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Abstract: Genomic selection (GS) can accelerate variety improvement when training set (TS) size
and its relationship with the breeding set (BS) are optimized for prediction accuracies (PAs) of
genomic prediction (GP) models. Sixteen GP algorithms were run on phenotypic best linear unbiased
predictors (BLUPs) and estimators (BLUEs) of resistance to both fall armyworm (FAW) and maize
weevil (MW) in a tropical maize panel. For MW resistance, 37% of the panel was the TS, and the BS
was the remainder, whilst for FAW, random-based training sets (RBTS) and pedigree-based training
sets (PBTSs) were designed. PAs achieved with BLUPs varied from 0.66 to 0.82 for MW-resistance
traits, and for FAW resistance, 0.694 to 0.714 for RBTS of 37%, and 0.843 to 0.844 for RBTS of 85%,
and these were at least two-fold those from BLUEs. For PBTS, FAW resistance PAs were generally
higher than those for RBTS, except for one dataset. GP models generally showed similar PAs across
individual traits whilst the TS designation was determinant, since a positive correlation (R = 0.92***)
between TS size and PAs was observed for RBTS, and for the PBTS, it was negative (R = 0.44**). This
study pioneered the use of GS for maize resistance to insect pests in sub-Saharan Africa.

Keywords: prediction accuracy; mixed linear and Bayesian models; machine learning algorithms;
training set size and composition; parametric and nonparametric models

1. Introduction

Insect damage on maize plants and stored grains potentially impedes food security
in Africa [1-3]. The fall armyworm (FAW) and stem borers in the field, and the maize
weevils (MWs) in storage facilities, are some of the most devastating insect pests on the
continent. These insect pests cause yield losses ranging from 10-90% leading to loss of
grain marketability, and consumer health concerns due to the possible contamination of the
grain with mycotoxins, such as aflatoxins [3-6]. In Africa, tremendous efforts were made
during the last two decades to build host plant resistance to insect pests in maize through
traditional pedigree (phenotypic)-based selection (PS) with substantial desirable results.
Several Africa-adapted maize lines were developed and successfully tested for resistance to
MW damage on grains [7-12]. Some of the success stories are from the International Center
for Maize and Wheat Improvement (CIMMYT) of Kenya through the Insect Resistant Maize

Plants 2021, 10, 29. https:/ /dx.doi.org/10.3390/plants10010029

https:/ /www.mdpi.com/journal/plants


https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0003-1105-9668
https://orcid.org/0000-0002-9350-4798
https://orcid.org/0000-0001-6719-6413
https://orcid.org/0000-0003-3323-5837
https://orcid.org/0000-0002-6660-7847
https://orcid.org/0000-0001-7474-2857
https://www.mdpi.com/2223-7747/10/1/29?type=check_update&version=1
https://dx.doi.org/10.3390/plants10010029
https://dx.doi.org/10.3390/plants10010029
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/plants10010029
https://www.mdpi.com/journal/plants

Plants 2021, 10, 29

2 0f 22

for Africa project IRMA) that produced several storage pest and stem borer resistant maize
lines [7,8,13-15]. On the other hand, the FAW is a new pest on the continent, first reported
in 2016 in West and Central African countries [16], from where it spread throughout the
African continent [17]. Hence, although efforts to develop FAW resistant varieties are
underway at several institutions, including CIMMYT, published reports of FAW resistant
varieties are not yet available [18,19].

The complex nature of insect resistance traits makes PS slow and expensive, and thus,
difficult to implement, especially for resource-constrained breeding programs [20]. Appli-
cation of traditional marker-assisted selection (MAS) is hampered by the necessity to first
discover resistance-associated genomic regions through genetic linkage and genome-wide
association mapping methods, both with several shortcomings, especially for complex
traits [21-23]. In addition, genetic linkage and genome-wide association mapping studies
have seldom been explored in African germplasm [8,24], which further impedes the ap-
plication of MAS in the development of insect resistance maize germplasm in Africa. In
a previous study, we discovered several quantitative trait nucleotides and genes that are
putatively associated with FAW and MW resistance, confirming the quantitative nature of
these traits, hence the difficulty in improving these traits through MAS [25]. An alternative
to both PS and MAS is genomic selection (GS), which uses whole-genome markers to per-
form genomic prediction (GP) of breeding values of unphenotyped genotypes, from which
one can select superior candidate genotypes for crossing to produce hybrids or to advance
to the next generation [26]. GS was reported to achieve up to threefold annual genetic
gain in maize improvement when compared to MAS, due to a more efficient accounting of
trait-associated quantitative trait loci (QTL), faster selection cycles, and lower phenotyping
costs [27-33].

Several statistical and machine learning GP models with various strengths and weak-
nesses have been developed to adapt to different contexts that are partly influenced by
the genetic architecture of traits (number and effect size of QTL, proportions of additive
and non-additive genetic effects) and reproductive classes of plants (allogamous vs. auto-
gamous vs. clonally propagated) [34-36]. Therefore, to effectively implement GS in crop
improvement programs, it is necessary to employ a holistic approach to determine the
best GP strategy for particular breeding targets for given crop species [31,37]. Statistical
models for GS vary in their prior assumptions and treatment of marker effects [31]. Para-
metric models focus on parameter estimates rather than prediction, while nonparametric
algorithms give priority to prediction and have fewer assumptions [38]. Some parametric
methods assume the SNP effects follow a normal distribution with equal variance for all
loci, which seems unrealistic in practice.

