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Abstract: An analysis of the network structures in thiol-ene UV curing resins was carried out
using reworkable resins composed of di(meth)acrylate monomers having tertiary ester linkages.
The effect of the functionality of the thiols, the functional ratio of the thiol and ene functions, their
conversions and curing atmosphere on the chain lengths was discussed. A mixture of (meth)acrylates,
thiol compounds, a photoradical initiator, and a photoacid generator was cured by irradiation at
365 nm. The cured samples were degraded by heating after irradiation at 254 nm. Size exclusion
chromatography (SEC) and 1H NMR analyses of the degraded samples were carried out after the
methylation. The crosslinking conditions strongly affected the network structures. The degraded
samples have molecular weights between 250 and 2700. The molecular weights of the degraded resins
increased with the functionality of the thiol compounds. The chain length dependence suggests that
thiol compounds with a high functionality have a low reactivity due to steric hindrance. The chain
lengths of the degraded networks were nearly proportional to the concentration of the (meth)acrylate
monomers. The addition of reactive diluents enhanced the reactivity and increased the chain length.
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1. Introduction

Degradable thermosets [1–14] have attracted much attention not only for environmental
aspects [4–7], but also for interesting investigations such as biomedical applications [8], adhesives [9],
optical properties [10], and structural analysis of the networks in the thermosets [11–14].

Especially, UV curable resins, a very important class of thermosets, are widely used as adhesives,
printing plates, coatings, etc., due to their toughness and high reactivity. In general, multifunctional
monomers having reactive units were irradiated to form UV cured resins in the presence of
a photoinitiator.

The UV curing system is roughly categorized into three units, i.e., the radical system, cationic
system, and anionic system. The radical system is mainly used for the conventional UV curing system.
High mechanical strength, high solvent and heat resistance, short curing time, and energy savings
were easily accomplished, therefore, the system is cost-effective. However, the demand for a higher
reactivity and reduced oxygen inhibition still remain. Moreover, the analysis of polymer networks
in photocured resins [11–14] is still challenging. In this study, we focused on the thiol-ene UV curing
system which reduces oxygen inhibition, and a reworkable monomer, which was used for the analysis
of the network structures.

The thiol-ene system [14–37] has been extensively studied by Hoyle et al. [15–20] and
Bowman et al. [21–24]. In the thiol-ene system, as shown in Figure 1, the sequential addition
reaction of thiyl radicals to C=C double bonds followed by hydrogen abstraction from the thiol
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regenerates the thiyl radicals. The regeneration of thiyl radicals in the presence of oxygen gives
tolerance to the oxygen inhibition. In the thiol-(meth)acrylate system (Figure 1), the conventional
thiol-ene reaction and homopolymerization of (meth)acrylate simultaneously proceed [21]. The kinetics
of the thiol-methacrylate system was investigated by Bowman et al. [21]. We focused on the
investigation of the chain length in the thiol-(meth)acrylate system using a reworkable monomer.
The investigation of the chain length of the methacryate photopolymerization using a reworkable
monomer, a dimethacryate having anhydride linkages, was reported by Anseth [11]. This work
motivated us to investigate the chain length of the thiol-(meth)acrylate system [14].
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di(tert-butylphenyl)iodonium trifluoromethanesulfonate (DITF), trimethylsilyldiazomethane (10 wt 
% solution in hexane), and a monofunctional monomer, benzyl acryate (BzA) were purchased from 
Tokyo Chemical Industries (Tokyo, Japan) and used as received. Reworkable monomers, 1,1’-(1,1,4,4-
tetramethyl-1,4-butanediyl) diacrylate (DHDA) and 1,1’-(1,1,4,4-tetramethyl-1,4-
butanediyl)dimethacrylate (DHDMA), were synthesized as already described [4]. A difunctional 
thiol, 1,4-butanediyl bis(3-mercaptobutyrate) (BDMB), a trifunctional thiol, trimethylol propane 
tris(3-mercaptobutyrate) (TAMB), and a tetrafunctional thiol, pentaerythritol tetrakis(3-

Figure 1. Reaction mechanism of thiol-acrylate system.

