 MPa, which reveals
that the sample strength straightly depends on the interphase and network strengths. A polymer
nanocomposite contains the polymer host, nanoparticles, interphase, and filler network after the
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Furthermore, the behavior of a nanocomposite obviously reflects the properties of its components.
Consequently, the strength of a nanocomposite correlates to the strengths of its constituents, as
expressed by the developed model. The direct dependence of nanocomposite strength on the strengths
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of interphase and filler net was designated at the prior studies [53,57]. Accordingly, the positive roles
of interphase and net strengths in the nanocomposite strength are rational, which defend the right
development of the Callister model assuming the interphase and percolating network.

Figure 6 shows the effects of “ϕp” on “SN” and “σR” at ϕ f = 0.02, σm = 40 MPa, R = 10 nm, t = 20
nm, N = 300 and σi = σN = 5000 MPa. The “SN” parameter decreases by an increment of “ϕp” at the
same levels of other parameters. According to Figure 6a, SN = 0.47 is obtained at ϕp = 0.001, while the
“ϕp” level of 0.005 decreases the “SN” to 0.3, demonstrating the reverse relation of “ϕp” parameter with
“SN”. “ϕp” determines the filler concentration above which the nanoparticles produce the networks.
Clearly, a high “ϕp” delays the network creation to high filler concentrations. So, the observation of an
inverse correlation between “ϕp” parameter and “SN” as a network parameter is not peculiar.
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Figure 6b also exemplifies the “ϕp” significance on the relative strength of nanocomposites based
on Equation (17). An opposite relation is also observed between “ϕp” parameter and relative strength of
nanocomposites. The strongest sample is found by the least “ϕp”, where the high value of “ϕp” weakens
the nanocomposites. As explained, a low “ϕp” indicates that the low concentration of nanoparticles
can create a filler network. In this condition, the small amount of nanoparticles can mainly develop
the nanocomposite strength through the formation filler network, which bears a high loading [58,59].
On the other hand, a high level of “ϕp” cannot generate a network in the nanocomposite by a low
amount of nanoparticles. In this status, the nanocomposite cannot show a noteworthy tensile strength
below percolation. Thus, the developed model decorously displays an inverse relation among the
strength of nanocomposites and percolation onset.

4. Conclusions

A Callister model suggested for the strength of conventional composites was developed supposing
the interphase and filler net roles by numerous parameters, including filler aspect ratio, percolation
threshold, interphase thickness, and strength together with the density and strength of filler network.
In this regard, two parameters including “SI” and “SN” were defined, which assume the interphase and
network properties, correspondingly. The experimental results of several samples display a superior
agreement with the developed model compared to the original one. The thinnest nanoparticles
as well as the thickest interphase provide the finest levels of “SI” and tensile strength in polymer
nanocomposites. Moreover, both “N” and “α” parameters directly manage the levels of “SN” and
tensile strength of nanocomposite. Also, the high ranges of “σm”, “σi”, and “σN” increase the “SI”,
“SN”, and nanocomposite strength. The “SN” parameter decreases by an increment of “ϕp” at the same
levels of other parameters, because a higher percolation threshold delays the development of net to
greater filler concentration. An inverse relation is also observed between “ϕp” and relative strength
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of nanocomposites. In conclusion, the judicious correlations of tensile strength to the interphase
and network possessions confirm the right expansion of Callister simulation for the tensile power of
nanocomposite samples.
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