Representative parametric methods are ridge regression best linear unbiased predic-
tors (RR-BLUP) [39] and genomic BLUP (GBLUP) [40]. GBLUP was the first GP method
to be developed, and it replaced the traditional pedigree-based relationship matrix with a
genomic information-based matrix to improve prediction accuracies (PAs) [41]. Parametric
methods BayesA [26] and weighted Bayesian shrinkage regression (wBSR) [42], on the
other hand, consider a prior distribution of effect with a higher probability of moderate
to large effects. Regarding parametric models such as BayesB [43] and BayesCm [44], as-
sumptions are made that consider the effects of some SNPs to be zero. The Bayesian least
absolute shrinkage and selection operator (Bayesian LASSO) assumes that the effects of all
markers follow a double exponential distribution [45], whilst the Bayesian sparse linear
mixed model (BSLMM), a parametric method developed by Zhou et al. [46], combines the
hypotheses of both GBLUP and Bayesian methods and achieves higher PAs than BayesCn
and BayesLASSO. Nonparametric or semi-parametric approaches such as random forest
and reproducing kernel Hilbert space (RKHS) [47,48] are better suited for accounting for
non-additive genetic effects (37,38), in contrast with parametric genomic prediction mod-
els [23,38,47 ,49]. Several studies compared the performances of GP models under different
conditions. In a simulation study, Meuwissen et al. [26] found that while GBLUP achieved
PAs of up to 73.2%, BayesA and BayesB comparatively provided additional increases of
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around 9% and 16%, respectively. However, when a population is composed of close rela-
tives and the target traits are controlled by several small effect genes, the different methods
perform similarly [50-52]. On the contrary, BayesB and BayesCr are better when dealing
with distant relatives and traits affected by a small number of large-effect loci [23]. Kernel
methods such as RKHS are robust in predicting non-additive effects and in solving complex
multi-environment multi-trait models [53,54]. Compared to the above-mentioned paramet-
ric methods, deep learning techniques such as support vector regression (SVR), multilayer
perceptron, and convolutional neural networks models performed poorly in some stud-
ies [55,56]. However, there are also instances where RKHS outperformed one or several
of the parametric methods, for instance, GBLUP, rrBLUP, and Bayesian algorithms, in
terms of several traits in several crops including maize [51,57-59]. These results were most
likely because nonparametric G5 models capture more adequately the non-additive genetic
components which are an essential characteristic of complex traits [23,37,38] and hence
could be good candidate tools for the prediction of FAW and MW-resistance traits which are
controlled by both additive and non-additive gene action [21,23,31,41,60]. Therefore, since
GP for maize resistance to insect pests such as FAW and MW is not yet well explored, it is
pivotal to compare performances of several available prediction algorithms to inform better
future GS programs. Therefore, the Genomic Prediction 0.2.6 plugin of the KDCompute
1.5.2. beta (https://kdcompute.igss-africa.org/kdcompute/home), an online database
developed by Diversity Array Technologies (DArT, https:/ /www.diversityarrays.com)
for the analysis of DArT marker data, presents great interest for this purpose. It hosts
a suite of parametric, semiparametric, and nonparametric GP methods that can be run
simultaneously on genotype-phenotype datasets.

Additional factors that influence PAs are the different sizes of the training sets (TSs)
and breeding sets (BS) and their genetic relationships, the number of markers used to
estimate genomic estimated breeding values (GEBV) of lines, the population structure,
and the extent of linkage disequilibrium [21,23,31,41,60]. Since phenotyping is the current
bottleneck in plant breeding and one of the disadvantages of GP is the requirement of
large TSs for high PAs to be achieved, determination of effective TS composition and size
is critical for effective implementation of GS in crop improvement programs [21,61-64].
Additionally, the best TS determination will depend on the genetic architecture and the
extent of population structure of the trait targeted for GP [63], two parameters that are
substantially variable among plant breeding traits. Another factor that is a determinant of
the predictive ability is the kinship between the TS and the BS (63). Several methods are
used for TS optimization and these generally fall into two categories—namely, untargeted
and targeted approaches. For the untargeted approach, the TS is determined independently
of its genomic information, whereas the targeted method considers the genomic relationship
between the TS and the BS as a means of maximizing PAs [65]. However, deciding on the
best TS selection method is not straightforward and depends on context [66].

Furthermore, in maize, GPs were previously conducted using either genotypic best
linear unbiased estimators (BLUEs) [67-69] or best linear unbiased predictors (BLUPs) [31,
41,70] as means of phenotypic correction [70]. BLUEs are obtained by treating the genotypic
effect of a mixed linear model as fixed effects and provide an estimated mean for each
individual of a population equal to its true value. On the other hand, BLUPs generated
by considering the genotypic factors as random and allowing for the shrinkage of the
means towards the population mean [71]. Whether to use BLUPs or BLUEs in GP is
debatable. Phenotypic BLUEs allow avoiding double penalization which BLUPs suffer
from. With phenotypic BLUPs, this double penalization is, however, compensated through
maximization of the correlation between predicted and true line values, while phenotypic
BLUESs do not rely on this shrinkage [70]. However, the shrinkage in the BLUP procedure
accounts better for outliers and environmental variabilities [72], permitting better estimates
of individual genetic effects than BLUEs [71], and therefore, it usually yields more accu-
rate predictions of phenotypic performance [70,72,73]. Furthermore, BLUPs are better in
handling unbalanced data, wherein, for example, the number of individuals is not the
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same in different locations or in the different replications of an experiment [49,70]. On that
basis, the current study was conducted to evaluate the efficacies of different parametric,
semiparametric, and nonparametric methods from both statistical and machine learning
GP models in generating prediction accuracies (PAs) for maize resistance to FAW and MW
in a diverse panel using both genotypic BLUEs and BLUPs.

