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Abstract: Biocompatible clay materials have attracted particular attention as the efficient 

drug delivery systems (DDS). In this article, we review developments in the use of layered 

double hydroxides (LDHs) for controlled drug release and delivery. We show how 

advances in the ability to synthesize intercalated structures have a significant influence on 

the development of new applications of these materials. We also show how modification 

and/or functionalization can lead to new biotechnological and biomedical applications. 

This review highlights the most recent progresses in research on LDH-based controlled 

drug delivery systems, focusing mainly on: (i) DDS with cardiovascular drugs as guests; 

(ii) DDS with anti-inflammatory drugs as guests; and (iii) DDS with anti-cancer drugs as 

guests. Finally, future prospects for LDH-based drug carriers are also discussed. 

Keywords: layered double hydroxides; drug delivery system; controlled release; 

intercalation assembly; cardiovascular drug; anti-inflammatory drug; anti-cancer drug 

 

1. Introduction 

1.1. Drug Delivery Systems (DDS) 

Drug delivery systems (DDS) are designed to either alter the pharmacokinetics and biodistribution 

of their associated drugs, or to function as drug reservoirs (i.e., as sustained release systems)—or  
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both [1]—and should have the ability to enhance several crucial properties of “free” drugs, such as 

improving their solubility, in vivo stability and specificity, reducing or eliminating tissue damage, 

protecting the drug, or enhancing their efficacy [2]. Common organic-based DDS include polymers 

(such as chitosan [3], amphiphilic block copolymers [4], block copolymer micelles [5], hydrogels [6], 

cellulose [7], polysaccharides [8,9]), lipid particles (microemulsions [10]), and a few natural particulates 

(pathogens and mammalian) [11]. Organic-based DDS have some disadvantages such as high toxicity, 

low loadings and easy leakage of drugs which reduce their drug-delivering efficiency. Drug carriers 

based on inorganic nanomaterials, such as silica materials [12,13], show much better properties than 

organic carriers, including ease of controlled synthesis and environmental friendliness [14]. The recently 

developed organic-inorganic nanohybrids based DDS such as LDH–chitosan hybrid [15,16] or enteric 

polymer [17] show good biocompatibility and avoid the drug leaching, but endure the difficulty of 

artificial synthesis, ordered structure, and industrial scale-up. Hence, the inorganic materials are  

much superior to the others on the synthesis and industrialization, the control of defined structure,  

and the avoidance of drug leakage as DDS in a long-term view. For inorganic materials, efficient 

administration with low bio-toxicity, facile synthesis, and easy storage with high stability are the most 

primary factors. The chemical and biological toxicity significantly rely on the choice of chemical 

elements and the control of particle size. Modification or functionalization by other inorganic or 

organic components may also create influence on the chemical and biological toxicity of inorganic 

materials. As for the fast transition of these nanomaterials for industrial scale up, design of assembly 

technology, data statistics and analysis upon the clinical tests, and long-term storage without loss of 

pharmacodynamic effect together with the economic evaluation are necessarily required but it is not 

easy to completely cover in one limited review. The present review mainly focuses on the synthetic 

strategy and release property in vitro. Some layered materials are excellent candidates for use in DDS 

since their lamellar structures provide a suitable interlayer spacing for drug molecules which can be 

incorporated, by a process such as ion-exchange [18]. In the case of natural smectite type clays, 

cationic species may be intercalated in the interlayer galleries, whereas in the case of layered double 

hydroxides (LDHs)—also known as hydrotalcite-like materials—anionic species may be intercalated. 

Although some LDHs occur naturally, recent years have seen an explosive growth in the controlled 

synthesis of new LDH materials and in this review we focus on the prospects of these synthetic LDHs 

for use in clinical therapy. It is worth mentioning that the pioneering works of Choy’ group have led to 

a rapid development in the research on both varied LDHs/polymers/anions hybrid systems and 

pharmaceutical applications of LDHs especially involving the biocompatibility and toxicity of LDHs 

and anti-cancer drugs intercalated LDH materials. 

All these positive attributes make drug–LDH nanocomposite an applicable platform in vivo for 

further evaluation. Drawing together the thoughts and methods from interdisciplinary fields, such as 

chemistry, biology, mathematics, etc., the drug–LDH materials present great potential in drug imaging 

or monitoring in human organs or tissues. Therefore, the research scope of this material is no longer 

limited to conventional studies about structural property and in vitro drug release property, but also 

expands to more subjects like biocompatibility, bio-distribution, or pharmacokinetics, which receive 

constant attention in clinical work. 
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1.2. Layered Double Hydroxide (LDH) Materials 

LDHs are a class of anionic lamellar compounds made up of positively charged brucite-like layers 

with an interlayer gallery containing charge compensating anions and water molecules. The metal 

cations occupy the centers of shared octahedra, whose vertices contain hydroxide ions that connect to 

form infinite two-dimensional sheets as shown in Figure 1. The most widely studied LDHs contain 

both divalent and trivalent metal cations and the generic formula for LDHs can be written as:  

[M2+
1–xM

3+
x(OH)2][A

n−]x/n·zH2O, where M2+ may be cations such as Mg2+, Zn2+ or Ni2+, and M3+ may 

be cations such as Al3+, Ga3+, Fe3+ or Mn3+, An− is a non-framework charge compensating inorganic or 

organic anion, e.g., CO3
2−, NO3

−, Cl−, SO4
2−, or RCO2

−, and x is the mole fraction of M3+ [19–24].  

M+ and M4+ cations can also be incorporated in the layers but examples are limited to specific cations 

such as Li+, Ti4+, and Zr4+. In the layers of LDH hosts, the M2+ and M3+ cations are not randomly 

distributed but ordered. For example, the solid state NMR studies by Grey et al. [25] showed that in 

MgAl–LDHs the cations are fully ordered for Mg2+/Al3+ ratios of 2:1 and a nonrandom distribution of 

the cations, without Al3+–Al3+ close contacts, persists for higher Mg2+/Al3+ ratios. The ordering of the 

cations affects the charge density of the LDH sheets, which has consequences for a variety of 

physicochemical parameters, such as the bonding, reactivity, orientation, and mobility of the chemical 

species in the interlayer gallery and on the surface. 

Figure 1. Schematic representation of the structure of layered double hydroxides (LDHs). 

 

LDHs are not only easily synthesized, but also have several other attractive features such as the 

tunability of layer charge density and particle size, good biocompatibility, low toxicity, and a so-called 

“structural memory effect”. Based on these properties, LDHs have been widely exploited to create new 

materials for applications in catalysis [26], drug delivery [27,28], and environmental remediation [29]. 

1.3. LDH-Based Drug Carriers 

There are three main attractive features of LDH-based drug carriers: convenient synthesis, structural 

and morphological tunability, and their low toxicity and good biocompatibility. 
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1.3.1. Convenient Synthesis 

The synthesis of drug–LDH composite materials involves the assembly of organic ions/molecules in 

the interlayer galleries of the LDH host via electrostatic interactions or hydrogen bonds. O’Hare et al., have 

reviewed the systematic intercalation chemistry of LDH particles [20] and sheets [23] and highlighted 

how—in addition to the size of the guest species—the arrangement (monolayer or bilayer), size, and 

orientation of the guest as well as the interactions between the negatively charged guest and positively 

charged host are all critical factors in determining the separation between the layers. Several methods 

are commonly adopted for the synthesis of drug–LDH nanohybrids/nanocomposites, including the 

coprecipitation, ion-exchange, the calcination-reconstruction, hydrothermal, and exfoliation-restacking 

methods [17,21–23,28,30]. The coprecipitation method is most frequently used for the synthesis of 

drug–LDH nanohybrids since there is less risk of the incorporation of CO3
2− or other competing  

anions [21,28]. The ion-exchange method is also frequently used for the synthesis of drug–LDH 

nanohybrids [21,30]. LDH materials can also be formed by a calcination-rehydration (or reconstruction) 

method, in which the mixed metal oxides formed by calcination of an LDH precursor can be 

rehydrated in the presence of drug molecules to reform the LDH structure with the drug anions 

intercalated in the interlayer galleries [17]. Some neutral molecules may also be co-intercalated along 

with anions by this method. The hydrothermal method [24] is mainly used to improve crystallinity and 

uniformity of LDHs and may be less applicable in the case of drug–LDH nanohybrids if the drug has 

relatively low thermal stability. Although LDHs are harder to exfoliate than smectite clays because of 

their high layer charge density, several ways of achieving exfoliated LDHs have been developed in 

recent years and the restacking of the exfoliated nanosheets in the presence of drug species offers an 

attractive way of synthesizing drug–LDH nanohybrids under mild conditions, which is worthy of 

further exploration [23]. 

It should also be noted that the properties of drug–LDH nanohybrids/nanocomposites can be 

extended by incorporating a third functional component, such as organic [31–35], SiO2 [36,37], and 

Fe3O4 [38–40]. 

Some of the reaction routes to incorporate biomolecules into layered nanomaterials are summarized 

in Figure 2 [41]. For a specific drug–LDH composite, the choice of method is determined by a variety 

of factors such as the requirements on particle size, crystallinity, and loading amount of the drug.  

As it is shown in Figure 2, the inorganic sheets of a layered material such as an LDH act as a protective 

shield and their two-dimensional interlayer provide an ordered spacing which can effectively arrange 

the guest molecules. 
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Figure 2. Reaction routes to incorporate biomolecules into layered nanomaterials  

(a) intercalation; (b) exfoliation-restacking; (c) pillaring reaction. Reprinted with 

permission from [41] (Copyright 2009 Royal Society of Chemistry). 

 

1.3.2. Structural and Morphological Tunability 

The availability of LDH hosts with a wide range of chemical compositions allows materials with 

different structures and morphologies to be fabricated. For example, Duan et al. [30] showed  

that 5-aminosalicylate (5-ASA) intercalated ZnAl–LDH via direct coprecipitation and indirect  

ion-exchange methods with different Zn2+/Al3+ molar ratios had a variety of distinct arrangements of 

the 5-ASA guests in the interlayer galleries with various gallery heights. 

Although the crystallites of LDH materials generally have a hexagonal plate-like morphology, the 

particle size can be readily controlled according to the demands of a specific application. For example, 

Xu et al. [42] fabricated MgAl–LDH hollow nanospheres via direct assembly of preformed anisotropic 

LDH nanocrystals on the surface of carbon nanospheres followed calcinations and reconstruction to 

obtain ibuprofen (IBU)-intercalated LDH with ~400 nm hollow nanosphere morphology. Zhang et al. [43] 

synthesized IBU-intercalated MgAl and ZnAl–LDH nanohybrids by the coprecipitation followed 

hydrothermal treatment and found that the average plate-like particle sizes of the IBU–LDH 

nanohybrids can be tuned between 350 and 530 nm by modulating the aging time. 

1.3.3. Low Toxicity and Good Biocompatibility 

Many of the divalent and trivalent metal cations which can form LDHs have low toxicity.  

MgAl–LDHs are most frequently used as a LDH-based drug carrier and a significant number of studies 

have also been carried out with ZnAl–LDHs. As evidence of its low toxicity, MgAl–LDH–CO3 is 

widely used as an antacid [44]. LDH hosts have the advantage that many different guest anions—including 

not only drugs, but also important agrochemicals, vitamins, fragrances, and dyes—can be intercalated 

without any degradation or loss of structural integrity of the guest, allowing the LDHs to act as a 

reservoir of the guest species [45]. Moreover, in addition to the intercalation of pharmaceutical drugs 

into layered materials causing no significant denaturation of the drug molecules, it has also been shown 
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to enhance the internalization of the drug into a target cell without any noticeable side effects [41].  

For example, 5-fluorouracil (5-Fu)–LDH exhibits favorable blood clearance profiles compared to  

free 5-Fu, such as sustained drug release, prolonged drug half-life, and increased drug accumulation in 

target tumor tissue [46]. Furthermore, LDH nanoparticles are rapidly excreted from the body and not 

accumulated in the organs after administration as 5-Fu–LDH, showing their efficacy as biodegradable 

particles for drug delivery [47]. Similarly, the greater inhibition of the cell cycle by methotrexate 

(MTX)–LDH compared with pure MTX has been demonstrated [48], and it was proposed that the 

internalization of LDH nanoparticles via clathrin-mediated endocytosis may allow the efficient 

delivery of MTX–LDH into cells and thus enhance drug efficiency. 