In this paper, we extend the previous study [14] involving the analysis of polymer networks in
the thiol-ene UV curing system using a reworkable monomer. A schematic representation of this study
is shown in Figure 2. A reworkable monomer, which has both (meth)acryl units, and degradable
units was mixed with multifunctional thiol compounds. UV curing of the blends of the reworkable
monomer and the thiols was carried out by irradiation at 365 nm in the presence of a photoradical
initiator. The tertiary ester linkages incorporated in the networks were cleaved by the photoinduced
acid generated from the photoacid generator upon irradiation at 254 nm and followed by baking.
The degraded compounds were (meth)acrylic acid derivatives and a diene which is vaporized and
removed from the system. The analysis of the network structures was carried out by 1 H NMR and SEC
measurements. The effects of formulations, curing conditions, and oxygen inhibition on the network
structures of the cured resins were discussed.
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2. Materials and Methods

A photoradical initiator, 2,2-dimethoxy-2-phenylacetophenone (DMPA), a photoacid generator,
di(tert-butylphenyl)iodonium trifluoromethanesulfonate (DITF), trimethylsilyldiazomethane (10 wt %
solution in hexane), and a monofunctional monomer, benzyl acryate (BzA) were purchased
from Tokyo Chemical Industries (Tokyo, Japan) and used as received. Reworkable monomers,
1,1′-(1,1,4,4-tetramethyl-1,4-butanediyl) diacrylate (DHDA) and 1,1′-(1,1,4,4-tetramethyl-1,4-butanediyl)
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dimethacrylate (DHDMA), were synthesized as already described [4]. A difunctional thiol, 1,4-butanediyl
bis(3-mercaptobutyrate) (BDMB), a trifunctional thiol, trimethylol propane tris(3-mercaptobutyrate)
(TAMB), and a tetrafunctional thiol, pentaerythritol tetrakis(3-mercaptobutyrate) (PEMB) were kindly
donated by Showa Denko K.K. and used as received. The chemical structures of DHDA, DHDMA, BzA,
BDMB, TAMB, PEMB, DMPA, and DITF are shown in Figure 3.
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A mixture of monomers, a photoradical initiator, a photoacid generator, and thiol compounds
(ca. 2 mg) was placed in a 5-mm-diameter aluminum pan. The thickness of the samples was about
200 µm. Irradiation at 365 nm was performed in air or under N2 using a Shimadzu UV-DSC system
with a mercury-xenon lamp (Hamamatsu Photonics, LIGHTNINGCURE LC8, 200 W, Hamamatsu,
Japan) in combination with a 365 nm bandpass filter. The cured sample was irradiated at 254 nm in air
using an Asahi Spectra MAX-301 xenon lamp (300 W) (Asahi Spectra, Tokyo, Japan) in combination
with a 254 nm bandpass filter. The intensity of the light was measured by an Orc Light Measure
UV-M02 (ORC Manufacturing Co., Ltd., Machida, Japan). The sample pan was baked at 160 °C
for 5 min on a conventional hot plate. The insoluble fraction was determined by gravimetry before
and after dissolution of the sample in tetrahydrofuran (THF). The methylation of the samples was
carried out by the reaction with trimethyldiazomethane for 2 h in toluene/hexane (1:1, v/v) at room
temperature to give the methylated samples.