2. Material and Methods
2.1. Genetic Material and Field Experiments

The panel used in this study consisted of 358 maize lines with diverse genetic and
geographic backgrounds, and they were sourced from the National Crop Resources Re-
search Institute (NaCRRI/Namulonge, Uganda), the International Institute for Tropical
Agriculture (IITA /Ibadan, Nigeria), and The International Maize and Wheat Improvement
Center (CIMMYT /Nairobi, Kenya). The panel consisted of 71 inbred lines developed for
various purposes at NaCRRI; 28 and five stem borer (S5B)-resistant inbred lines from CIM-
MYT [6,13,14] and IITA, respectively; 19 storage pest (SP)-resistant inbred lines [7,8]; and a
doubled haploid (DH) panel of 235 lines developed at CIMMYT using six parents—three
of which were stem borer-resistant, one was a storage pest-resistant inbred line (these were
also included in the population), and two were CML elite lines (one, CML132 was included
in the panel) (Supplementary Materials Table S1).

The panel was planted and evaluated in three environments, at Mubuku Irrigation
Experimental Station in Kasese, western Uganda in 2017 (316 lines) during the second rainy
season (2017B) and the National Crop Resources Research Institute (NaCRRI), Namulonge,
central Uganda in 2018 (92 lines) and 2019 (252 lines) both during the first rainy seasons
(2018A and 2019A, respectively). Detailed information on these locations is presented
in Table 1.

Table 1. Geographical, climatic, and soil characteristics of the planting locations [74].

Locations Geographical Altitude above Minimum Soil
Coordinates Sea Level Rainfall Characteristics
0°16'10" N Sandy loam soils
Kasese 30°6'9” E 1330 m asl 1000 mm with a pH of 5.68
0°31'30” N Oxisols with a
Namulonge 32°36/54” B 1160 m asl 1300 mm pH of 5.8

Each combination of location and season was considered an environment, resulting
in a total of three environments. An augmented experimental design was adopted in all
three environments using six checks in 2017B, two in 2018A, and four in 2019A replicated
in all the blocks. The experiments in 2017B, 2018A, and 2019A consisted of twelve, five,
and ten blocks, respectively, containing the replicated checks and unreplicated lines and
the experiment in 2018 A was replicated twice.

2.2. Genotyping, Quality Control, and Imputation for Genomic Prediction Analyses

Genotyping of the panel and SNP quality were described in our previous study [25].
In brief, maize leaves at the sixth-leaf stage of development were harvested from 341 of the
358 lines of the panel (5-10 plants per line) in 2017B and 2018A (for lines not captured in
2017B). The leaf samples were oven-dried overnight at 36 degrees Celsius and shipped to
the Biosciences east and central Africa (BecA) Laboratory of the International Livestock
Research Institute (ILRI, Nairobi, Kenya) for DNA extraction and genotyping. Diversity
Array Technology (DArT) genotyping facilities (44) were used to successfully identify
34,509 SNPs from 341 of the 358 lines composing the panel; hence, only these lines were
considered for the GP analyses. Duplicate SNPs were first removed using the R package
DartR (45), leaving 28,919 unique SNPs (DRSNP) distributed across all the 10 chromosomes
of the entire maize genome.
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The DRSNP dataset was imputed before GP using KDCompute 1.5.2. beta (https://
kdcompute.igss-africa.org/kdcompute/home), an online database developed by Diversity
Array Technologies (DArT, https:/ /www.diversityarrays.com) for the analysis of DArT
marker data. KDCompute uses a suit of imputation methods to impute the SNP dataset
and scores the imputation results by calculating simple matching coefficient (SMC). The
method with the highest SMC is considered as optimal and used to impute the original
genotypic dataset.

2.3. FAW and MW Resistance Phenotyping

After germination, plants were left unprotected to allow sufficient natural pressure
of fall armyworm (FAW) population to build up. FAW damage scoring in all the three
environments was carried out two months after planting when adequate natural FAW
infestation levels had manifested, and scoring was based on a visual assessment using a
scale of 1 (no or minor leaf damage) to 9 (all leaves highly damaged) [75], illustrated in
Figure S1 [18].

Rearing of and bioassays for MW were performed as described in previous experi-
ments carried out at NaCRRI [76,77]. Weevils were reared prior to the MW bioassay to
obtain enough insects aged between 0 to 7 days for infestation. During rearing, standard
conditions were provided for weevils to ensure proper acclimatization during the exper-
iment. Rearing was carried out by preparing a weevil-maize grain culture of 300-400
unsexed insects and 1.5 kg of grains contained in 3000 cm® plastic jars incubated for 14 days
in the laboratory at a temperature of 28 £ 2 °C and relative humidity of 70% =+ 5%, to
enhance oviposition. The lids of the jars were perforated and a gauze-wire mesh with a
pore size smaller than one mm was fitted on each lid to allow proper ventilation while
preventing the weevils from escaping.

After harvesting and shelling, grains of each line were bulked across environments.
Then, samples of 30 g were weighed from each grain bulk, aiming to produce three
replicates per line for the MW bioassay experiment. However, due to the lack of an
adequate amount of grains for most of the lines of the panel, only 64, 123, and 132 lines
could generate three, two, and one replicates, respectively, and were therefore considered
for the MW bioassay experiment. Each of these samples was wrapped in polythene bags
and kept at —20 °C for 14 days to eliminate any weevil infestation prior to the start of the
experiment. After this disinfestation process, samples were left to thaw and transferred
into 250 cm? glass jars and infested with 32 unsexed weevils. After 10-days of incubation
to allow oviposition, all dead and living adult insects were removed. One month after
infestation (MAI), each sample was removed from its jar, and the grains and the flour
were isolated and their weights were recorded. The total number of holes inflicted by
the weevils on the grains was counted along with the number of grains affected by such
damages. Additionally, the numbers of dead and living weevils were recorded. After
these measurements were collected, the grains were returned to their respective jars and all
the measurements were repeated at two and three MAI The collected data were used to
infer, for each sample, the cumulative grain weight loss (GWL), the cumulative number of
emerged adult weevil progenies (AP), and the final number of damage-affected kernels
(AK).