Thus, LDHs can not only play a role as a biocompatible-delivery matrix for drugs but also afford a 

significant increase in the delivery efficiency [49–53]. However, before actual applications can be 

considered, the toxicity of drug–LDH composites in terms of damage to human tissue and organs must 

be studied. Choy et al. compared the toxicological effects of different nanoparticles focusing on  

their cytotoxicity and toxicity in vivo [51]. Choy et al. [52,53] further deduced that although LDH 

nanoparticles exhibit some cytotoxic effects, they are less toxic than other inorganic nanoparticles such 

as iron oxide, silica, and single walled carbon nanotubes at practical concentration levels. Although 

LDHs have low toxicity, high concentrations may still cause adverse effects [47]. Many toxicological 

studies of nanoparticles have demonstrated that the most important factor in determining the toxicity  

is the size of the particles themselves because they generally show size-dependent toxicity [54]. 

Examination of the size-dependent toxicity of LDHs in human lung cell cultures showed that 50 nm 

particles are more toxic than larger particles, while LDHs within the size range of 100–200 nm  

exhibits very low cytotoxicity in terms of cell proliferation, membrane damage, and inflammation  

response [55]. Besides particle size, the stability of an LDH also depends on the type of interlayer 

anions, and this can also affect the toxicity. It was reported [56] that MgAl–LDH–Cl dissolved more 

readily under simulated lysosomal (pH 4.5) and body fluid (pH 7.4) conditions than MgAl–LDH–CO3, 

and exhibited lower toxicity in terms of induction of oxidative stress, apoptosis and membrane damage. 

2. Drug–LDH DDS 

2.1. Cardiovascular Drugs as Guests 

According to WHO (the World Health Organization), cardiovascular diseases rank first in the cause 

of death globally leading to strong demand for cardiovascular drugs with durable efficacy. To date, 

several cardiovascular drugs have been successfully integrated into LDH hosts for controlled drug 

delivery, indicating that LDHs are potential nanocarriers for the treatment of cardiovascular diseases. 

As early as 2001, O’Hare et al. [57] reported the reversible intercalation of a number of active 

cardiovascular and anti-inflammatory agents into LDHs. As shown in Figure 3, at pH 4 the measured 

release of gemfibrozil is very fast with almost full deintercalation in less than 10 min. While the 

release curve for gemfibrozil at pH 7 is almost identical to the profile at pH 4. These results show that 

the intercalation of pharmaceutically active compounds that can form stable anions is a feasible 

approach for the storage, and subsequent controlled release, of bioactive agents. 
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Figure 3. Release profiles for (a) diclofenac at pH 4 and pH 7 and (b) gemfibrozil at pH 4 

and pH 7. Reprinted with permission from [57] (Copyright 2001 Royal Society of Chemistry). 

 

In 2006, Zhang et al. [58] developed a nanostructured drug–LDH composite involving a 

pharmaceutically active cardiovascular drug captopril (Cpl) intercalated in an Mg2Al–LDH host by a 

coprecipitation method. The interlayer spacing of the Cpl–LDH, evaluated by subtracting LDH layer 

thickness 0.48 nm from the interlayer distance d003 (measured by powder X-ray diffraction (XRD)),  

is 0.982 nm, which is larger than the molecular size of Cpl (0.526 nm) and this, together with Fourier 

transform infrared (FT-IR) and Raman spectroscopy data, suggest a vertical arrangement of a Cpl 

disulphide containing an S–S bond in interlayer gallery, with carboxylate anions interacting with both 

metal hydroxide layers. The proposed supramolecular structure of Cpl–LDH is presented in Figure 4. 

Figure 4. Supramolecular structural model of Cpl–LDH. Reprinted with permission  

from [58] (Copyright 2006 Elsevier). 

 

The in vitro release studies of Cpl–LDH in simulated gastrointestinal solutions at 37 ± 1 °C (Figure 5) 

showed that at pH 4.60, followed initial fast release, a slower release step is characterized by 

percentage releases of ca. 66.7%, 85.1% and 94.2% after 1, 10 and 140 min, respectively, while at  

pH 7.45, a slow and persistent process of ca. 12.8%, 47.4% and 92.4% are obtained after 1, 10 and  

140 min, respectively. It is worth noticing that no burst release phenomenon occurred in pH 7.45 

solution. Kinetic simulation of the release data and characterization results for samples recovered after 



Pharmaceutics 2014, 6 305 

 

 

release test indicate that a dissolution mechanism is mainly responsible for the release behavior of  

Cpl–LDH at pH 4.60, while an ion-exchange mechanism for that at pH 7.45. 

Low molecular weight heparin (LMWH) has also been intercalated into LDH hosts. In 2008,  

Gu et al. [59] prepared Mg2.4Al–LDH–LMWH hybrids with the desired LMWH loading (LMWHn–LDH,  

n = 10, 20, 50, or 100, where n denotes the percentage of Cl− ions in pristine Mg2.4Al–LDH–Cl that  

are replaced by LMWH anions) using a similar coprecipitation method, aiming at overcoming the 

pharmaceutical limitations of heparin, namely, short half-life, low efficiency of cellular delivery, and 

lack of oral absorption. The in vitro release profiles in pH 7.4 phosphate buffered saline (PBS) (Figure 6) 

show that LMWH20–LDH exhibits a gradual and biphasic release pattern, with an early fast release of 

LMWH (20.3% of LMWH released after the first 12 h) followed by a relatively slower release (44.7% 

released after 120 h), while LMWH100–LDH shows a similar biphasic release pattern, in which 23.3% 

of LMWH was released in the first 12 h and 39.9% in 120 h. The mechanism of release of LMWH 

from the LDH host probably involves surface diffusion and bulk diffusion via anionic exchange of 

LMWH anions on, or in, the LDHs with anions in the PBS solution. 

Figure 5. Release profiles of Cpl from Cpl–LDH in buffer solutions at different pH values 

Reprinted with permission from [58] (Copyright 2006 Elsevier). 

 

Figure 6. In vitro Low molecular weight heparin (LMWH) release curves from  

(a) LMWH20–LDH; (b) LMWH100–LDH; (c) physically mixed powder of heparin sodium 

salt and Cl–LDH (1/8 weight ratio). In (a) and (b), the solid and dashed curves represent the 

predictions of the modified Freundlich and parabolic diffusion model, respectively. Reprinted 

with permission from [59] (Copyright 2008 American Chemical Society). 
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Pravastatin (prava) and fluvastatin (fluva) are members of the statin family of drugs that are highly 

effective for reducing cholesterol levels in the blood stream. In 2009, Panda et al. [60] reported the 

intercalation of pravastatin and fluvastatin drugs into MgAl–LDHs via the coprecipitation technique. 

Characterization and computational results indicated that the fluvastatin anions are attached with the 

brucite as a hydrophobic monolayer, while the pravastatin anions form a hydrophilic multilayer.  

In vitro release study (Figure 7) indicated that although both the drugs contain single charged anions 

and the drug–LDH nanohybrids show a monophasic release pattern at pH 7.4 as reported earlier for 

other drugs, MgAl–LDH–fluva exhibits a gradual and slow release pattern. In both cases, there is an 

early fast release (for pravastatin of 40% and fluvastatin of 20%) of drug ions followed by a relatively 

slower release for fluvastatin. Also, on varying the concentration of hybrids materials in solution, there 

is a significant change in release patterns for both MgAl–LDH–prava and MgAl–LDH–fluva hybrids. 

For MgAl–LDH–fluva, a concentration of 0.2 mg·mL−1 gave 100% release in 16 h, a concentration of 

0.4 mg·mL−1 gave 85% release in 32 h whilst a concentration of 0.55 mg·mL−1 gave only 79% release 

in 52 h; for MgAl–LDH–prava, a concentration of 0.2 mg·mL−1 gave 100% release in 10 h and  

a concentration of 0.3 mg·mL−1 gave 91% release in 10 h. The great reduction in release rate of 

fluvastatin ions from MgAl–LDH–fluva upon materials concentration is ascribed to its hydrophobic 

nature, and this provides further means of controlling the rate of release in a physiological medium. 

The mechanism of drug diffusion in the hydrophobic MgAl–LDH–fluva nanohybrid probably involves 

heterogeneous diffusion via anion-exchange, while in the hydrophilic MgAl–LDH–prava nanohybrid it 

is due to intraparticle diffusion via anion-exchange with the anions in the physiological medium. 

Figure 7. Release profile of statin drugs for (a) pravastatin and (b) fluvastatin based LDH 

systems under various physiological conditions. Reprinted with permission from [60] 

(Copyright 2009 American Chemical Society). 

 

Fibrates such as bezafibrate (BZF) and clofibric acid (CF) are a class of lipid-regulating drugs that 

have been used in the treatment of many forms of hyperlipoproteinemia. In 2010, Berber et al. [61] 

used the coprecipitation method to intercalate BFZ and CF into an MgAl–LDH host; drug loadings of 

54% and 45%, respectively, were reached. The controlled release properties of BZF–LDH and  

CF–LDH were attributed to the presence of anionic species in simulated gastrointestinal solutions. 
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From the release data of BZF–LDH and CF–LDH, the authors concluded that the nanocomposite 

formulation with LDHs facilitated the drug release properties. 

2.2. Anti-Inflammatory Drugs as Guests 

Non-steroidal anti-inflammatory drugs (NSAIDs) are aromatic organic compounds with easily 

ionizable carboxylic groups, thus permitting their intercalation as anions between the layers of  

LDH hosts [62]. It has been shown that many common NSAIDs, such as ibuprofen [42,43,63–68],  

naproxen [69–74], diclofenac [75–78], and some other drugs [30,79–84] can be rapidly intercalated in 

LDH hosts using a variety of methods, mainly coprecipitation, ion-exchange, and reconstruction. 

Ibuprofen is a prototypical NSAID with analgesic and antipyretic properties and has been  

most widely selected as the guest. In 2001, Grandolini et al. [63] reported the intercalation of IBU in  

LDH–Cl via ion-exchange method. After intercalation of IBU, the interlayer distance of the host 

increased from 0.78 nm (parent LDH–Cl) to 2.17 nm. The dissolution tests in simulated intestinal fluid 

buffer (PBS, pH 7.5) showed 60% of drug release at 20 min and 100% at 100 min, quite different from 

those of physical mixture and commercial formulation Neo-Mindol®. The mechanism of modified drug 

release was interpreted on the ion-exchange of the interlayer IBU anions with phosphate anions in PBS. 

Subsequently, Silva et al. [64] reported the immobilization of ibuprofen on Mg3Al–LDH by three 

routes compared with that of the Cu(II)–ibuprofen salt by adsorption method. Evaluation of buffering 

properties showed that Mg3Al–(ibuprofen) by the reconstruction method combines a significant 

amount (13%) of immobilized ibuprofen with good buffering properties whilst the Mg3Al–(ibuprofen) 

samples by ion-exchange and coprecipitation methods could be good carriers for the drug due to their 

higher ibuprofen loading (~33%) despite their poor buffering properties. 

Three representative NSAIDs, ibuprofen, diclofenac, and indomethacin, were intercalated within 

the galleries of MgAl–LDHs via ion-exchange step by Vasudevan et al. [65]. The XRD patterns 

(Figure 8) showed that the (003) diffractions of precursor MgAl–LDH–NO3 disappear instead of those 

of drug–LDH hybrids at lower 2θ angles, indicating the completeness of the ion-exchange processes. 

The gallery height of 1.88 nm for MgAl–LDH–ibuprofen may be accounted for a bilayer arrangement 

with the carboxylate group of the ibuprofen anion (length 0.96 nm) anchored to the hydroxide layer. 

Given that the dimensions and geometry of the diclofenac and indomethacin molecules are the same as 

in their crystalline state, the authors believed that the observed gallery heights 1.81 and 1.97 nm for 

MgAl–LDH–diclofenac and MgAl–LDH–indomethacin, respectively, implied partially interdigitated 

bilayers of the drug molecules arranged between the LDH layers. These hybrid materials have been 

identified as potential candidates for pH-triggered drug release as well as drug storage. 