The transparency of the UV-cured samples was characterized by UV-vis spectroscopy taken by
a Shimadzu UV-2400 PC (Shimadzu, Kyoto, Japan). More than 90% of the light was penetrated in
all experimental conditions in this study. Photo-differential scanning calorimetry (photo-DSC) was
carried out using a Shimadzu UV-DSC system (Shimadzu, Kyoto, Japan) to analyze reaction rate of
the samples. The detailed description is appeared in Results and Discussion. Raman spectra were
obtained by a JASCO RMP-315 (JASCO Corporation, Hachioji, Japan) to analyze the conversion of
thiol and (meth)acryl functions in the samples as described in Results and Discussion. The SEC
measurements were carried out to analyze the molecular weights of the degraded samples using an
SEC system (JASCO PU-2080, JASCO Corporation, Hachioji, Japan) with polystyrene gel columns,
TSKgel GMHHR-N, and TSKgel GMHHR-H. The molecular weights for the polymers were calibrated
by poly(methyl methacrylate) standards. A preparative SEC was carried out to analyze the structures
of the degraded samples using polystyrene gel columns, TSKgel G2000H6 and G1000HHR. A 1H NMR
measurement was carried out using a JEOL ECX-400 (JEOL Ltd., Akishima, Japan) to analyze the chain
lengths of the degraded samples. The detailed description is appeared in Results and Discussion.
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3. Results and Discussion

3.1. Photocuring

The photocuring behavior of the mixture of (meth)acrylates, thiols, a photoradical initiator, and a
photoacid generator was investigated using photo-DSC and Raman measurements. The photo-DSC
measurements show the relative polymerization rates of the mixtures, which are useful to discuss the
effect of the structure, formulation, and atmosphere on the photocuring reactivity. Figure 4 shows the
Photo-DSC exotherms of the (meth)acrylate and thiol compounds mixtures containing 1 wt % DMPA
and 1 wt % DITF.

As shown in Figure 4, the ratio of thiol and acryl groups was not strongly affected by the
photopolymerization behavior. In terms of oxygen inhibition, a slight difference was observed when
the DHDA/PEMB mixtures with a 1 to 1 functionality of the acryl/thiol units were used. Thus,
there is little oxygen inhibition in the system. Photopolymerization using DHDA is faster than when
using DHDMA, which is reasonable from the fact of the faster polymerization of common acrylates
than methacrylates.

Polymers 2018, 10, x FOR PEER REVIEW  4 of 12 

 

measurements show the relative polymerization rates of the mixtures, which are useful to discuss the 
effect of the structure, formulation, and atmosphere on the photocuring reactivity. Figure 4 shows 
the Photo-DSC exotherms of the (meth)acrylate and thiol compounds mixtures containing 1 wt % 
DMPA and 1 wt % DITF. 

As shown in Figure 4, the ratio of thiol and acryl groups was not strongly affected by the 
photopolymerization behavior. In terms of oxygen inhibition, a slight difference was observed when 
the DHDA/PEMB mixtures with a 1 to 1 functionality of the acryl/thiol units were used. Thus, there 
is little oxygen inhibition in the system. Photopolymerization using DHDA is faster than when using 
DHDMA, which is reasonable from the fact of the faster polymerization of common acrylates than 
methacrylates. 

 
Figure 4. Photo-differential scanning calorimetry (photo-DSC) exotherms of the mixtures of 1,1’-
(1,1,4,4-tetramethyl-1,4-butanediyl) diacrylate (DHDA) or 1,1’-(1,1,4,4-tetramethyl-1,4-
butanediyl)dimethacrylate (DHDMA) and pentaerythritol tetrakis(3-mercaptobutyrate) (PEMB) 
containing 1 wt % 2,2-dimethoxy-2-phenylacetophenone (DMPA) and 1 wt % di(tert-
butylphenyl)iodonium trifluoromethanesulfonate (DITF). Irradiation conditions: 0.50 mW/cm2 at 365 
nm. The ratios in the figure show the functional ratio of the (meth)acryl and thiol groups. 

The effect of the functionality of the thiol compounds was also investigated by Photo-DSC 
exotherms as shown in Figure 5. The slightly low photopolymerization rate using BDMB compared 
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Figure 4. Photo-differential scanning calorimetry (photo-DSC) exotherms of the mixtures of
1,1′-(1,1,4,4-tetramethyl-1,4-butanediyl) diacrylate (DHDA) or 1,1′-(1,1,4,4-tetramethyl-1,4-butanediyl)
dimethacrylate (DHDMA) and pentaerythritol tetrakis(3-mercaptobutyrate) (PEMB) containing
1 wt % 2,2-dimethoxy-2-phenylacetophenone (DMPA) and 1 wt % di(tert-butylphenyl)iodonium
trifluoromethanesulfonate (DITF). Irradiation conditions: 0.50 mW/cm2 at 365 nm. The ratios in the
figure show the functional ratio of the (meth)acryl and thiol groups.