2.4. Statistical Analyses of the Phenotypic Data

Both best linear unbiased estimators (BLUEs) and predictors (BLUPs) were generated
using the general linear model with only phenotype option of the software Trait Association
through Evolution and Linkage (TASSEL) [78] and the ranef function of the R package [79]
Ime4 [80], respectively. The mixed linear model for generating BLUEs (all factors considered
as fixed) and BLUPs (all factors considered as random) for MW traits (GWL, AP, AK, NH,
and FP) was as follows:

Y = u + Replication + Genotype + Error
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The mixed model for generating BLUEs (all factors considered as fixed) and BLUPs
(with all factors considered as random) for FAW damage scores across environments model
was:

Y = p + Location + Block + Genotype + Location : Genotype + Error

where y in the two equations is the intercept.

2.5. Strategies for TS and BS Determination
2.5.1. MW Resistance Traits

Due to inadequate amount of seeds, only 37% (126 out of 341 that had genotypic data)
of lines from the panel had phenotypic data on grain weight loss (GWL), adult progeny
emergence (AP), and number of affected kernels (AK). Therefore, to estimate GP accuracies
for MW resistance, these 126 lines were used as the TS and the remaining 215 lines with
only genotypic data constituted the breeding set (BS).

2.5.2. FAW Damage Resistance

The GP analyses for FAW resistance were carried out on the 341 lines of the panel
that were genotyped and phenotyped for FAW damage resistance. To determine TS and
BS sizes and compositions for the evaluation of maize resistance to FAW damage, two
strategies, namely, random-based TS (RBTS) and pedigree-based TS (PBTS), were used.

2.5.3. Random-Based TS Determination

For the RBTS, 126 (37%) lines used for GPs of MW-resistance traits were used as the
TS for FAW to predict the GEBVs of the remaining 215 lines first. To build the second TS for
FAW, the 215 (63%) lines used earlier as BS were considered as a TS. Then to determine the
third and fourth TSs for FAW, random selections of 75 and 85% of the lines in the entire panel
were performed through the Excel formula “=INDEX($A:$A,RANDBETWEEN(1,COUNTA
($A:$A)),1)” and dragging until the adequate number of lines for each percentage deter-
mined above was obtained.

2.5.4. Pedigree-Based TS Determination

The four datasets determined based on the pedigrees of the lines in the panel (PBTS
strategy) are presented in Table 2. For the first dataset (FAW.Pedl), the 235 (68.91%)
CIMMYT doubled haploid (DH) lines were used as a TS and the remainder (106 lines)
as a BS. Regarding the second dataset, the TS and BS were switched to consider the TS
in FAW.Ped1 as BS, and BS in FAW.Ped1 as the TS. The third dataset, FAW.Ped3, had
a TS composed of the 294 that were neither stem borer (SB) resistant nor storage pest
(SP)-resistant lines from CIMMYT, whilst the 28 SB and 19 SP-resistant lines from CIMMYT
constituted the BS. In the last dataset, FAW.Ped4, the 235 DH lines, the 28 SB and 19 SP-
resistant lines from CIMMYT, and the five SB-resistant lines from IITA amounting to 287
(84.16%) genotypes were considered as the TS and the remaining 54 lines from NaCRRI
lines were considered as the BS (Table 2).

Table 2. Compositions of the pedigree-based test sets (TSs) for fall armyworm (FAW) datasets.

FAW Datasets FAW.Ped1 FAW.Ped2 FAW.Ped3 FAW.Ped4
294 287 DH and
TS " 235 DH 106 Non-DH Non-CIMMYT  CIMMYT and
COMPOSIION — CINIMYT lines lines SB and SP IITA SB and SP
resistant lines lines
TS/ Panel (%) 68.91 31.09 86.22 84.16

DH = doubled haploid; FAW, fall armyworm; FAW.Ped1 to 4, FAW datasets 1-4 with TS based
on pedigree information of the lines in the panel; SB, stem borer; SP, storage pest; TS, training set;
CIMMYT, International Center for Maize and Wheat Improvement; IITA, International Institute for
Tropical Agriculture.
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2.6. Genomic Prediction Algorithms

The GP analyses were performed using the BLUEs and BLUPs of the phenotypes and
the 28,919 DRSNPs. Sixteen algorithms available in 10 GP methods were implemented
using the Genomic Prediction 0.2.6 plugin of the KDCompute 1.5.2. beta. The 10 methods
were directly translated from functions of five R packages designed for GP analyses:

2.6.1. Bayesian Models

Bayesian models have different prior distributions with a general model that can be
as follows: y = 1,1 + Zu + ¢, where y is the vector of observations, Z is the design matrix
for random effects, and y is the vector of random effects [31].

The BLR (Bayesian Linear Regression) algorithms from the BLR R Package [81] are
used to fit the Bayesian ridge regression. The marker effects are assumed to have a Gaussian
prior distribution with mean 0 and variance 02, where 02 is unknown and assumed to
have scaled x? distribution. In the KDCompute genomic prediction 0.2.6 plugin, the
Gibbs sampler is run with 4000 iterations and 1000 iterations for burn-in period as default
parameters.

The Bayesian Generalized Linear Regression (BGLR) package fits various types of
parametric and semi-parametric Bayesian regressions. The parametric Bayesian algorithms
used from this package rely on different prior distributions that induce different types
of shrinkages of the marker effects [82], including: Gaussian (Bayesian ridge regression,
BRR [83]), scaled-t (BayesA [26]), double-exponential (Bayesian LASSO, BL [84]), and two
component mixtures with a point of mass at zero and a distribution with a slab that can
be either Gaussian (BayesC [44]) or scaled-t (BayesB [43]). In the KDCompute genomic
prediction 0.2.6 plugin tool, defaults parameters for running the Gibbs sampler were used:
4000 iterations and 1000 iterations for burn-in period.