In 2008, Xu et al. [66] reported the particles interactions-dependent control of drug release from 

Mg2Al–LDHs intercalated with IBU through coprecipitation coupled with atmospheric aging or 

hydrothermal treatment in varied solvent. The sample obtained in ethylene glycol(EG)/water  

(volume ratio of 1:1) under hydrothermal condition forms c-oriented dense powder due to the 

preferential surface-to-surface and edge-to-edge aggregations of the large, regularly shaped and 

crystalline drug–LDH platelets. As a result, the release rate of IBU was considerably slower from the 

dense and oriented sample than that from loosely aggregated powders, due to the longer average 

diffusion path and higher diffusion resistance. These authors also demonstrated a simple method for 
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generating LDH hollow nanospheres (Figure 9) via direct assembly of preformed anisotropic LDH 

nanocrystals (NCs) on the surface of carbon nanospheres [42]. The in vitro release study showed that 

there is no substantial difference in the release profiles between IBU–LDH hollow nanospheres and 

IBU–LDH nanoplates. However, the former has several advantages, such as (i) a lower density and 

less aggregation compared to the nanoplates, which leads to a better dispersion in the liquid phase for 

potential applications in controlled drug release with an intravenous injection mode; (ii) a higher 

surface area (53.9 m2·g−1 compared to 14.7 m2·g−1 for LDH nanoplates) allowing more effective 

surface modification by functional species (e.g., polymers or silica); and (iii) the interior space of the 

hollow nanospheres can be used for encapsulation of other molecules or nanoparticles (e.g., dyes or 

magnetic nanoparticles) to make multifunctional nanocomposites. 

In 2011, Zhang et al. [43] fabricated MgAl–LDH nanohybrids intercalated with IBU through 

hydrothermal (H) and coprecipitation (C) methods in aqueous solution without any organic solvent. 

The (001) diffractions of the MA-IBU-H samples are obviously sharper than those of MA-IBU-C, 

indicating that the hydrothermal treatment leads to higher product crystallinity. The crystallinities and 

particle sizes of the MA-IBU-H-i (i = 18, 36, 72 h) hybrids are greatly improved with increasing aging 

time indicated by the progressive decrease in the peak width of the (110) peak. The SEM (Figure 10) 

and TEM images show typical sheet-like morphology of all intercalates, with the platelet particles 

stacked and mostly adhering to one another. The average particle sizes of MA-IBU-H-i nanohybrids 

are increased gradually from 350 to 530 nm with increasing aging time, and significantly larger than 

that of MA-IBU-C (~150 nm). In vitro release studies for all the four intercalates in pH 7.45 PBS 

indicated that the particle size has an important effect on the release rate and equilibrium. By quasi-in-time 

monitoring of the morphological changes of large-sized drug–LDH particles during the release 

process, it was found that the stacked and adhered platelet drug–LDH nanoparticles were gradually 

converted into isolated and thin plate-like LDH nanoparticles with curved edges. 

Figure 8. X-ray diffraction patterns of (a) MgAl–LDH–NO3; (b) MgAl–LDH–ibuprofen;  

(c) MgAl–LDH–diclofenac; and (d) MgAl–LDH–indomethacin. Reprinted with permission 

from [65] (Copyright 2005 American Chemical Society). 
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Figure 9. (Left) Scanning electron microscopy (SEM) (A) and transmission electron 

microscopy (TEM) (C) of metal oxide hollow nanospheres obtained after calcinations of 

LDH-NCs (nanocrystals)/central nervous system (CNS) composite and SEM (B) and TEM 

(D) of ibuprofen (IBU)-LDH hollow nanospheres after reconstruction; (Right) In vitro 

release profile of IBU from IBU-LDH hollow nanospheres in a buffer solution pH 7.0.  

The inset shows the release profiles from IBU–LDH nanoplates (■) and IBU sodium salt 

(▲) under the same conditions. Modified with permission from [42] (Copyright 2009 

American Chemical Society). 

 

Figure 10. (Left) SEM images of MA-IBU-C (a) and MA-IBU-H-i samples with i = 18 h 

(b), 36 h (c) and 72 h (d); (Right) Release profiles of IBU from MA-IBU-C (■),  

MA-IBU-H-18 (□), MA-IBU-H-36 (▲) and MA-IBU-H-72 (∆) in pH 7.45 PBS. Modified 

with permission from [43] (Copyright 2010 American Institute of Chemical Engineers). 

 

D’Souza and Golden [67] reported the intercalation of IBU in inorganic biodegradable polymer 

composites of LDH and poly-L-lactic acid (PLLA). The basal spacing expands from 0.89 to 2.48 nm  

(3% IBU–LDH loaded) and 2.66 nm (5% IBU–LDH loaded) with a titled double-layer arrangement of 

IBU within the gallery. Cumulative drug release was significantly improved by virtue of the novel 

nanocomposite architecture. Drug release studies showed a two-stage mechanism for release of the 

IBU from the nanocomposite films, but a single stage release from non-nano analogues. It was shown 

that the LDH works synergistically to strengthen PLLA while facilitating drug release. At shorter times 

periods (<5 h), the drug was released by diffusion, while ion-exchange predominates at longer time 



Pharmaceutics 2014, 6 310 

 

 

periods. These studies showed that ibuprofen could be intercalated into LDHs by an ion-exchange 

mechanism, maximizing therapeutic activity while minimizing toxic side effects. 

Duan et al. [68] investigated the thermal decomposition process of naproxen-intercalated  

MgAl–LDHs by in situ FT-IR, in situ variable temperature XRD and thermogravimetry. It was found 

that the thermal stability of the intercalated naproxen was significantly enhanced compared with the 

pure form before intercalation, which suggests that this drug-inorganic layered material may have 

potential application as the basis of a novel drug storage system. 

Berber et al. [69] reported the intercalation of naproxen in a MgAl–LDH by coprecipitation and 

studied the effect of the inorganic matrix on the drug solubility at pH 2. The LDH dissolved in the 

acidic medium and the intercalated drug was released in a molecular form which is suitable for 

absorption. The solubility of the drug after intercalation was compared with that of the free drug.  

It was found that intercalation in the LDH host improves the drug solubility and its dissolution rate. 

Rives et al. [70] have also studied the intercalation of naproxen in LDHs by both coprecipitation 

and anion-exchange with the Al3+ cations in the brucite layers partially substituted by Fe3+. In addition, 

the dissolution rate of the drugs was studied in vitro, in order to ascertain whether the LDH acts as a 

simple additive or as a matrix. The drug species, in their anionic form, were intercalated forming 

bilayers and during dissolution were exchanged with anions in the medium. This led to a slow release, 

much slower than when the LDH was simply and physically mixed with the drug, or when  

MgAl–LDH matrixes were used. These workers also reported the synthesis and characterization of 

materials where naproxen was incorporated in different inorganic matrices (MgAl–LDH, MCM-41 

mesoporous silica and mesoporous alumina) [71], and the sustained release of the drug was compared 

using in vitro experiments. For the naproxen–LDH material, the amount of naproxen incorporated is 

much higher than for the mesoporous systems, as the drug molecules are located in the interlayers 

forming a bilayer to balancing the positive charge of the brucite-like layers. 

Hou and Jin [72] reported the intercalation of naproxen into ZnAl–LDHs by the ion-exchange 

method involving the effects of varying the contact time, the composition, the layer charge density and 

the specific surface area of the LDHs, as well as the pH value on the uptake and release of naproxen by 

the LDHs. In the pH range of 6–11.5, the amount of naproxen uptaken by LDHs reduces with 

increasing pH values. The uptake by LDH–Cl is much higher than that by LDH–CO3 being probably 

due to the higher anion-exchange ability of the former. The naproxen molecules are possibly adsorbed 

on the surface of the basal layer of the LDH. In other words, a bilayer is formed in the interlayer 

gallery of the LDH host. They also found that the release rate of naproxen from the naproxen–LDH 

decreases with increasing charge density on the LDH layers and is much lower than that of a naproxen 

troche, implying an efficient drug-controlled release system of the naproxen–LDH nanohybrid. 

Ricci et al. [73] prepared a microencapsulation of an MgAl–LDH interaclated with diclofenac 

(HTlc–DIK) in order to obtain a composite system suitable for colonic drug delivery. Eudragit® S or 

Eudragit® L were used as polymers for preparation of the microparticles (MPs) with two different 

HTlc-DIK/polymer ratios. DIK release from Eudragit® L MPs at pH 6.8 reached 26%–35%  

within 25–30 min for the different HTlc–DIK/polymer ratios and no further increase was observed 

when the pH was increased to 7.5. DIK release from Eudragit® S MPs at pH 7.5 reached 70% after 6–8 h 

for both HTlc–DIK/polymer ratios. The results showed that LDH can be microencapsulated without 

loss of structural integrity and the resulting composite MPs showed good release property. Overall 
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HTlc-DIK/Eudragit® S MPs possess superior features with respect to HTlc–DIK/Eudragit® L MPs 

suggesting that they could be promising systems for drug delivery either to the distal part of the small 

intestine or to the colon. 

Cipiciani et al. [74] selected a [Zn0.72Al0.28(OH)2]Br0.28·0.69H2O LDH as the host of the anionic to 

form diclofenac–LDH by ion-exchange method. The drug release profiles at different pH and in 

different media (Figure 11) showed that the drug release was complete in phosphate buffer at pH 7.5 

but incomplete in pH 7.0 phosphate and pH 7.0 Na2HPO4/NaCl/Na2CO3 buffers, suggesting that the 

rate of release is more sensitive to acidic H2PO4
− ions than to CO3

2− or Cl− ions. 

Figure 11. Release curves of DIK from ZnAl–LDH–DIK under different conditions. 

Reprinted with permission from [74] (Copyright 2011 Elsevier). 

 

Rives et al. [75] also studied the intercalation of diclofenac, chloramphenicol, and ketoprofen into 

ZnAl, MgAl, ZnMgAl–LDH by coprecipitation method. The resulting nanohybrids show a relatively 

high crystallinity with drug molecules interacting strongly with the brucite-like layers. They also [76] 

attempted to modify the controlled release characteristics by incorporating the drug–LDHs into the 

biodegradable polymer PLLA and found that the release rate of drug was dramatically reduced and 

was not complete even after 3 months for any of the samples. Only 36% of ketoprofen was released 

from the drug–LDH–PLLA system after three months, while the amounts released in the cases of 

diclofenac and chloramphenicol were 24% and 70%, respectively. They pointed out that nevertheless, 

the net amounts of drug released might be therapeutically appropriated in all cases, as the amount of 

drug reaching the tissue would be of the same order as that obtained by oral dosing and the presented 

release pathway might be also beneficial for the interaction between the drug and the tissue. 

About other anti-inflammatory drugs, Duan et al. [77] reported the intercalation of the fenbufen into 

LDHs by coprecipitation route associated with intercalation conditions such as pH value of the 

solution and chemical composition of the host. The interlayer distance in the intercalated materials 

increased with increasing pH value, resulting from a change in the arrangement of interlayer anions 

from monolayer to interdigitated bilayer. Drug release characteristics of the pillared LDH materials 

were investigated by a dissolution test in a simulated intestinal fluid (pH 7.8). The results showed that 

the release of the drug from the supramolecular LDH materials is a slow process, especially in the case 

of Mg/Al intercalated materials, suggesting that these drug-inorganic hybrids can be used as an effective 
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drug delivery system. They subsequently prepared a core-shell material [78] using fenbufen–LDH as the 

core coated with enteric polymers, Eudragit® S 100 or Eudragit® L 100 as a shell, giving a composite 

with controlled drug release behavior under in vitro simulated gastrointestinal tract conditions. 

Rives et al. [79] also studied the intercalation of fenbufen into LDHs containing Mg2+ and Al3+ or 

Mg2+, Al3+ and Fe3+ cations by reconstruction route, with interlayer spacings ranging between 1.61 and 

1.88 nm. The presence of the LDH increases the s the drug is olubility of fenbufen, especially when 

used as a matrix. The dissolution rate of the drug decreases when intercalated, and is even lower in 

those systems containing iron; release takes place through ion-exchange with phosphate anions in the 

solution. Preparation of microspheres with Eudragit® S 100 afforded solids with a homogeneous, 

smooth surface with efficient covering of the LDH surface, as drug release was not observed at pH 

lower than 7, showing that the Eudragit® S 100 acts as an effective enteric coating for drug–LDH. 

Another NSAID flurbiprofen (FLUR), belonging to class II of the Biopharmaceutical Classification 

System (BCS), was intercalated into LDHs by Perioli et al. [80] in order to evaluate the effect of the 

intercalation on the drug dissolution rate in an acid medium, the FLUR gastric permeability in the 

presence of MgAl–LDHs, and the in vitro FLUR release profile in an intestinal environment. It was 

found that the lamellar structure of LDHs quickly dissolves releasing the drug in a molecular form in 

acidic conditions; the co-administration of MgAl–LDH ensures not only an antacid effect but also 

affords an improvement in drug permeation through the gastric mucus which would probably lead to  

a better drug absorption in vivo. Choy et al. [81] also reported the intercalation of FLUR into LDH via 

a coprecipitation step. They showed that the nanohybrids can release the drug in a sustained manner, 

which can be better controlled with the presence of a macromolecule with comparable polarity to the 

incorporated drug. Upon the in vitro release results, the drug release could be facilitated by the 

presence of an anionic macromolecule, Eudragit® S 100, in the release medium. 