The effect of the functionality of the thiol compounds was also investigated by Photo-DSC
exotherms as shown in Figure 5. The slightly low photopolymerization rate using BDMB compared to
PEMB and TPMB is due to low viscosity of the cured sample which also has low crosslinking densities.
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Figure 5. Effect of functionality of the thiol compounds on Photo-DSC exotherms of the mixtures
of DHDA and thiol compounds containing 1 wt % DMPA and 1 wt % DITF. Irradiation conditions:
0.50 mW/cm2 at 365 nm in air. The ratios in the figure show the functional ratio of the acryl and
thiol groups.

Conversion of the thiol-(meth)acrylate polymer networks was investigated by Raman
spectroscopy. Figure 6 shows the Raman spectral changes of the DHDA/PEMB mixtures containing
an equimolar content of the thiol and C=C double bond groups. The peaks ascribed to both the C=C
double bond (1628 cm−1) and S–H bond (2568 cm−1) decreased during the irradiation. Conversions of
the S–H groups and the C=C double bond groups were determined by the peak heights.
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Figure 6. Raman spectra of the mixture of DHDA and PEMB (1/1, functional ratio of acryl and thiol
groups) containing 1 wt % DMPA and 1 wt % DITF before and after irradiation. Irradiation conditions:
300 mJ/cm2 at 365 nm in air.

The effect of the irradiation dose on the conversion of the methacryl and thiol groups was
investigated and compared to the insoluble fraction of the samples (Figure 7). During an early stage
of the photopolymerization, the thiol groups and the C=C groups were proportionally consumed.
The homopolymerization of acrylates then exceeded the thiol-ene reaction when the conversions
reached about 30%. The conversion curve suggested that the network structures in the DHDA/PEMB
system mainly consist of two parts, i.e., thiol-ene structure and homopolymer of the acrylates.
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The insoluble fraction also increased with the irradiation dose. The insoluble fraction coincided
with the conversion of the C=C groups.
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3.2. Analysis of Chain Length

The analysis of the chain length was carried out using SEC measurements. The SEC profiles
of the cured mixtures of (meth)acrylates and thiols containing DMPA and DITF after degradation
are shown in Figures 8 and 9. The weight-average molecular weight (Mw), the number-average
molecular weight (Mn), and polydispersity (Mw/Mn) obtained from the mixtures of DHDA and PEMB
which contain equimolar amounts of the C=C double bond and thiol groups, were 1200, 820, and
1.5, respectively. The obtained molecular weights do not correspond to the exact molecular weights
because of the difference between the hydrodynamic volumes of poly(methyl methacrylate)s and
those of the obtained compounds. The trial to investigate the relationship between the exact mass
and the mass observed in SEC was unsuccessful using MALDI-TOF mass and GC mass spectroscopy.
Thus, we discuss the values obtained in SEC qualitatively. The molecular weight (Mp) calculated by
the retention time which showed a maximum intensity in the SEC measurements of the sample from
DHDA/PEMB (1/1, functional ratio) was 700. The small shoulder at around 1400 in the molecular
weight is presumably due to dimer of main fraction as discussed below. The shift in the peaks was
observed by changing the formulation of DHDA and PEMB. The Mp, Mw, Mn, Mw/Mn values obtained
from the sample of DHDA/PEMB (2/1, functional ratio) were 920, 1400, 950, and 1.5, respectively.
The increased values strongly support that the chain length in the UV cured resin was proportional to
the ratio of the thiol and acryl groups. The Mw/Mn value was not affected by the ratio of the thiol and
acryl groups. Addition of reactive diluent BzA affected the SEC profile as shown in Figure 8. The Mp,
Mw, Mn, Mw/Mn values obtained from the sample of DHDA/BzA/PEMB (1/1/1, functional ratio)
were 1490, 1900, 1300, and 1.4, respectively. The enhanced reactivity and the increased chain length
may be due to the low viscosity of the system. Using DHDMA instead of DHDA, slight low chain
length was observed (620, 1200, 700, and 1.7 in Mp, Mw, Mn, and Mw/Mn, respectively).
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The ratios in the figure show the functional ratio of the acryl and thiol groups.