Reproducing kernel Hilbert space (RKHS) [47,48] is a semiparametric Bayesian method
from the BGLR package implemented on the KDCompute genomic prediction 0.2.6 plugin.
The RKHS methods employs a kernel function to convert the molecular markers as a
between pairs of observations distances, thereby, generating a square matrix that fits in a
linear model. This non-linear regression method is expected to capture dominance and
epistasis effects more efficiently. This approach can be modelled as:

y=Wu+Kya+e,

where u represents the fixed effects vector and ¢ is a vector of random residuals. The
parameters « and ¢ are assumed to have independent prior distributions a ~ N(0,K, »)

and ¢ ~ N(0,1 2 ), respectively, and the matrix K, relies on a reproducing kernel function
with a smoothing parameter /. The parameter /s measures the genomic distances among
genotypes that can be interpreted as a correlation matrix and it controls the rate of decay
of the correlation among genotypes [51]. To perform this analysis, the same number of
iterations and burn-in parameters as for the other Bayesian methods described above were
set on the KDCompute genomic prediction 0.2.6 plugin.

2.6.2. Mixed Models

The Sommer (solving mixed model equations in R) package [85] was used to imple-
ment the mmer (mixed model equations in R) function on the KDCompute genomic predic-
tion 0.2.6 plugin. The package solves mixed model equations proposed by Henderson [86].
It works incidence matrices and known variance covariance matrices for each random
effect using four algorithms: efficient mixed model association (EMMA) [87], average infor-
mation (Al) [88], expectation maximization (EM) [89], and the default Newton—-Raphson
(NR) [90].
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The model by Sommer can be formulated as [85]: ¥ = X + Zu + € with variance
V(y) = V(Zu +¢) = ZGZ' + R Additionally, the mixed model equations for this model
are:

XRIXXR1Z 1 ' [XRlW] [B
Z'RIXZ'R7 12+ G ! Z'R 1y | | u

where G = K¢}, is the variance covariance matrix of the random effect p, from a multi-
variate normal distribution y ~ MVN(0, K(T’%), K is the additive or genomic relationship
matrix (A or Ag) in the genomics context, X and Z are incidence matrices for fixed and
random effects, respectively, and R is the matrix for residuals (here Io?). A mixed model
with a single variance component other than the error (¢?) can be used to estimate the ge-
netic variance (Uﬁ) along with genotype BLUPs to exploit the genetic relationships between
individuals coded in K(A). The genomic relationship matrix was constructed according to
VanRaden where K = ZZ' /23 p;(1 — p;) [91].

The ridge regression best linear unbiased predictor (rrBLUP) packages can either
estimate marker effects by ridge regression, or alternatively, BLUPs can be calculated based
on an additive relationship matrix or a Gaussian kernel. Additionally, using the rrBLUP
package, the mixed model solution (MMS) that calculates the maximum-likelihood (ML)
or restricted-ML (REML) solutions for mixed models to perform GP [92] was fitted in the
KDCompute genomic prediction 0.2.6 plugin.

The mixed models fitted by rrBLUP can be formulated as:

y=XB+Zu+e,

where 8 is a vector of fixed effects and y is a vector of random effects with variance
Var[u] = Koz The residual variance is Var(e] = I ». This class of mixed models, in which

there is a single variance component other than the residual error, has a close relationship
with ridge regression (ridge parameter A = o2/ Uﬁ) (https:/ /kdcompute.igss-africa.org/
kdcompute/home).

2.6.3. Machine Learning Algorithms

The R package RandomForest that implements Breiman’s random forest algorithm
for classification and regression [93] was used on the KDCompute genomic prediction
0.2.6 plugin to fit the function missForest. Random forest is a non-linear machine learning
algorithm that uses a two-layer randomization process to build decorrelated bootstrapped
trees. As a first randomization layer, it builds multiple trees using a bootstrap sample
of the marker data in the training. Then, a second randomization process is carried at
the novel nodes to grow final trees. The random forest method selects at each node of
each tree, a random subset of variables, and only those variables are used as candidates
to find the best split for the node [94]. To predict the breeding value of a line in the TS,
predictions over trees for which the given observation was not used to build the tree are
averaged [51]. On the KDCompute 1.5.2. beta platform, both options for the mtry, square
root and regression (sqrt(p) and p/3, respectively, where p is number of variables in x), for
the classification of the number of variables randomly sampled as candidates at each split
were implemented in this study. Additionally, the trees to grow (ntree) was set to 10, while
node size (minimum size of terminal nodes) and max nodes (maximum number of terminal
nodes trees in the forest can have) were set to 5 and 10, respectively. The 16 methods used
in this study and their statistical characteristics are presented in Table 3.
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Table 3. Genomic prediction methods used for the analysis of the different traits and datasets.

GP Algorithms Abbreviations Method Type
1 Sommer with A(‘j:;)a ge Information mmer_AI Parametric/Mixed model
Sommer with Expectation . .
2 Maximization (EM) mmer_EM Parametric/Mixed model
Sommer with Efficient Mixed Model . .
3 Association (EMMA) mmer_EMMA Parametric/Mixed model
Sommer with default . .
4 Newton-Raphson (NR) mmer-NR Parametric/Mixed model
5 Ridge-regression B?St linear unbiased rrBLUP Parametric/Mixed model
Predictor
Mixed Model solution with . .
6 Maximum Likelihood (ML) mms_ML Parametric/Mixed model
Mixed Model solution with Restricted . .
7 Maximum Likelihood (REML) mms_REML Parametric/Mixed model
8 BayesB BayesB Parametric/Bayesian
9 BayesA BayesA Parametric/Bayesian
10 BayesC BayesC Parametric/Bayesian
Bayesian least absolute shrinkage and . .
11 selection operator (LASSO) BL Parametric/Bayesian
12 Bayesian Ridge Regression BRR Parametric/Bayesian
13 Bayesian Linear Regression BLR Parametric/Bayesian
14 Reproducible kernel Hilbert space RKHS Semi-parametric/Bayesian
15 Random Forest with Square root missForest_Sqt Nonparametric/Machine Learning
16 Random Forest with Regression missForest_Reg Nonparametric/Machine Learning

2.7. Cross-Validations and PA Estimation

To calculate the predictive accuracies of each of the 17 methods, a cross-validation
approach was performed using the data for the TS with 10 folds and five repetitions
amounting to 50 replications. The PAs were estimated as the correlation coefficient (R?)
averaged across the 50 cross-validation replications between the observed phenotypic
values and the predicted genomic-estimated breeding values (GEBV) (https:/ /kdcompute.
igss-africa.org/kdcompute/plugins).