5-Aminosalicylate, widely used in the treatment of inflammatory bowel disease, including 

ulcerative colitis and Crohn’s disease, was intercalated into ZnRAl–LDH (R is Zn/Al molar ratio) by  

Duan et al. [30] through both direct coprecipitation (CP) and indirect ion-exchange (EX) methods.  

It was found that the EX products possess more ordered crystallites than the CP ones and the intercalates 

with higher layer charge density, i.e., lower Zn/Al ratio, and exhibit more ordered crystal structures 

and higher thermal stability than those with lower layer charge densities. For EX intercalates, when the 

available area per monovalent anion is smaller than the cross section of the 5-aminosalicylate ion 

(ASA−), the interlayer ASA− ions adopt a staggered interpenetrating arrangement, whereas when the 

available area is sufficiently large, the ASA− ions adopt the vertical neighboring monolayer 

arrangement. For CP intercalates, when the available area per monovalent anion is smaller than the 

cross section of the ASA− ion, the interlayer ASA− ions adopt a vertically distant bilayer arrangement, 

whereas when the available area is sufficiently large the ASA− ions adopt a vertical neighboring 

bilayer arrangement. 

Indomethacin was intercalated into Mg2Al–LDHs by Rives et al. [82] through calcinations-reconstruction 

and coprecipitation routes. The coprecipitation sample shows a single layered structure while the 

reconstruction sample with contamination of another layered MgAl–CO3 phase and the amount of drug 

intercalated, as well as the height of the gallery, is larger for the former. Pharmacological studies  

in vivo showed that intercalation of the drug in the LDH host reduced the ulcerating damage of the 

drug. The same group also reported the intercalation of mefenamic and meclofenamic acid anions in  
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Mg2Al–LDHs by coprecipitation, ion-exchange and reconstruction methods [83]. Intercalation was 

achieved using all three methods, with the gallery height ranging between 1.65 and 1.75 nm depending 

on the particular drying conditions; these values suggested that the organic molecules form bilayers in 

the interlayer space. 

A dexamethasone (Dexa) sodium phosphate was intercalated into MgAl–LDHs by Bahadur et al. [84] 

using the coprecipitation technique. An in vitro release study of the nanohybrid particles showed a 

significant reduction in release rate of dexamethasone phosphate anions from MgAl–LDH–Dexa after 

confinement of the drug anions in the LDH interlayer gallery. The mechanism of drug diffusion in the 

nanohybrid was studied using the dissolution-diffusion kinetic model, and it was found that it is 

probably due to dissolution and intraparticle diffusion of anions in the physiological medium. 

2.3. Anti-Cancer Drug as Guests 

As a disease with high mortality and few effective therapies, cancer is an international problem 

within the medical profession. Riaz and Ashaf [85] have given a short review of recent research into 

the intercalation and delivery of anti-cancer drugs using LDHs. To date, LDHs have been utilized as 

nanocarriers for many anti-cancer drugs, such as folinic acid [48], methotrexate [48,50,86–93],  

5-flourouracil [94–97] and doxifluridine [17], comptothecin [98–100], K7[PTiW10O40]·6H2O [101], 

podophyllotoxin [102], and doxorubicin [103]. 

Methotrexate (MTX), a folic acid antagonist commonly used to treat cancer sufferers, but with very 

short plasma half-life, leads to administering a high dose that can cause drug resistance and nonspecific 

toxicities in normal proliferating cells and therefore needs to be modified by organic or inorganic 

nanoparticles. About the modification of MTX by LDH, Choy et al. made significant contributions [48]. 

Early in 2004, Choy et al. [48] prepared MTX–MgAl–LDH hybrid via ion-exchange method from 

Mg2Al–NO3 precursor. In vitro bioassay (Figure 12) showed that during the initial period, MTX–LDH 

is more efficient than MTX in suppression of the proliferation of tumor cell (fibroblast (human tendon) 

and SaOS-2 (Osteosarcoma, human)), and the clear difference in drug efficiency between MTX–LDH 

and MTX lasts for three days after administration. This result indicated that delivery to tumor cells is 

noticeably enhanced by hybridization with LDH and in this system MTX can reach the tumor cell 

membrane without any early decomposition due to stabilization and protection from the LDH host. 

In the follow-on work, Choy et al. [50] obtained a similar MTX–LDH via a coprecipitation step  

and found that in an osteosarcoma cell culture line, the clathrin-mediated endocytosis of LDH 

nanoparticles also enhances the internalization of conjugated MTX molecules, and the MTX–LDH was 

more toxic to cancer cells than MTX alone due to the more effective penetration through the cell 

membrane (Figure 13). The anti-cancer efficiency of this MTX–LDH material was also investigated by 

in vitro bioassays such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 

BrdU (5-bromo-2-deoxyuridine) with the bone cancer cell culture lines (Sao-2 and MG-63) [86].  

It was also found that the LDH host itself had no adverse effects on both normal and cancer cells up to 

a concentration of 500 μg·mL−1. 

Thereafter, Choy et al. [87,88] further reported the structure of anti-cancer drug–LDH nanohybrid 

MTX–LDH and its cellular interaction with human breast adenocarcinoma MCF-7 cells and drug 

resistance upon enhanced permeability and retention effect of MTX–LDH nanoparticles. 
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Figure 12. The effect of methotrexate MTX–LDH on normal (Left) and tumor (Right) cell 

growth at the concentration of 5.0 μg·mL−1. Reprinted with permission from [48] (Copyright 

2004 Elsevier). 

 

Figure 13. Cellular accumulation of free MTX molecules in MNNG/HOS cells treated 

with either MTX (○) or MTX–LDH (●). (A) Cell viability/cytotoxicity of MNNG/HOS 

cells treated with LDHs (▲), MTX (○), and MTX–LDH (●), as monitored by trypan blue 

exclusion, with respect to drug concentration (B). Reprinted with permission from [50] 

(Copyright 2006 American Chemical Society). 

 

In the meantime, Chakraborty and Ghosh [88–92] also prepared MTX–LDH by different methods 

and studied the particle dissolution and subsequent drug release properties from the matrix in PBS 

solution. A striking enhancement in efficacy/sensitivity of MTX against HCT-116 cells was obtained 

when intercalated within the LDH host, as revealed by the attainment of the half maximal inhibitory 

concentration of MTX–LDH nanohybrid after only 48 h, whereas bare MTX required 72 h to achieve 

the same effect. The MTX release from MgAl–LDH–MTX hybrids in PBS at pH 7.4 followed 
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relatively slow first order kinetics (Figure 14) and was complete within 8 days following diffusion and 

crystal dissolution mechanisms. 

Figure 14. (a) Cumulative release of MTX from MgAl–LDH–MTX matrix as a function of 

time and (b) the release data fitted to the first order kinetics model. Reprinted with 

permission from [92] (Copyright 2013 Elsevier). 

 

Chen et al. [93] developed a novel carrier for MTX by modifying an LDH host with folic acid (FA) 

molecules which had been covalently attached to (3-aminopropyl) triethoxysilane (APTES).  

The loading of MTX is 27.4 wt%. The FA-conjugated LDH nanoparticles greatly improve the 

efficiency of MTX and perform much better in killing cancer cells in comparison with free MTX. 

5-Fluorouracil (5-Fu) is a neutral weak acid and anti-metabolic drug which is used extensively in 

cancer chemotherapy although it also has adverse effects on the human body. Wang et al. [94] first 

reported the intercalation of 5-Fu into LDHs in 2005 using the reconstruction method. The orientation 

of 5-Fu within the interlayer galleries of the LDH host can be varied by changing the aging treatment 

or the swelling agent. The basal spacings of the hybrids obtained at 60 °C and 70 °C were 1.06 and  

0.8 nm, respectively, corresponding to a monolayer vertical and horizontal orientation to the layer, 

respectively, of the incorporated 5-Fu, whilst the hybrids obtained in glycerol with a basal spacing  

1.24 nm may have a bilayer arrangement of 5-Fu anions. Different release mechanisms of 5-Fu were 

observed at varied pH values: an ion-exchange process between the 5-Fu anion pillared in the lamellar 

host and phosphate anions occurred in a buffer solution at pH 7 while ion-exchange and removal of the 

inorganic host due to the partial dissolution of the LDH host was observed at pH 4. 

Choy et al. [95] also reported 5-Fu intercalated LDHs in 2008 using the coprecipitation method and 

evaluated the drug efficiency of 5-Fu–LDH against several cancer cell lines such as human lung 

cancer, osteosarcoma, and hepatoma cells and compared the results with those for MTX–LDH.  

Both 5-Fu–LDH and MTX–LDH nanohybrids more effectively inhibited cancer cell proliferation than 

free 5-Fu and MTX, respectively, though the performance of 5-FU–LDH was poorer than that of 

MTX–LDH. 

Wei et al. [96] studied the intercalation of an inclusion complex of 5-Fu and β-cyclodextrin 

(CMCD) into an LDH host using the ion-exchange step from a ZnAl–LDH–NO3 precursor. 

Spectroscopic studies showed that the structure of 5-Fu/CMCD inclusion complex is retained after 
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immobilization in the LDH host. The release profiles of 5-Fu/CMCD in phosphate-citrate buffer  

(pH 4.8 and 7.2) at 37 °C (Figure 15) indicated that a faster release and higher release amount of 5-Fu 

were observed at pH 7.2 than in the acidic medium (pH 4.8). Inclusion of 5-Fu in the CMCD cavity 

prior to intercalation into LDH host prolongs the drug release time compared to the material obtained 

by direct intercalation of 5-Fu into the same LDH. The release of 5-Fu from drug/CMCD-LDH 

composite follows the Korsmeyer-Peppas equation very well at varied pH values. The rate determining 

step for release of 5-Fu from the 5-Fu/CMCD–LDH composite may be one of the following steps, 

depending on the conditions: (1) dissolution of LDH particles; (2) ion-exchange reaction between the 

inclusion complex 5-Fu/CMCD and citrate anions in the buffer solution; and (3) release of 5-FU  

from CMCD. 

Figure 15. Release profiles of 5-Fu from 5-Fu/CMCD–LDH composite in phosphate-citrate 

buffer solution at different pH values. Reprinted with permission from [96] (Copyright 

2010 American Chemical Society). 

 

Xu et al. [97] reported another multifunctional nanovehicle for tumor optical imaging and therapy 

using Y2O3:Er3+,Yb3+ nanoparticles as near infrared fluorescent nanophosphors and MgAl–LDH–5-Fu 

nanosheets as drug nanovehicles. The hierarchically structured MgAl–LDH–5-Fu nanosheets were 

deposited on the surface of Y2O3:Er3+,Yb3+@SiO2 (via a urea assisted homogenous precipitation route) 

by a simple precipitation step followed hydrothermal treatment. The surface of the nanospheres 

consists of self-assembled 5-Fu–LDH layers with individual 5-Fu–LDH nanoplatelets standing 

vertically to form an open structure, with the thickness of the 5-Fu–LDH nanoplatelets being around 

70–100 nm. The nanovehicle exhibits strong infrared upconversion fluorescence under excitation by  

a 980 nm laser which allows its extent of uptake by cancer cells to be monitored. The nanovehicle has 

a better anti-cancer efficiency than free 5-Fu attributed to its positively charged surfaces which results 

in a favorable interaction with the negatively charged cell membranes. 

Doxifluridine (DFUR) is another important and frequently used anticancer drug with more effective 

and less toxic properties than 5-Fu. However, its application in clinical treatment is still limited by the 

side effects of oral administration such as diarrhea, nausea, and mucositis. Zhang et al. [17] fabricated 
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a series of DUFR intercalated MgAl–LDH microhybrids with varied Mg/Al molar ratios (denoted as r) 

ranging from 1.7 to 2.9 and pH values (denoted as p) during aging step ranging from 7.2 to 10 via the 

reconstruction method (Figure 16). 

Figure 16. Resonance structure of doxifluridine (DFUR) and the synthetic strategy for 

DFUR–LDH hybrids. Modified with permission from [17] (Copyright 2010 Elsevier). 