The effect of the functionality of thiol compounds was also investigated (Figure 9). The Mp,
Mw, Mn, Mw/Mn values obtained from the sample of DHDA/TPMB (1/1, functional ratio) were
570, 770, 620, and 1.3, respectively. In addition, the Mp, Mw, Mn, Mw/Mn values obtained from the
sample of DHDA/BDMB (1/1, functional ratio) were 250, 450, 260, and 1.7, respectively. We consider
that the difference is mainly due to the effect of molecular weight (MW) of thiol compounds, PEMB
(MW = 545), TPMB (MW = 441), and BDMB (MW = 294). The reaction mechanism shown in Figure 1
suggests that essentially one thiol compound is incorporated per one degraded compound. It is
reasonable that, assuming that the chain length of acryl units in the degraded compound is same
in the degraded samples, we can account for the difference of the molecular weights among these
compounds. Thus, we consider that the functionality of the thiol compounds only slightly affects the
chain length of acrylates.
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Figure 9. SEC profiles of degraded photocurable resins containing DMPA (1 wt %) and DITF (1 wt %).
The functional ratio of the acryl and thiol groups was 1 to 1.

Analysis of the degradation products in the cured thiol/(meth)acrylates was carried out.
The degradation products were separated by their molecular weights using preparative SEC
(Figure 10a). The fractionated compounds were analyzed by 1H NMR spectroscopy (Figure 10b).
The information about the ratio of the thiol and acryl compounds is included in each fraction.
In Fraction 1, the peak at a 4.2 ppm ascribed to methyleneoxy units in PEMB and the peak at
3.7 ppm ascribed to methoxy units in oligo(methyl acrylate) derived from DHDA were observed.
The integrated peak area of each peaks are defined as It and Ia, respectively. Using the values, we
calculate the chain length, ν, the number of (meth)acryl units divided by the number of thiol units by
the following equation:



Polymers 2019, 11, 5 8 of 12

ν = Ia / It × 8/3 (1)

In DHDA/TPMB and DHDA/BDMB system, the ν values were defined as the
following equations:

ν = Ia / It × 6/3 (2)

ν = Ia / It × 4/3 (3)

In DHDA/BzA/PEMB system, the peak at 5.1 ppm ascribed to benzylic methylene units in BzA
appeared in addition to the peak at 4.2 ppm ascribed to methyleneoxy units in PEMB and the peak at
3.7 ppm ascribed to methoxy units in oligo(methyl acrylate) derived from DHDA. When the integrated
benzylic peak area was defined as Ib, ν was defined as the following equation:

ν = (Ia / 3 + Ib /2)/(It / 8) (4)

The obtained ν value from Fraction 1 in Figure 10b was 3.7, and the value was identical to
that obtained from Fraction 2. The observation indicates that Fraction 1 is consisted from the
dimerization of the compounds that appeared in Fraction 2 by the termination of carbon to carbon,
carbon to thiyl, and/or thiyl to thiyl radical coupling. The interpretation is good agreement with the
SEC results as shown in Figures 8 and 9. As for Fraction 3 in Figure 10b, the peak at a 4.2 ppm
ascribed to methyleneoxy units in PEMB was not observed. Thus, we concluded that that the
low-molecular-weight compounds are mainly the oligomers of methyl acrylate generated by a chain
transfer reaction or from the terminal ends of the networks.