3. Results
3.1. Higher PAs Achieved for FAW and MW-Resistance Traits with BLUPs when Compared to
BLUESs across GP Algorithms

Both genotypic BLUEs and BLUPs for resistance to FAW and MW traits such as AK,
AP, and GWL were used in GPs. In general, BLUPs produced better predictions than BLUEs
by at least two orders of magnitude in terms of PAs (Figure 1). The PAs realized with
BLUEs (Figure S2) varied from —0.246 for FAW (mms_ML) to 0.299 for AP (BayesB), while
PAs for BLUPs ranged from 0.668 for AP (mmer_NR) to 0.823 for AP (missForest_Reg).
The differences in terms of accuracies between BLUEs and BLUPs were high, despite the
highly significant (p < 0.001) correlations between BLUEs and BLUPs for each trait ranging
from 0.93 for FAW to close to 1 for AP, AK, and GWL (presented in Figure 1); therefore,
only results for BLUPs will be presented hereafter.
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Figure 1. Boxplot of PAs (prediction accuracies) for best linear unbiased estimators
(BLUES) (in pink) and predictors (BLUPs) (in blue) of maize resistance to FAW and MW
across prediction models and correlations (r) between BLUEs and BLUPs for each trait.
FAW, fall armyworm; GWL, grain weight loss; AP, adult progeny emergence; AK, number
of affected kernels. *** significant at p < 0.001.

3.2. PAs for MW Resistance Traits Using BLUPs

The PAs were generally high for the tested MW traits, mostly above 0.668 across the
12 GP models that were successfully run on the datasets (Figure 2); however, RKHS failed to
work for AK. The highest PAs were achieved for AP with missForest_reg (0.823), followed
by BRR (0.805), and RKHS (0.804), whilst mmer_NR algorithm had the lowest prediction
accuracy of 0.667 (Figure 2). The PAs achieved for GWL ranged from 0.742 for missFor-
est_Sqt to 0.795 for mmer_NR, while for AK, they varied from 0.749 for missForest_sqrt
to 0.779 for BRR (Figure 2). In general, Bayesian models predicted better than both mixed
model and machine learning methods, although the differences were small (Figure S3).
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Figure 2. Boxplots of the genomic prediction accuracies of BLUPs for MW-resistance traits: GWL, grain weight loss; AP,
adult progeny emergence; AK, number of affected kernels (See Table 3 for GP algorithms).

3.3. PA for FAW Resistance Using BLUPs

The different maize resistance to FAW datasets showed high predictive abilities with
10 of the 16 GP algorithms used in the study. For the RBTS approach, the PAs were lowest
with the dataset that had a TS composed of 37% (lowest size) of the panel and highest with
the largest TS (85% of the panel). Even with a TS of 37%, the PAs were still high, ranging
from 0.694 to 0.714 for mms_ML and BLR methods, respectively (Figure 3). However,
it should be noted that with equal TS sizes and same composition (37% of the panel),
higher PAs were achieved for MW-resistance traits (GWL, AP, and AK) compared to FAW-
resistance ones (Figure S3). The PA for the RBTS of 63% varied from 0.833 for BL method
to 0.838 for the missForest_Sqt; thus, there was a small variation among different methods.
Similarly, there was minimal variation among GP algorithms on the dataset with a 75% TS
whose PAs varied from 0.838 for mms_REML to 0.843 for MissForest_Reg. The same trend
was obtained on the dataset with a RBTS of 85% of the panel, with PAs ranging from 0.843
for the BRR model to 0.847 for the missForest_Reg method. Furthermore, there was a high
and significant (p < 2.2.10716) positive correlation of 0.92 (Figure 4) between the PAs and
TS sizes for FAW datasets for the RBTS denoting a steady improvement of the PAs as the
TS size increased. However, the PAs for FAW resistance reached a plateau at TS size above

63% of the panel (Figure 5).
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Figure 3. Boxplot of PAs for maize resistance to the fall armyworm (FAW) datasets with the RBTS approach with random
selection of 37, 63, 75, and 87% of the entire panel (see Table 3 for GP algorithms).
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algorithms conducted on RBTS (A) and PBTS (B) datasets for fall armyworm resistance (FAW) resistance.
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Although the PAs did not vary much among GP algorithms, especially when the
analyses involved larger TS sizes equal or bigger than 63% of the panel, the machine
learning methods slightly outperformed other GP algorithms for all the traits, except for
the TS of 37% where Bayesian methods such as BLR and BayesC showed a slight advantage
over the machine learning methods (Figure S4). The PAs for FAW-resistance datasets with
PBTS were generally high, mostly above 0.82 (Figure 6). For the first dataset (FAW.Ped1)
with a TS of 68.91% of the panel (see Table 2), the PAs varied between 0.828 for BLR to 0.835
for missForest_Sqt. For FAW.Ped2 (TS = 31.09%), the PAs ranged from 0.862 for BayesC to
0.864 for mms_REML.
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Figure 6. Boxplots of PAs for maize resistance to the fall armyworm (FAW) datasets using the PBTS approach (see Table 2
for the PBTS strategy and Table 3 for GP algorithms).
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For FAW.Ped4, with a TS of 84.16%, PAs varied between 0.860 to 0.864 for missFor-
est_Sqt and mms_ML, respectively. However, for FAW.Ped3 with the largest TS (86.22%),
eight of the 10 algorithms achieved low PAs (below 0.20) and only missForest_Reg and
missForest_Sqt attained PAs of 0.749 and 0.750, respectively. Thus, the Pearson correla-
tion between the sizes of the PBTS datasets and the predictions accuracies for the 10 GP
algorithms revealed a significant (p > 0.0036) negative relationship of r = —0.45 (Figure 4).