 

The arrangement of DFUR within the interlayer galleries of the LDH was found to depend on both 

Mg/Al ratios and the reaction pH values as a result of the different arrangements of the guest anions 

within the interlayer galleries, i.e., with a bilayer interlayer arrangement for DFUR–LDHr1.7p7.2 and 

a more compact arrangement for DFUR–LDHr2.0p9.5. The particle morphologies also varied with 

both Mg/Al ratios and reaction pH values. For example, DFUR–LDHr1.7p7.2 consists of interconnected 

spheres with particle size of 500–700 nm and a worm-like morphology, which can be identified as the 

embryo of a rosette-like morphology, whilst DFUR–LDHr2.0p9.5 has much smaller irregular  

plate-like particles with observable breaks or holes (Figure 17(Left)). 

The in vitro release profiles of DFUR from different DFUR–LDH microhybrids (Figure 17(Right)) 

showed that DFUR–LDHr2.0p9.5 gives a much faster release rate than DFUR–LDHr1.7p7.2, probably 

due to the discontinuous morphology and the much smaller particle size of the former. On the other 

hand, DFUR–LDHr2.1p7.2 and DFUR–LDHr2.9p7.2 present much faster release rates than  

DFUR–LDHr1.7p7.2, being attributable to their lower layer charge densities and poorer crystallinity. 

The release data fitted well with Bhaskar and modified Freundlich models, demonstrating a 

heterogeneous particle diffusion mechanism of DFUR from the DFUR–LDH microhybrids.  

Further proper modification by Eudragit® L 100, the DFUR–LDHr1.7p7.2/L100 presents a readily 

controllable release behavior relied on the variation of the release medium pH values. 
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Figure 17. (Left) SEM images of DFUR–LDHr1.7p7.2 (A,B) and DFUR–LDHr2.0p9.5 

(C,D); (Right) Release profiles of DFUR-LDHrip7.2 (i = 1.7, 2.1, 2.9) and  

DFUR–LDHr2.0p9.5. Modified with permission from [17] (Copyright 2010 Elsevier). 

 

Some forms of active drugs are only slightly soluble in water, leading to poor dispersions in 

physiological solutions as well as difficulties in efficient dose delivery. In an attempt to overcome this 

problem, Giannelis et al. [98] first incorporated the non-ionic, poorly water-soluble camptothecin 

(CPT) into micelles derived from negatively charged surfactants, and then encapsulated in MgAl–LDH 

particles by an ion-exchange step. The LDH crystals have a typical hexagonal shape with dimensions 

below 500 nm in two directions with the third dimension corresponding to the stacked inorganic sheets 

approximately 10 nm. CPT was rapidly released from the resulting nanobiohybrids with complete 

release within 10 min at both pH 4.8 and 7.2. When the nanobiohybrid containing the CPT was 

administered to Glioma cells in vitro, their survival times were significantly lower compared to 

untreated cells, or to cells incubated with the surfactant, the pristine LDH, or water (the delivery medium). 

Hou et al. [99] prepared CPT–LDHs by a simple reconstruction of calcined LDHs using an organic 

solvent–water mixed solvent medium to increase the solubility of CPT. The composite is composed of 

very thin crimpled platelet-like particles of 100–200 nm. The CPT molecules are arranged as 

monolayer with their long axis parallel to the LDH layers. The in vitro drug release from the 

composites is significantly lower than that from the corresponding physical mixture. Hou et al. [100] 

recently reported the intercalation of CPT derivative 10-hydroxycamptothecin (HCPT) into  

sebacate-intercalated SC–LDHs upon hydrophobic interaction between HCPT and the parallel alkyl 

chains of monolayer arranged interlayer sebacate molecules. The obtained SC–HCPT–LDH composite 

consists of many nanosheets with a diameter of 300–500 nm and a thickness of 30–40 nm. The release 

kinetic studies (pH 7.2 PBS) (Figure 18) upon different kinetic models indicated that the  

pseudo-second-order model is a more satisfactory description for the HCPT release process from  

SC–HCPT–LDH nanocomposites, which is similar to the previous report for the CPT–LDH obtained 

by the reconstruction method [99]. 
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Figure 18. Release profiles (a) for CPT from a CPT–LDH composite and the physical 

mixture at pH 4.8 and pH 7.2 (■: composite, pH 4.8; ●: composite, pH 7.2; ▲: physical 

mixture, pH 4.8; ▼: physical mixture, pH 7.2) and linear regression curves of release data 

fitted with the pseudo-second-order kinetic model at pH 4.8 (b1) and pH 7.2 (b2) (t refers 

to release time, Xt refers to percentage releases, qt refers to release amount at any time (t)). 

Modified with permission from [99] (Copyright 2010 Elsevier). 

 

The intercalation of other anti-cancer drugs in LDHs has been less widely discussed. For instance,  

a drug delivery system composed of Mg2Al–NO3 and K7[PTi2W10O40]·6H2O (PM-19) was designed by 

Wang et al. [101]. The Keggin-type heteropolyoxotungstate a-nion PM-19 shows high anti-viral and 

anti-tumor activity, but also has high toxicity resulting in adverse effects on the human body.  

The gallery height of the obtained Mg2Al–PM-19 is 0.99 ± 0.01 nm, in line with the spherical diameter 

of PM-19 anion. This material shows a non-uniform, irregularly agglomerated, compact, and  

non-porous plate-like structure. The observed rapid release rate and 100% release of PM-19 from the 

LDH composite after 60 min at pH 1 can be attributed to the complete collapse of the LDH layered 

structure. At pH 4 and pH 7, the rapid release during the first 60 min was followed by a more sustained 

release of the drug; this is because when the large PM-19 anions are replaced by smaller phosphate 

anions from the buffer solution, a phase boundary between the internal zone containing the intercalated  

PM-19 and the external zone with the phosphate anions leads to a decrease in the rate of drug release. 

The same group also reported a nanohybrid podophyllotoxin–LDH (PPT–LDH) by a two-step 

method [102] giving a material with particles of 80–90 nm and a zeta potential of 20.3 mV. The PPT–LDH 

particles show better anti-tumor efficiency than free PPT and are more readily taken up by Hela cells. 

PPT–LDH shows a long-term suppression effect on tumor growth, and enhances the apoptotic process 

of tumor cells. A pharmacokinetics study showed that PPT–LDH had a prolonged circulation time and 

an increased bioavailability compared with free PPT. 

Shi et al. [103] developed a Gd3+ ions (magnetic resonance imaging (MRI) contrast agent) doped 

LDH/Au (computed tomography (CT) contrast agent) nanocomposite as both a drug carrier and  

a diagnostic agent. The LDH–Gd/Au nanocomposite have a high surface area (112.9 m2·g−1), and thus 

high loading (264 mg (DOX)/g carrier) of the non-anionic anti-cancer drug doxorubicin by hydrogen 

bonding interaction, and the loaded DOX shows an interesting pH-responsive release, which is 

favorable for avoiding quick drug release in neutral blood system but promoting drug release at acidic 
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tumor sites or within cells. Meanwhile, the nanocomposite has been found to be better CT and  

T1-weighted MRI contrast agents in vitro than commercial contrast agents, and effective CT and  

T1-weighted MRI contrast agents in vivo in reticuloendothelial systems such as liver and spleen and 

both CT and MR images present higher signal enhancements in spleen than in liver (Figure 19), 

suggesting that the synthesized disk-shaped LDH–Gd/Au nanocomposite is more easily enriched in 

spleen than in liver. 

Figure 19. T1-weighted MRI signal intensity and signal to noise ratio (SNR) of liver  

(a) and spleen (b) before (control) and after intravenous administration of LDH–Gd/Au 

nanocomposite/physiological saline at various intervals (dose: 3.1 mg or 197.1 mmol·Gd/kg). 

Reprinted with permission from [103] (Copyright 2013 Elsevier). 

 

Based on above descriptions and discussions, it is concluded that the LDH nanoparticles can be 

considered as one of the ideal carriers for pharmaceutically active agents, and the obtained drug–LDH 

nanohybrid composites can be widely employed in future cardiovascular, anti-inflammatory and  

anti-cancer chemotherapies [104]. Besides the drugs mentioned above, some other kinds of drugs  

have also been co-assembled within LDH materials, including anti-histamine drugs [105], antioxidant 

drugs [106], peptide drugs [107], and amino acids [108]. Most of these drug–LDH composites show 

both good storage lifetimes because of the protection afforded by the LDH layers, and controlled 

release properties of the loaded drugs. 

Table 1 summarizes all of the drug–LDH composites reviewed in this paper, indicating the 

intercalated drug, the chemical composition of the layers (metal cations), the preparation method, and a 

brief description of drug release conditions. 
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Table 1. Brief summary of LDH-based DDS reviewed in this paper. 

Pharmaceutical guest LDH host Preparation Drug Release Ref. 

Gemfibrozil Li, Al Ion-exchange PBS (pH 4.0, 7.0) [57] 

Captopril Mg, Al Coprecipitation PBS (pH 4.6, 7.4) [58] 

Heparin Mg, Al Coprecipitation PBS (pH 7.4) [59] 

Pravastatin Mg, Al Coprecipitation PBS (pH 7.5); HCl buffer (pH 4.5); simulated intestinal body fluids (pH 7.0) [60] 

Fluvastatin Mg, Al Coprecipitation PBS (pH 7.5); HCl buffer (pH 4.5); simulated intestinal body fluids (pH 7.0) [60] 

Bezafibrate Mg, Al Coprecipitation Simulated stomach sol. (pH 2.0); Simulated duodenum sol. (pH 6.0); Simulated intestine sol. (pH 8.0) [61] 

Clofibric acid Mg, Al Coprecipitation Simulated stomach sol. (pH 2.0); Simulated duodenum sol. (pH 6.0); Simulated intestine sol. (pH 8.0) [61] 

Ibuprofen Mg, Al Ion-exchange PBS (pH 7.5) [63] 

Ibuprofen Mg, Al Coprecipitation HCl aqueous solution [64] 

Ibuprofen Mg, Al Ion-exchange HCl aqueous solution [64] 

Ibuprofen Mg, Al Reconstruction HCl aqueous solution [64] 

Cu(II)-ibuprofen Mg, Al Adsorption HCl aqueous solution [64] 

Ibuprofen Mg, Al Ion-exchange – [65] 

Ibuprofen Mg, Al Coprecipitation PBS (pH 7.0) [66] 

Ibuprofen Mg, Al Reconstruction PBS (pH 7.0) [42] 

Ibuprofen Mg, Al Hydrothermal PBS (pH 7.45) [43] 

Ibuprofen Zn, Al Ion-exchange PBS (pH 7.4) [67] 

Naproxen Mg, Al Ion-exchange – [68] 

Naproxen Mg, Al Coprecipitation PBS (pH 7.4) [69,71] 

Naproxen Mg, Al Reconstruction – [69] 

Naproxen Mg, Fe, Al Coprecipitation PBS (pH 7.5) [70] 

Naproxen Mg, Fe, Al Ion-exchange PBS (pH 7.5) [70] 

Naproxen Zn, Al Ion-exchange PBS (pH 6.86) [72] 

Diclofenac Mg, Al Ion-exchange PBS (pH 6.8, 7.5) [65,73,75] 

Diclofenac Zn, Al Ion-exchange Simulated intestinal fluid (pH: 7.5 ± 0.1); PBS (pH: 7.0 ± 0.1) [74,75] 

Diclofenac Zn, Mg, Al Ion-exchange – [75] 

Diclofenac Zn, Al Coprecipitation Physiological serum (pH 5.5) [76] 

Ketoprofen Mg, Zn, Al Ion-exchange – [75] 
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Table 1. Cont. 

Pharmaceutical guest LDH host Preparation Drug Release Ref. 