Polymers 2018, 10, x FOR PEER REVIEW  8 of 12 

 

In DHDA/TPMB and DHDA/BDMB system, the ν values were defined as the following 
equations: 

ν = Ia / It × 6/3 (2) 

ν = Ia / It × 4/3 (3) 

In DHDA/BzA/PEMB system, the peak at 5.1 ppm ascribed to benzylic methylene units in BzA 
appeared in addition to the peak at 4.2 ppm ascribed to methyleneoxy units in PEMB and the peak 
at 3.7 ppm ascribed to methoxy units in oligo(methyl acrylate) derived from DHDA. When the 
integrated benzylic peak area was defined as Ib, ν was defined as the following equation: 

ν = (Ia /3 + Ib /2)/(It /8) (4) 

The obtained ν value from Fraction 1 in Figure 10b was 3.7, and the value was identical to that 
obtained from Fraction 2. The observation indicates that Fraction 1 is consisted from the dimerization 
of the compounds that appeared in Fraction 2 by the termination of carbon to carbon, carbon to thiyl, 
and/or thiyl to thiyl radical coupling. The interpretation is good agreement with the SEC results as 
shown in Figures 8 and 9. As for Fraction 3 in Figure 10b, the peak at a 4.2 ppm ascribed to 
methyleneoxy units in PEMB was not observed. Thus, we concluded that that the low-molecular-
weight compounds are mainly the oligomers of methyl acrylate generated by a chain transfer reaction 
or from the terminal ends of the networks. 

(a) (b) 

Figure 10. (a) SEC profiles of degraded DHDA/PEMB (1/1, functional ratio acryl and thiol groups) 
resins containing DMPA (1 wt %) and DITF (1 wt %). (b) 1H NMR spectra of each fraction of degraded 
DHDA/PEMB (1/1, functional ratio of acryl and thiol groups) resins containing DMPA (1 wt %) and 
DITF (1 wt %) after degradation in CDCl3. 

Based on these results, we propose the reaction mechanism and formed structures of the 
polymer networks in the thiol-ene UV curing system using DHDA and PEMB. Upon irradiation at 
365 nm, DMPA photolyzed to produce radicals which initiate the thiol-acrylate reaction of DHDA 
and PEMB. The formed networks consist of networks of the thiol-ene reaction and 
homopolymerization of the acrylates. The chain length of thiol-ene reaction is 1.7 to 14, and not very 
high due to the high concentration of the thiol compounds. The oligomers of the acrylates, whose 
molecular weight is lower than 300, also formed during the reaction.  The networks were degraded 
by irradiation at 254 nm in the presence of the photoacid generator DITF and oligomers of the 
(meth)acrylic acid compounds, and the diene compounds are formed as shown in Figure 11. A 
summary of obtained results of the chain length in the thiol-(meth)acrylate UV curing system is 
shown in Table 1. 

Figure 10. (a) SEC profiles of degraded DHDA/PEMB (1/1, functional ratio acryl and thiol groups)
resins containing DMPA (1 wt %) and DITF (1 wt %). (b) 1H NMR spectra of each fraction of degraded
DHDA/PEMB (1/1, functional ratio of acryl and thiol groups) resins containing DMPA (1 wt %) and
DITF (1 wt %) after degradation in CDCl3.

Based on these results, we propose the reaction mechanism and formed structures of the polymer
networks in the thiol-ene UV curing system using DHDA and PEMB. Upon irradiation at 365 nm,
DMPA photolyzed to produce radicals which initiate the thiol-acrylate reaction of DHDA and PEMB.
The formed networks consist of networks of the thiol-ene reaction and homopolymerization of the
acrylates. The chain length of thiol-ene reaction is 1.7 to 14, and not very high due to the high
concentration of the thiol compounds. The oligomers of the acrylates, whose molecular weight is lower
than 300, also formed during the reaction. The networks were degraded by irradiation at 254 nm in
the presence of the photoacid generator DITF and oligomers of the (meth)acrylic acid compounds, and
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the diene compounds are formed as shown in Figure 11. A summary of obtained results of the chain
length in the thiol-(meth)acrylate UV curing system is shown in Table 1.