In the FAW datasets, the PAs were more influenced by the composition of the TS and
its genetic relationship with the BS (see Table 2). Using the doubled haploid (DH) lines as
TS (FAW.Ped1) and vice-versa (FAW.Ped2) or DH and stem borer (SB) and storage pest
(SP)-resistant lines as TS (FAW.Ped4) permitted achieving relatively high PAs from all the 10
algorithms, which when considering the CIMMYT SB and SP-resistant lines as BS and the
remainder as a TS (FAW.Ped3), only resulted in machine learning algorithms missForest_reg
and missForest_Sqt achieving relatively high PAs. Furthermore, the composition of the
TS and its relationship with the BS determined which GP methods achieved the highest
Pas; machine learning algorithms worked best on FAW.Ped1 and FAW.Ped3, linear mixed
model approaches outperformed Bayesian and machine learning algorithms on FAW.Ped?2
and FAW.Ped4, and Bayesian methods ranked either second or third on all datasets (Figure
S5). It should be noted that the PBTS strategy generally achieved better PAs than the RBTS
irrespective of the size of the TS, except for the FAW.Ped3 dataset (Figures 3 and 6).

4. Discussion

Tropical maize germplasm is characterized by rapid linkage disequilibrium (LD) decay
with high diversity [95]. These germplasm genetic characteristics make genomic selection
(GS) a promising approach to integrate into African breeding programs [96]. However,
genomic prediction (GP) models are very diverse and their differential performances
depend on crops and trait architectures, besides other parameters such as the size of the
training set (TS) and its genetic relationship with the breeding set (BS) [31,37]. Therefore,
this study aimed at assessing the feasibility of genomic selection for maize resistance
to FAW and MW through estimation of the genomic prediction accuracies achieved by
parametric, semiparametric, and nonparametric (machine learning) genomic prediction
(GP) algorithms using phenotypic BLUEs and BLUPs, and random and pedigree-based TS
determination strategies.

4.1. Higher Pas Were Achieved for BLUPs Compared to BLUES for Both FAW and MW-resistance Traits

With a RBTS of 37% of the panel, which was the smallest and expected to give the
worst PAs, PAs were higher (at least two-fold) across both FAW and MW-resistance traits
and for all GP models when trait BLUPs were used as phenotypes compared to BLUEs,
although there were high Pearson correlations between these two categories of phenotypic
data for each trait. In general, BLUPs were reported to have higher predictability than
BLUEs owing to better accounting for outliers and environmental variabilities permitted by
the shrinkage procedure in BLUPs, which results in more accurate estimates of individual
genetic effects [70-73]. Furthermore, most of the predictive differences between BLUPs
and BLUEs might have stemmed from BLUPs being more suitable than BLUEs in fitting
data recorded from unbalanced experiments [49,70] as was the case for both FAW damage
scores across environments and MW bioassay in this study. Therefore, for all subsequent
analyses with higher RBTS sizes and the PBTS strategy for FAW, only BLUPs were focused
at in this study and will be further discussed.

4.2. High PAs Were Achieved for FAW and MW-Resistance Traits Using Moderately Sized
Training Sets

The obtained PAs were high for both MW and FAW-resistance traits even with TS
of moderate sizes confirming the potential of genomic selection (GS) in Africa-adapted
germplasms [28-30,33]. With a TS of 37% of the entire panel, high PAs (above 0.70) for MW-
resistance traits, grain weight loss (GWL), adult progeny emergence (AP), the number of
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affected kernels (AK), and FAW resistance were achieved in agreement with the moderate
to high heritability values for these traits as, reported earlier [21,31,41]. These results are
significantly important considering that one of the disadvantages of GS is the requirement
of large TS which negatively impacts the reduction of phenotyping cost [62,64].

The PAs increased up to above 0.85 in proportion to the increase in TS (RBTS approach)
size for FAW resistance which was the only trait phenotyped for all the lines of the panel.
It would be interesting to phenotype other lines of the panel that were not evaluated
for MW-resistance traits to establish larger TS which may improve the PAs [31,65,97,98].
Very few reports of GP are available for maize resistance to biotic stresses. High PAs
were achieved for maize resistance to chlorotic mottle virus (up to 0.95) and maize lethal
necrosis (reaching 0.87) in tropical germplasm [67]. However, lower PAs of up to 0.59 were
obtained in a study that assessed the predictability of maize resistance to the European
corn borer [99] in temperate germplasm. Additionally, Gowda et al. (69) reported moderate
PAs (close to 0.60) for maize resistance to a biotic stress, maize lethal necrosis in tropical
maize populations.

4.3. GP Algorithms Performed Differently on FAW and MW Maize Resistance Traits

In this study, several GP models that included statistical and machine learning al-
gorithms from parametric, semi-parametric, and nonparametric approaches were used
to predict FAW and MW-resistance traits. These GP algorithms, as expected, performed
differently on the different traits although the predictive variations were generally min-
imal, especially when large TS were involved, similarly to earlier model benchmarking
reports [100,101]. Bayesian models (parametric: BLR and BRR, and semi-parametric: RKHS)
performed better on MW traits, GWL, AP, and AK, while nonparametric machine learning
algorithms (missForest, here), and to a lesser extent, the linear mixed model (especially in
the PBTS approach), achieved the highest PAs on FAW datasets. The differential perfor-
mances of the different GP algorithms on the insect resistance traits evaluated in this study
could be due to differences in the genetic structures (extent of additive vs. non-additive
gene action) of the respective traits [23,38,47,49]. Maize resistance to FAW, which was
moderately heritable across environments [25], would be expected to be controlled by
both additive and non-additive genetic factors, including epistasis [102-104], whereas,
MW-resistance traits such as GWL, AP, and AK with heritability values above 90% [25]
were most likely characterized by a prevalence of additive gene action [105,106] in the
current panel.