Ketoprofen Zn, Al Coprecipitation Physiological serum (pH 5.5) [76] 

Chloramphenicol Mg, Zn, Al Ion-exchange – [75] 

Chloramphenicol Zn, Al Coprecipitation Physiological serum (pH 5.5) [76] 

Fenbufen Mg, Al Ion-exchange PBS (pH 7.8) [77] 

Fenbufen Li, Al Ion-exchange PBS (pH 7.8) [77] 

Fenbufen Mg, Al Coprecipitation PBS (pH 6.8, 7.4, 7.8) [78] 

Fenbufen Mg, Al, Fe Coprecipitation PBS (pH 7.5) [79] 

Fenbufen Mg, Al, Fe Ion-exchange PBS (pH 7.5) [79] 

Fenbufen Mg, Al, Fe Reconstruction PBS (pH 7.5) [79] 

Flurbiprofen Mg, Al Ion-exchange PBS (pH 7.4) [80] 

Flurbiprofen Zn, Al Coprecipitation PBS (pH 7.4) [81] 

Flurbiprofen Mg, Al Coprecipitation – [69] 

Flurbiprofen Mg, Al Reconstruction – [69] 

Indomethacin Mg, Al Coprecipitation Swiss mice in vivo [82] 

Indomethacin Mg, Al Reconstruction Swiss mice in vivo [82] 

Indomethacin Mg, Al Ion-exchange – [65] 

Mefenamic acid Mg, Fe, Al Coprecipitation Tris buffer (tris-hydroxymethyl-aminomethane + H3PO4 + lauryl sulphate, pH 9) [70] 

Mefenamic acid Mg, Fe, Al Ion-exchange Tris buffer (tris-hydroxymethyl-aminomethane + H3PO4 + lauryl sulphate, pH 9) [70] 

Mefenamic acid Mg, Al Coprecipitation – [83] 

Mefenamic acid Mg, Al Ion-exchange – [83] 

Mefenamic acid Mg, Al Reconstruction – [83] 

Meclofenamic acid Mg, Fe, Al Coprecipitation PBS (pH 7.4) [70] 

Meclofenamic acid Mg, Fe, Al Ion-exchange PBS (pH 7.4) [70] 

Meclofenamic acid Mg, Al Coprecipitation – [83] 

Meclofenamic acid Mg, Al Ion-exchange – [83] 

Meclofenamic acid Mg, Al Reconstruction – [83] 

5-Aminosalicylate Zn, Al Coprecipitation – [30] 

5-Aminosalicylate Zn, Al Ion-exchange – [30] 

Dexamethasone Mg, Al Coprecipitation PBS (pH 7.4) [84] 

Folinic acid Mg, Al Ion-exchange Human tendinous fibroblast cell line and human osteosarcoma cell line (SaOS-2) in vitro [48] 
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Table 1. Cont. 

Pharmaceutical guest LDH host Preparation Drug Release Ref. 

Methotrexate Mg, Al Ion-exchange Human tendinous fibroblast cell line and human osteosarcoma cell line (SaOS-2) in vitro [48] 

Methotrexate Mg, Al Coprecipitation MNNG/HOS cells in vitro [50] 

Methotrexate Mg, Al Coprecipitation Human osteosarcoma cell lines; Saos-2 & MG-63 [86] 

Methotrexate Mg, Al Coprecipitation Deionized water; Hank’s balanced salt solution; human breast adenocarcinoma MCF-7 cells [87] 

Methotrexate Mg, Al Coprecipitation Parental HOS and MTX-resistant HOS/Mtx cells [88] 

Methotrexate Mg, Al Ex situ ion-exchange PBS (pH 7.4) [89] 

Methotrexate Mg, Al In situ coprecipitation PBS (pH 7.4) [89] 

Methotrexate Mg, Al Ex situ coprecipitation PBS (pH 7.4) [89] 

Methotrexate Zn, Al Ion-exchange PBS (pH 7.4) [90] 

Methotrexate Mg, Al Ion-exchange PBS (pH 7.4) [91] 

Methotrexate Mg, Al In situ ion-exchange PBS (pH 7.4) [92] 

Methotrexate Mg, Al Coprecipitation Human lung cancer; osteosarcoma; hepatoma cells [95] 

5-Fuorouracil Mg, Al Reconstruction PBS (pH 4, 7) [94] 

5-Fuorouracil Mg, Al Coprecipitation Human lung cancer; osteosarcoma; hepatoma cells [95] 

5-Fuorouracil Zn, Al Ion-exchange PBS (pH 4.8, 7.2) [96] 

5-Fuorouracil Mg, Al Precipitation & hydrothermal MCF-7 cells [97] 

Doxifluridine Mg, Al Reconstruction PBS (pH 7.45) [17] 

Camptothecin Mg, Al Ion-exchange Glioma cells in vitro [98] 

Camptothecin Mg, Al Reconstruction PBS (pH 4.8, 7.2) [99] 

10-Hydroxy-camptothecin Zn, Al Hydrophobic interaction 0.1 M PBS (pH 7.2) [100] 

K7[PTi2W10O40]·6H2O Mg, Al Ion-exchange PBS (pH 1, 4, 7) [101] 

Podophyllotoxin Mg, Al Ion-exchange Healthy female nude mice [101] 

Doxorubicin Mg, Al Hydrogen bonding interaction L929 cells and HeLa cells in vitro; Kunming mice [103] 

Cetirizine Mg, Al Ion-exchange PBS (pH 4.8, 7.4) [105] 

Cetirizine Zn, Al Ion-exchange PBS (pH 4.8, 7.4) [105] 

Carnosine Mg, Al Ion-exchange PBS (pH 7.4) [106] 

Gallic acid Mg, Al Coprecipitation PBS (pH 7.4) [106] 

Glycy-L-Tyrosine Mg, Al Solvent evaporation PBS (pH 7.4) [107] 

L-Tyrosine Mg(Ni, Zn), Al Coprecipitation – [108] 
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As far as we can see, LDHs material has been successfully combined with pharmaceutical drug 

molecules and shows great potential for drug delivery. However, the crucial challenges in efficiently 

delivering drug guests by LDH carrier still exist. One is the inevitable or still not clearly revealed 

chemical and biological toxicity of these drug–LDH nanoparticles despite their generally lower level 

compared with other inorganic nanoparticles. Another one is the non-selectivity of the drug–LDH for 

the targeted sites, resulting in an aimless and less efficient delivery. The third one is the less precise 

control of particle size and size distribution which may limit the efficient transportation of drug–LDH 

in vivo considering the possible damage of tissue or the phagocytosis of phagocytic cells. All these 

issues may alternatively rely on the modification or functionalization of drug–LDH hybrid which can 

promote the biological affinity to organism, the recognition capability to lesions, and the ability of 

delivery in vivo. 

For the most commonly studied cardiovascular drugs and anti-inflammatory drugs mentioned 

above, the aim of sustained and controlled release has already been achieved practically. However, for 

the same kinds of drugs like anti-cancer drugs which need special requirements of release process with 

precise control to targeted site, further studies are still needed. Hence, novel structures and synthetic 

strategies are continuously being proposed [40,109–111] to solve this problem. 

The introduction of a third component such as magnetic materials greatly pushes the functionalization 

process forward. Magnetic nanoparticles exhibit unique properties such as superparamagnetism [112], 

remote manipulation, magnetic imaging, and hyperthermic effect [113]. The use of magnetic 

nanoparticles affords greater flexibility to adjust the release process to improve the availability of  

drug molecules to the targeting therapeutic sites, and magnetic nanoparticles hybridized with  

drug–LDHs [114–117] are becoming one class of novel hierarchically structured bio-nanohybrid 

materials showing great application potential, which will be reviewed in the future. 

3. Conclusions 

By taking advantage of their ease of synthesis, structural diversity and stability, numerous  

LDH-based drug carrier systems have been employed as drug delivery system (DDS) and shown 

potential practical applications for the controlled release of a variety of pharmaceutical active agents. 

Most published studies have focused on the investigation of drug–LDH interactions and the in vitro 

behavior of drug guests in depth. The therapeutic advantages of LDH-based drug carriers make this 

field of investigation a high-priority development area. Nevertheless, some challenging problems still 

remain, particularly in respect to the synthesis of hierarchical complex structures with multifunctionality 

and the targeting of high efficiency release in vivo, and further results in these areas are eagerly awaited. 

Acknowledgments 

This work was supported by the 973 Program (2011CBA00508) and the National Natural Science 

Foundation of China (21276015) and PCSIRT (IRT1205). 

Conflicts of Interest 

The authors declare no conflict of interest. 



Pharmaceutics 2014, 6 325 

 

 

References 

1. Allen, T.M.; Cullis, P.R. Drug delivery system: Entering the mainstream. Science 2004, 303, 

1818–1822. 

2. De, M.; Ghosh, P.S.; Rotello, V.M. Applications of nanoparticles in biology. Adv. Mater. 2008, 

20, 4225–4241. 

3. Bhattarai, N.; Gunn, J.; Zhang, M.Q. Chitosan-based hydrogels for controlled, localized drug 

delivery. Adv. Drug Deliv. Rev. 2010, 62, 83–99. 

4. Rösler, A.; Vandermeulen, G.W.M.; Klok, H.-A. Advanced drug delivery devices via self-assembly 

of amphiphilic block copolymers. Adv. Drug Deliv. Rev. 2012, 64, 270–279. 

5. Kataoka, K.; Harada, A.; Nagasaki, Y. Block copolymer micelles for drug delivery: Design, 

characterization and biological significance. Adv. Drug Deliver. Rev. 2012, 64, 37–48. 

6. Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 2012, 

64, 49–60. 

7. Siepmann, J.; Peppas, N.A. Modeling of drug release from delivery systems based on 

hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev. 2012, 64, 163–174. 

8. Alvarez-Lorenzo, C.; Blanco-Fernandez, B.; Puga, A.M.; Concheiro, A. Crosslinked ionic 

polysaccharides for stimuli-sensitive drug delivery. Adv. Drug Deliv. Rev. 2013, 65, 1148–1171. 

9. Zhang, N.; Wardwell, P.R.; Bader, R.A. Polysaccharide-based micelles for drug delivery. 

Pharmaceutics 2013, 5, 329–352. 

10. Lawrence, M.J.; Rees, G.D. Microemulsion-based media as novel drug delivery systems.  

Adv. Drug Deliv. Rev. 2012, 64, 175–193. 

11. Yoo, J.-W.; Irvine, D.J.; Discher, D.E.; Mitragotri, S. Bio-inspired, bioengineered and 

biomimetic drug delivery carriers. Nat. Rev. Drug Discov. 2011, 10, 521–535. 

12. Tang, F.Q.; Li, L.L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and 

drug delivery. Adv. Mater. 2012, 24, 1504–1534. 

13. Yang, P.P.; Gai, S.L.; Lin, J. Functionalized mesoporous silica materials for controlled drug 

delivery. Chem. Soc. Rev. 2012, 41, 3679–3698. 

14. Alexis, F.; Pridgen, E.M.; Langer, R.; Farokhzad, O.C. Nanoparticle technologies for cancer 

therapy. Handb. Exp. Pharmacol. 2010, 197, 55–86. 

15. Wei, P.-R.; Cheng, S.-H.; Liao, W.-N.; Kao, K.-C.; Weng, F.-C.; Lee, C.-H. Synthesis of  

chitosan-coated near-infrared layered double hydroxide nanoparticles for in vivo optical imaging. 

J. Mater. Chem. 2012, 22, 5503–5513. 

16. Ribeiro, L.N.M.; Alcântara, A.C.S.; Darder, M.; Aranda, P.; Araújo–Moreira, F.M.; Ruiz-Hitzky, E. 

Pectin-coated chitosan-LDH bionanocomposite beads as potential systems for colon-targeted 

drug delivery. Int. J. Pharm. 2014, 463, 1–9. 

17. Pan, D.K.; Zhang, H.; Zhang, T.; Duan, X. A novel organic-inorganic microhybrids containing 

anticancer agent doxifluridine and layered double hydroxides: Structure and controlled release 

properties. Chem. Eng. Sci. 2010, 65, 3762–3771. 

18. Aguzzi, C.; Cerezo, P.; Viseras, C.; Caramella, C. Use of clays as drug delivery systems: 

Possibilities and limitations. Appl. Clay Sci. 2007, 36, 22–36. 



Pharmaceutics 2014, 6 326 

 

 

19. Cavani, F.; Trifirò, F.; Vaccari, A. Hydrotalcite-type anionic clays: Preparation, properties and 

applications. Catal. Today 1991, 11, 173–301. 

20. Khan, A.I.; O’Hare, D. Intercalation chemistry of layered double hydroxides: Recent 

developments and applications. J. Mater. Chem. 2002, 12, 3191–3198. 

21. Evans, D.G.; Duan, X. Preparation of layered double hydroxides and their applications as 

additives in polymers, as precursors to magnetic materials and in biology and medicine.  

Chem. Commun. 2006, doi:10.1039/B510313B. 

22. Williams, G.R.; O’Hare, D. Towards understanding, control and application of layered double 

hydroxide chemistry. J. Mater. Chem. 2006, 16, 3065–3074. 

23. Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layered double 

hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155. 

24. Xu, Z.P.; Stevenson, G.S.; Lu, C.Q.; Lu, G.Q.; Bartlett, P.F.; Gray, P.P. Stable suspension of 

layered double hydroxide nanoparticles in aqueous solution. J. Am. Chem. Soc. 2006, 128, 36–37. 

25. Sideris, P.J.; Nielsen, U.G.; Gan, Z.H.; Grey, C.P. Mg/Al ordering in layered double hydroxides 

revealed by multinuclear NMR spectroscopy. Science 2008, 321, 113–117. 