The degraded samples have molecular weights between 250 and 2700, and basically contain one
thiol compound per one degraded molecule, which is consistent with the pathway of the thiol-ene
reaction as shown in Figure 1. The molecular weights of the degraded resins increased with the
functionality of the thiol compounds. The chain length dependence suggests that thiol compounds
with a high functionality have a low reactivity due to steric hindrance. The chain lengths of the
degraded networks were nearly proportional to the concentration of the (meth)acrylate monomers.
The addition of BzA, a kind of reactive diluent, enhanced the reactivity and increased the chain length.

As for polydispersity values (Mw/Mn), relatively low values (1.3–1.7) were obtained in the
experimental conditions in this study. It is very interesting that cured sample of DHDA/PEMB in
air showed lower polydispersity value (1.3) compared to that under N2 (1.5). The low polydispersity
value is due to suppressed dimerization observed in SEC measurements, which may be derived from
the chain transfer reaction of carbon radical or thiyl radical to oxygen.
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groups) UV curing resin. The structures written in red were removed by decomposition.

Table 1. Summary of chain lengths in thiol-(meth)acrylate UV curing system obtained in this study.

Formulation 1

[(meth)acryl
Unit/Thiol

Unit]

Conversion (%) 2

Insoluble
Fraction

(%)
Mp

3 Mw
4 Mn

5 Mw/Mnn 6 Atmos-phere
DHDA DHDMA BzA PEMB TPMB BDMB

(meth)
acryl
Unit

Thiol
Unit

1 1 1/1 99 35 99 700 1200 820 1.5 3.7 N2
1 1 1/1 96 33 99 740 1000 760 1.3 4.2 air
2 1 2/1 90 47 91 920 1400 950 1.5 9.8 N2

1 1 1/1 92 29 100 620 1200 700 1.7 3.2 N2
1 1 1/1 98 40 98 570 770 600 1.3 2.7 N2
1 1 1/1 98 44 91 250 450 260 1.7 1.7 N2
1 1 1 2/1 96 25 96 1490 1900 1300 1.4 7.6 N2
1 3 1 4/1 97 14 95 2740 3200 2100 1.5 14 N2

1 The ratio of functional groups of (meth)acryl and thiol groups. All samples contained 1 wt % DITF and 1 wt %
DMPA. 2 Determined by Raman spectroscopy. 3 Molecular weight calculated by the retention time which showed a
maximum intensity in the SEC measurements calibrated by standard poly(methyl methacrylate)s. 4 Weight-average
molecular weight. 5 Number-average molecular weight. 6 Chain length calculated by the number of (meth)acryl
units divided by the number of thiol units determined by 1H NMR spectroscopy.



Polymers 2019, 11, 5 10 of 12

4. Conclusions

An analysis of the network structures of the thiol-ene UV curing resins was carried out using
reworkable resins composed of di(meth)acrylate monomers having tertiary ester linkages. A mixture
of (meth)acrylates, thiol compounds, a photoradical initiator, and a photoacid generator was cured by
irradiation at 365 nm. The cured samples were degraded by heating after irradiation at 254 nm. SEC
measurements and a 1H NMR analysis of the degraded samples were carried out after methylation
by trimethylsilyldiazomethane. The crosslinking conditions strongly affected the network structures.
The degraded samples have molecular weights between 250 and 2700. The molecular weights of the
degraded resins increased with the functionality of the thiol compounds. Relatively low polydispersity
values (Mw/Mn, 1.3–1.7) were obtained. The chain length dependence suggests that thiol compounds
with a high functionality have a low reactivity due to steric hindrance. The chain lengths of the
degraded networks ranged from 1.7 to 14, which was nearly proportional to the concentration of the
(meth)acrylate monomers. The addition of reactive diluents enhanced the reactivity and increased the
chain length.
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