This supposed genetic architecture difference between FAW and MW-resistance trait
could be the reason for non-linear methods such as random forest performing better at
predicting FAW resistance, since these are more capable of integrating epistasis in the
statistical modelling [27,51]. However, the RKHS algorithm, also a non-linear GP approach
known to efficiently handle epistatic genetic relation [51,59], did not successfully run on
FAW dataset, although it was among the best models for predicting MW-resistance traits,
except BLUPs for the number of affected kernels (AK), for which the RKHS algorithm did
not run successfully. In this study, the reasons for some GP algorithms failing to run either
on MW or FAW-resistance datasets are unclear, but this could be related to the BLUPS
structure of the datasets that failed to run. It should be noted that all the algorithms ran
successfully on phenotypic BLUEs datasets with the smallest TS (37% of the panel) being
used to compare PAs between BLUPs and BLUEs in this study. However, the two to
three-fold predictive ability gain with BLUPs compared to BLUEs would be an incentive
to consider BLUPs in future GS activities for maize resistance to MW and FAW. Overall,
future GS efforts for maize resistance to MW and FAW are recommended to focus more on
Bayesian and machine learning algorithms such as random forest, BayesA, BayesB, BayesC,
BRR, and BLR which outperformed mixed linear models for most datasets considered in
the current study.
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4.4. Influences of the Sizes and the Compositions of TS and BS on PAs

Two factors, the relative sizes of the TS and BS (RBTS approach) and their genetic
relationship (PBTS approach), influenced the levels of PAs across FAW-resistance datasets,
corroborating earlier reports [31,63,65,97,98,107,108]. A net increase in PAs for maize
resistance to FAW was realized when the size of the TS was increased from 37% (0.694 to
0.714) to 63% (0.833 to 0.838), similar to earlier reports on wheat yield [109]. This increase
was followed by a slight gain in predictability at 75% (0.837 to 0.843) and 85% (0.843 to
0.847), and thus, the PAs plateaued when TS sizes above 63% were considered in this
study as reported earlier in other studies [21,64,109-111]. Thus, future GS programs for
maize resistance to FAW could be designed around TS composed of a minimum of 60% of
the entire breeding germplasm to achieve high genetic gains. These results were further
supported by the highly significant (p > 2.2.10~1¢) positive correlation (R = 0.92) between
TS size and PAs. Similarly, positive correlations between the number of lines in the TS and
the PAs, and plateau for the PAs were also reported by Edwards et al. [109].

The composition of the TS and its relationship with the BS are determinant factors
for the genomic predictability of complex traits [63,112-114]. In the current study, using
the PBTS approach, these two parameters were more important than the size of the TS
since higher PAs were achieved in FAW.Ped?2 (0.862 to 0.864) with a TS of 31.09% compared
to all other FAW PBTS datasets, including FAW.Ped3 (0.114 to 0.750), with the largest TS
of 66.22%. In fact, FAW.Ped3 achieved the lowest PAs among all the PBTS FAW datasets.
These results were further illustrated by the significantly (p < 0.0036) negative correlation
(R = —0.45) between the sizes of the PBTS and the achieved PAs.

However, it is not very clear why the predictions for the BS FAW.Ped3 (47 CIMMYT
SB and SP-resistant lines) and the TS (DH, IITA SB, and NaCRRI lines) led to lower PAs for
FAW.Ped3. A possible explanation could be that these two sets were distantly related since
only two and one CIMMYT SB and SP-resistant lines, respectively, were used as parents to
develop the DH lines. Spindel et al. [111] argued that high PAs can be achieved with small-
sized TS when lines in the TS and the BS are closely related, since such TS would sample
the full genetic diversity of the population. However, the more distantly related the TS and
the BS are, the larger the required TS size to reach high PAs [111]. Using the CIMMYT SB
and SP-resistant lines as a TS would most likely lead to lower PAs since such a TS would be
additionally disadvantaged by its small size (47 lines). The DH lines in the current study
are involved as a TS in most of the best performing GP datasets evaluated in the current
study (both in the RBTS and PBTS approaches) and as unique lines in the BS of the best
performing pedigree-based BS (FAW.Ped2). This DH population could be of interest in
future breeding activities targeted at improving insect resistance in maize [23,115-117] and
potentially useful for GS of complex traits with low to moderate heritability [118].

5. Conclusions

This study assessed prediction accuracies of genomic-estimated breeding values
for fall armyworm (FAW) and maize weevil (MW)-resistance traits in a diverse Africa-
adapted maize panel using several parametric, semi-parametric, and non-parametric
genomic prediction models. Prediction accuracies for maize resistance to FAW and MW
traits were relatively high, even with a moderate training set size. For FAW resistance,
although the prediction accuracies were positively correlated with the size of the training
set, the composition and the relationship of the training set with the breeding set were
more influential in predicting line performance. Additionally, TS determination-related
parameters were more important than the type of genomic prediction models in predicting
FAW and MW-resistance traits. However, Bayesian models on MW-resistance traits and
machine learning models on FAW damage resistance outperformed mixed linear models
in almost all the datasets used in this study. Therefore, future genomic selection programs
for maize resistance to insect pests such as FAW and MW in Africa should put more effort
into designing effective training sets and use selected Bayesian and machine learning GP
algorithms to improve genetic gains, shorten breeding cycles, and accelerate variety release.
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Such programs could greatly benefit from using the genetically diverse maize panel used
in this study as a base population, since it consists of lines adapted to several African
agro-ecologies.
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