26. Centi, G.; Perathoner, S. Catalysis by layered materials: A review. Microporous Mesoporous Mater. 

2008, 107, 3–15. 

27. Del Hoyo, C. Layered double hydroxides and human health: An overview. Appl. Clay Sci. 2007, 

36, 103–121. 

28. Ladewig, K.; Xu, Z.P.; Lu, G.Q. Layered double hydroxide nanoparticles in gene and drug 

delivery. Expert Opin. Drug Deliv. 2009, 6, 907–922. 

29. Goh, K.-H.; Lim, T.-T.; Dong, Z.L. Application of layered double hydroxides for removal of 

oxyanions: A review. Water Res. 2008, 42, 1343–1368. 

30. Zou, K.; Zhang, H.; Duan, X. Studies on the formation of 5-aminosalicylate intercalated  

Zn–Al layered double hydroxides as a function of Zn/Al molar ratios and synthesis routes.  

Chem. Eng. Sci. 2007, 62, 2022–2031. 

31. Leroux, F.; Besse, J.-P. Polymer interleaved layered double hydroxide: A new emerging class of 

nanocomposites. Chem. Mater. 2001, 13, 3507–3515. 

32. Alcântara, A.C.S.; Aranda, P.; Darder, M.; Ruiz-Hitzky, E. Bionanocomposites based on 

alginate–zein/layered double hydroxide materials as drug delivery systems. J. Mater. Chem. 2010, 

20, 9495–9504. 

33. Miao, Y.-E.; Zhu, H.; Chen, D.; Wang, R.Y.; Tjiu, W.W.; Liu, T.X. Electrospun fibers of  

layered double hydroxide/biopolymer nanocomposites as effective drug delivery systems.  

Mater. Chem. Phys. 2012, 134, 623–630. 

34. Chakraborti, M.; Jackson, J.K.; Plackett, D.; Brunette, D.M.; Burt, H.M. Drug intercalation in 

layered double hydroxide clay: Application in the development of a nanocomposite film for 

guided tissue regeneration. Int. J. Pharm. 2011, 416, 305–313. 

35. Bugatti, V.; Gorrasi, G.; Montanari, F.; Nocchetti, M.; Tammaro, L.; Vittoria, V. Modified 

layered double hydroxides in polycaprolactone as a tunable delivery system: In vitro release of 

antimicrobial benzoate derivatives. Appl. Clay Sci. 2011, 52, 34–40. 



Pharmaceutics 2014, 6 327 

 

 

36. Bao, H.F.; Yang, J.P.; Huang, Y.; Xu, Z.P.; Hao, N.; Wu, Z.X.; Lu, G.Q.; Zhao, D.Y. Synthesis 

of well-dispersed layered double hydroxide core@ordered mesoporous silica shell nanostructure 

(LDH@mSiO2) and its application in drug delivery. Nanoscale 2011, 3, 4069–4073. 

37. Liu, J.; Harrison, R.; Zhou, J.Z.; Liu, T.T.; Yu, C.Z.; Lu, G.Z.; Qiao, S.Z.; Xu, Z.P. Synthesis of 

nanorattles with layered double hydroxide core and mesoporous silica shell as delivery vehicles. 

J. Mater. Chem. 2011, 21, 10641–10644. 

38. Zhang, H.; Zou, K.; Sun, H.; Duan, X. A magnetic organic–inorganic composite: Synthesis and 

characterization of magnetic 5-aminosalicylic acid intercalated layered double hydroxides.  

J. Solid State Chem. 2005, 178, 3485–3493. 

39. Zhou, L.L.; Yuan, J.Y.; Wei, Y. Core-shell structural iron oxide hybrid nanoparticles: From 

controlled synthesis to biomedical applications. J. Mater. Chem. 2011, 21, 2823–2840. 

40. Pan, D.K.; Zhang, H.; Fan, T.; Chen, J.G.; Duan, X. Nearly monodispersed core-shell structural 

Fe3O4@DFUR–LDH submicro particles for magnetically controlled drug delivery and release. 

Chem. Commun. 2011, 47, 908–910. 

41. Oh, M.-J.; Biswick, T.T.; Choy, J.-H. Layered nanomaterials for green materials. J. Mater. Chem. 

2009, 19, 2553–2563. 

42. Gunawan, P.; Xu, R. Direct assembly of anisotropic layered double hydroxide (LDH) nanocrystals 

on spherical template for fabrication of drug–LDH hollow nanospheres. Chem. Mater. 2009, 21, 

781–783. 

43. Huang, W.; Zhang, H.; Pan, D.K. Study on the release behavior and mechanism by monitoring 

the morphology changes of the large-sized drug–LDH nanohybrids. AIChE J. 2011, 57,  

1936–1946. 

44. Tarnawski, A.S.; Tomikawa, M.; Ohta, M.; Sarfeh, I.J. Antacid talcid activates in gastric mucosa 

genes encoding for EGF and its receptor. The molecular basis for its ulcer healing action.  

J. Physiol. Paris 2000, 94, 93–98. 

45. Khan, A.I.; Ragavan, A.; Fong, B.; Markland, C.; O’Brien, M.; Dunbar, T.G.; Williams, G.R.; 

O’Hare, D. Recent developments in the use of layered double hydroxides as host materials  

for the storage and triggered release of functional anions. Ind. Eng. Chem. Res. 2009, 48,  

10196–10205. 

46. Choi, S.-J.; Oh, J.-M.; Choy, J.-H. Biocompatible nanoparticles intercalated with anticancer drug 

for target delivery: Pharmacokinetic and biodistribution study. J. Nanosci. Nanotechnol. 2010, 10, 

2913–2916. 

47. Panyam, J.; Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and 

tissue. Adv. Drug Deliv. Rev. 2012, 64, 61–71. 

48. Choy, J.-H.; Jung, J.-S.; Oh, J.-M.; Park, M.; Jeong, J.; Kang, Y.-K.; Han, O.-J. Layered double 

hydroxide as an efficient drug reservoir for folate derivatives. Biomaterials 2004, 25, 3059–3064. 

49. Posati, T.; Bellezza, F.; Tarpani, L.; Perni, S.; Latterini, L.; Marsili, V.; Cipiciani, A. Selective 

internalization of ZnAl–HTlc nanoparticles in normal and tumor cells. A study of their potential 

use in cellular delivery. Appl. Clay Sci. 2012, 55, 62–69. 

50. Oh, J.-M.; Choi, S.-J.; Kim, S.-T.; Choy, J.-H. Cellular uptake mechanism of an inorganic 

nanovehicle and its drug conjugates: Enhanced efficacy due to clathrin-mediated endocytosis. 

Bioconjug. Chem. 2006, 17, 1411–1417. 



Pharmaceutics 2014, 6 328 

 

 

51. Choi, S.-J.; Oh, J.-M.; Choy, J.-H. Human-related application and nanotoxicology of inorganic 

particles: Complementary aspects. J. Mater. Chem. 2008, 18, 615–620. 

52. Choi, S.-J.; Oh, J.M.; Choy, J.-H. Toxicological effects of inorganic nanoparticles on human lung 

cancer A549 cells. J. Inorg. Biochem. 2009, 103, 463–471. 

53. Choi, S.-J.; Choy, J.-H. Layered double hydroxide nanoparticles as target-specific delivery 

carriers: Uptake mechanism and toxicity. Nanomedicine 2011, 6, 803–814. 

54. Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic potential of materials at the nanolevel. Science 2006, 

311, 622–627. 

55. Choi, S.-J.; Oh, J.-M.; Choy, J.-H. Safety aspect of inorganic layered nanoparticles: Size-dependency 

in vitro and in vivo. J. Nanosci. Nanotechnol. 2008, 8, 5297–5301. 

56. Baek, M.; Kim, I.-S.; Yu, J.; Chung, H.E.; Choy, J.-H.; Choi, S.-J. Effect of different forms of 

anionic nanoclays on cytotoxicity. J. Nanosci. Nanotechnol. 2011, 11, 1803–1806. 

57. Khan, A.I.; Lei, L.X.; Norquist, A.J.; O’Hare, D. Intercalation and controlled release of 

pharmaceutically active compounds from a layered double hydroxide. Chem. Commun. 2001, 

doi:10.1039/B106465G. 

58. Zhang, H.; Zou, K.; Guo, S.H.; Duan, X. Nanostructural drug-inorganic clay composites: 

Structure, thermal property and in vitro release of captopril-intercalated Mg–Al–layered double 

hydroxides. J. Solid State Chem. 2006, 179, 1791–1800. 

59. Gu, Z.; Thomas, A.C.; Xu, Z.P.; Campbell, J.H.; Lu, G.Q. In vitro sustained release of LMWH 

from MgAl–layered double hydroxide nanohybrids. Chem. Mater. 2008, 20, 3715–3722. 

60. Panda, H.S.; Strivastava, R.; Bahadur, D. In vitro release kinetics and stability of 

anticardiovascular drugs-intercalated layered double hydroxide nanohybrids. J. Phys. Chem. B 

2009, 113, 15090–15100. 

61. Berber, M.R.; Hafez, I.H.; Minagawa, K.; Mon, T.; Tanaka, M. Nanocomposite formulation 

system of lipid-regulating drugs based on layered double hydroxide: Synthesis, characterization 

and drug release properties. Pharm. Res. 2010, 27, 2394–2401. 

62. Rives, V.; del Arco, M.; Martín, C. Layered double hydroxides as drug carriers and for controlled 

release of non-steroidal antiinflammatory drugs (NSAIDs): A review. J. Control. Release 2013, 169, 

28–39. 

63. Ambrogi, V.; Fardella, G.; Grandolini, G.; Perioli, L. Intercalation compounds of hydrotalcite-like 

anionic clays with antiinflammatory agents—I. Intercalation and in vitro release of ibuprofen.  

Int. J. Pharm. 2001, 220, 23–32. 

64. Gordijo, C.R.; Barbose, C.A.S.; da Costa Ferreira, A.M.; Constantino, V.R.L.; de Oliveira Silva, D. 

Immobilization of ibuprofen and copper-ibuprofen drugs on layered double hydroxides.  

J. Pharm. Sci. 2005, 94, 1135–1148. 

65. Mohanambe, L.; Vasudevan, S. Anionic clays containing anti-inflammatory drug molecules: 

Comparison of molecular dynamics simulation and measurements. J. Phys. Chem. B 2005, 109, 

15651–15658. 

66. Gunawan, P.; Xu, R. Direct control of drug release behavior from layered double hydroxides 

through particle interactions. J. Pharm. Sci. 2008, 97, 4367–4378. 

67. Deleon, V.H.; Nguyen, T.D.; Nar, M.; D’Souza, N.A.; Golden, T.D. Polymer nanocomposites for 

improved drug delivery efficiency. Mater. Chem. Phys. 2012, 132, 409–415. 



Pharmaceutics 2014, 6 329 

 

 

68. Wei, M.; Shi, S.X.; Wang, J.; Li, Y.; Duan, X. Studies on the intercalation of naproxen into 

layered double hydroxide and its thermal decomposition by in situ FT-IR and in situ HT-XRD.  

J. Solid State Chem. 2004, 177, 2534–2541. 

69. Berber, M.R.; Minagawa, K.; Katoh, M.; Mori, T.; Tanaka, M. Nanocomposites of  

2-arylpropionic acid drugs based on Mg–Al layered double hydroxide for dissolution 

enhancement. Eur. J. Pharm. Sci. 2008, 35, 354–360. 

70. Del Arco, M.; Fernández, A.; Martín, C.; Rives, V. Release studies of different NSAIDs 

encapsulated in Mg, Al, Fe-hydrotalcites. Appl. Clay Sci. 2009, 42, 538–544. 

71. Carriazo, D.; del Arco, M.; Martín, C.; Ramos, C.; Rives, V. Influence of the inorganic matrix 

nature on the sustained release of naproxen. Microporous Mesoporous. Mater. 2010, 130, 229–238. 

72. Hou, W.G.; Jin, Z.L. Synthesis and characterization of Naproxen intercalated Zn–Al layered 

double hydroxides. Colloid Polym. Sci. 2007, 285, 1449–1454. 

73. Ambrogi, V.; Perioli, L.; Ricci, M.; Pulcini, L.; Nocchetti, M.; Giovagnoli, S.; Rossi, C. 

Eudragit® and hydrotalcite-like anionic clay composite system for diclofenac colonic delivery. 

Microporous Mesoporous Mater. 2008, 115, 405–415. 

74. Perioli, L.; Posati, T.; Nocchetti, M.; Bellezza, F.; Costantino, U.; Cipiciani, A. Intercalation and 

release of antiinflammatory drug diclofenac into nanosized ZnAl hydrotalcite-like compound. 

Appl. Clay Sci. 2011, 53, 374–378. 

75. San Román, M.S.; Holgado, M.J.; Salinas, B.; Rives, V. Characterisation of diclofenac, 

ketoprofen or chloramphenicol succinate encapsulated in layered double hydroxides with the 

hydrotalcite-type structure. Appl. Clay Sci. 2012, 55, 158–163. 

76. San Román, M.S.; Holgado, M.J.; Salinas, B.; Rives, V. Drug release from layered double 

hydroxides and from their polylactic acid (PLA) nanocomposites. Appl. Clay Sci. 2013, 71, 1–7. 

77. Li, B.X.; He, J.; Evans, D.G.; Duan, X. Inorganic layered double hydroxides as a drug delivery 

system—Intercalation and in vitro release of fenbufen. Appl. Clay Sci. 2004, 27, 199–207. 

78. Li, B.X.; He, J.; Evans, D.G.; Duan, X. Enteric-coated layered double hydroxides as a controlled 

release drug delivery system. Int. J. Pharm. 2004, 287, 89–95. 

79. Del Arco, M.; Fernández, A.; Martín, C.; Rives, V. Solubility and release of fenbufen 

intercalated in Mg, Al and Mg, Al, Fe layered double hydroxides (LDH): The effect of Eudragit® 

S 100 covering. J. Solid State Chem. 2010, 183, 3002–3009. 

80. Perioli, L.; Ambrogi, V.; Nauta, L.; Nocchetti, M.; Rossi, C. Effects of hydrotalcite-like 

nanostructured compounds on biopharmaceutical properties and release of BCS class II drugs: 

The case of flurbiprofen. Appl. Clay Sci. 2011, 51, 407–413. 

81. Kim, M.H.; Park, D.H.; Yang, J.H.; Choy, Y.B.; Choy, J.H. Drug-inorganic-polymer nanohybrid 

for transdermal delivery. Int. J. Pharm. 2013, 444, 120–127. 

82. Del Arco, M.; Cebadera, E.; Gutiérrez, S.; Martín, C.; Montero, M.J.; Rives, V.; Rocha, J.; 

Sevilla, M.A. Mg, Al layered double hydroxides with intercalated indomethacin: Synthesis, 

characterization, and pharmacological study. J. Pharm. Sci. 2004, 93, 1649–1658. 

83. Del Arco, M.; Fernández, A.; Martín, C.; Rives, V. Intercalation of mefenamic and 

meclofenamic acid anions in hydrotalcite-like matrixes. Appl. Clay Sci. 2007, 36, 133–140. 



Pharmaceutics 2014, 6 330 

 

 

84. Sahoo, P.K.; Panda, H.S.; Bahadur, D. Studies on the stability and kinetics of drug release of 

dexamethasone phosphate intercalated layered double hydroxides nanohybrids. Mater. Chem. Phys. 

2013, 142, 106–112. 

85. Riaz, U.; Ashraf, S.M. Double layered hydroxides as potential anti-cancer drug delivery agents. 

Mini Rev. Med. Chem. 2013, 13, 522–529. 

86. Oh, J.-M.; Park, M.; Kim, S.-T.; Jung, J.-Y.; Kang, Y.-G.; Choy, J.-H. Efficient delivery of 

anticancer drug MTX through MTX–LDH nanohybrid system. J. Phys. Chem. Solids 2006, 67, 

1024–1027. 

87. Kim, J.Y.; Choi, S.-J.; Oh, J.-M.; Park, T.; Choy, J.-H. Anticancer drug-inorganic nanohybrid 

and its cellular interaction. J. Nanosci. Nanotechnol. 2007, 7, 3700–3705. 

88. Choi, S.-J.; Choi, G.E.; Oh, J.-M.; Oh, Y.-J.; Park, M.-C.; Choy, J.-H. Anticancer drug encapsulated 

in inorganic lattice can overcome drug resistance. J. Mater. Chem. 2010, 20, 9463–9469. 

89. Chakraborty, M.; Dasgupta, S.; Bose, P.; Misra, A.; Mandal, T.K.; Mitra, M.; Chakraborty, J.; 

Basu, D. Layered double hydroxide: Inorganic organic conjugate nanocarrier for methotrexate.  

J. Phys. Chem. Solids 2011, 72, 779–783. 

90. Chakraborty, M.; Dasgupta, S.; Soundrapandian, C.; Chakraborty, J.; Ghosh, S.; Mitra, M.K.; 

Basu, D. Methotrexate intercalated ZnAl-layered double hydroxide. J. Solid State Chem. 2011, 

184, 2439–2445. 

91. Chakraborty, M.; Dasgupta, S.; Sengupta, S.; Chakraborty, J.; Ghosh, S.; Ghosh, J.; Mitra, M.K.; 

Mishra, A.; Mandal, T.K.; Basu, D. A facile synthetic strategy for Mg–Al layered double 

hydroxide material as nanocarrier for methotrexate. Ceram. Int. 2012, 38, 941–949. 

92. Chakraborty, J.; Roychowdhury, S.; Sengupta, S.; Ghosh, S. Mg–Al layered double  

hydroxide-methotrexate nanohybrid drug delivery system: Evaluation of efficacy. Mater. Sci. 

Eng. C 2013, 33, 2168–2174. 

93. Yan, L.; Chen, W.; Zhu, X.Y.; Huang, L.B.; Wang, Z.G.; Zhu, G.Y.; Roy, V.A.L.; Yu, K.N.; 

Chen, X.F. Folic acid conjugated self-assembled layered double hydroxide nanoparticles for 

high-efficacy-targeted drug delivery. Chem. Commun. 2013, 49, 10938–10940. 

94. Wang, Z.L.; Wang, E.; Gao, L.; Xu, L. Synthesis and properties of Mg2Al layered double 

hydroxides containing 5-fluorouracil. J. Solid State Chem. 2005, 178, 736–741. 

95. Choi, S.-J.; Oh, J.-M.; Choy, J.-H. Anticancer drug-layered hydroxide nanohybrids as potent 

cancer chemotherapy agents. J. Phys. Chem. Solids 2008, 69, 1528–1532. 

96. Jin, L.; Liu, Q.; Sun, Z.Y.; Ni, X.Y.; Wei, M. Preparation of 5-fluorouracil/β-cyclodextrin 

complex intercalated in layered double hydroxide and the controlled drug release properties.  

Ind. Eng. Chem. Res. 2010, 49, 11176–11181. 

97. Chen, C.P.; Yee, L.K.; Gong, H.; Zhang, Y.; Xu, R. A facile synthesis of strong near infrared 

fluorescent layered double hydroxide nanovehicles with an anticancer drug for tumor optical 

imaging and therapy. Nanoscale 2013, 5, 4314–4320. 

98. Tyner, K.M.; Schiffman, S.R.; Giannelis, E.P. Nanobiohybrids as delivery vehicles for 

camptothecin. J. Control. Release 2004, 95, 501–514. 

99. Dong, L.; Li, Y.; Hou, W.G.; Liu, S.J. Synthesis and release behavior of composites of 

camptothecin and layered double hydroxide. J. Solid State Chem. 2010, 183, 1811–1816. 



Pharmaceutics 2014, 6 331 

 

 

100. Pang, X.J.; Ma, X.M.; Li, D.X.; Hou, W.G. Synthesis and characterization of  

10-hydroxycamptothecin-sebacate-layered double hydroxide nanocomposites. Solid State Sci. 

2013, 16, 71–75. 

101. Wang, Z.L.; Wang, E.B.; Tian, S.Y.; Xiao, D.R. Intercalation of PM-19 into and in vitro  

release of anti-tumor drug from layered double hydroxide. Chem. Res. Chin. Univ. 2005, 21, 

492–495. 

102. Qin, L.L.; Xue, M.; Wang, W.R.; Zhu, R.R.; Wang, S.L.; Sun, J.; Zhang, R.; Sun, X.Y.  

The in vitro and in vivo anti-tumor effect of layered double hydroxides nanoparticles as delivery 

for podophyllotoxin. Int. J. Pharm. 2010, 388, 223–230. 

103. Wang, L.J.; Xing, H.Y.; Zhang, S.J.; Ren, Q.G.; Pan, L.M.; Zhang, K.; Bu, W.B.; Zhang, X.P.; 

Zhou, L.P.; Peng, W.J.; et al. A Gd-doped Mg–Al–LDH/Au nanocomposite for CT/MRI bimodal 

imagings and simultaneous drug delivery. Biomaterials 2013, 34, 3390–3401. 

104. Rives, V.; del Arco, M.; Martin, C. Intercalation of drugs in layered double hydroxides and their 

controlled release: A review. Appl. Clay Sci. 2014, 88–89, 239–269. 

105. Hussein-Al-Ali, S.H.; Al-Qubaisi, M.; Hussein, M.Z.; Ismail, M.; Zainal, Z.; Hakim, M.Z.  

In vitro inhibition of histamine release behavior of cetirizine intercalated into Zn/Al- and  

Mg/Al-layered double hydroxides. Int. J. Mol. Sci. 2012, 13, 5899–5916. 

106. Kong, X.G.; Jin, L.; Wei, M.; Duan, X. Antioxidant drugs intercalated into layered double 

hydroxide: Structure and in vitro release. Appl. Clay Sci. 2010, 49, 324–329. 

107. Kong, X.G.; Shi, S.X.; Han, J.B.; Zhu, F.J.; Wei, M.; Duan, X. Preparation of Glycy-L-tyrosine 

intercalated layered double hydroxide film and its in vitro release behavior. Chem. Eng. J. 2010, 

157, 598–604. 

108. Wei, M.; Yuan, Q.; Evans, D.G.; Wang, Z.Q.; Duan, X. Layered solid as a “molecular container” 

for pharmaceutical agent: L-Tyrosine-intercalated layered double hydroxides. J. Mater. Chem. 

2005, 15, 1197–1203. 

109. Ay, A.N.; Zümreoglu-Karan, B.; Temel, A.; Rives, V. Bioinorganic magnetic core-shell 

nanocomposites carrying antiarthritic agents: Intercalation of ibuprofen and glucuronic acid into 

Mg–Al–layered double hydroxides supported on magnesium ferrite. Inorg. Chem. 2009, 48, 

8871–8877. 

110. Wang, J.; Zhou, J.D.; Li, Z.S.; Song, Y.C.; Liu, Q.; Jiang, Z.H.; Zhang, M.L. Magnetic, 

luminescent Eu-doped Mg–Al layered double hydroxide and its intercalation for ibuprofen. 

Chem. Eur. J. 2010, 16, 14404–14411. 

111. Panda, H.S.; Bahadur, D. Study of the preparation, properties and kinetics of anion release in 

drug intercalated magnetic nanohybrids. Mater. Res. Bull. 2012, 47, 571–579. 

112. Kim, J.-E.; Shin, J.-Y.; Cho, M.-H. Magnetic nanoparticles: An update of application for drug 

delivery and possible toxic effects. Arch. Toxicol. 2012, 86, 685–700. 

113. Kumar, C.S.S.R.; Mohammad, F. Magnetic nanomaterials for hyperthermia-based therapy and 

controlled drug delivery. Adv. Drug Deliv. Rev. 2011, 63, 789–808. 

114. Deng, H.; Li, X.L.; Peng, Q.; Wang, X.; Chen, J.P.; Li, Y.D. Monodisperse magnetic  

single-crystal ferrite microspheres. Angew. Chem. Int. Ed. 2005, 44, 2782–2785. 



Pharmaceutics 2014, 6 332 

 

 

115. Fan, T.; Pan, D.K.; Zhang, H. Study on formation mechanism by monitoring the morphology and 

structure evolution of nearly monodispersed Fe3O4 submicroparticles with controlled particle sizes. 

Ind. Eng. Chem. Res. 2011, 50, 9009–9018. 

116. Zhang, H.; Pan, D.K.; Zou, K.; He, J.; Duan, X. A novel core-shell structured magnetic  

organic-inorganic nanohybrid involving drug-intercalated layered double hydroxides coated on a 

magnesium ferrite core for magnetically controlled drug release. J. Mater. Chem. 2009, 19, 

3069–3077. 

117. Zhang, H.; Pan, D.K.; Duan, X. Synthesis, characterization, and magnetically controlled release 

behavior of novel core–shell structural magnetic ibuprofen-intercalated LDH nanohybrids.  

J. Phys. Chem. C 2009, 113, 12140–12148. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


