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Abstract: A comparative research on stability, viscosity (µ), and thermal conductivity (k) of carbon
nanosphere (CNS) and carbon nanopowder (CNP) nanofluids was performed. CNS was synthesized
by the hydrothermal method, while CNP was provided by the manufacturer. Stable nanofluids at
high concentrations 0.5, 1.0, and 1.5 vol% were prepared successfully. The properties of CNS and CNP
nanoparticles were analyzed with Fourier-transform infrared spectroscopy (FT-IR), scanning electron
microscope (SEM), X-ray photoelectron spectroscopy (XPS), specific surface area (SBET), X-ray powder
diffraction (XRD), thermogravimetry/differential thermal analysis (TG/DTA), and energy dispersive
X-ray analysis (EDX). The CNP nanofluids have the highest k enhancement of 10.61% for 1.5 vol%
concentration compared to the base fluid, while the CNS does not make the thermal conductivity
of nanofluids (knf) significantly higher. The studied nanofluids were Newtonian. The relative µ of
CNS and CNP nanofluids was 1.04 and 1.07 at 0.5 vol% concentration and 30 ◦C. These results can be
explained by the different sizes and crystallinity of the used nanoparticles.

Keywords: carbon nanosphere; carbon nanopowder; nanofluids; thermal conductivity; viscosity

1. Introduction

Improvement of energy efficiency in many areas and applications is an indispensable
part of the global sustainability plan [1]. For example, high-efficiency cooling, a technique
that depends on heat exchangers, is an essential requirement in many applications such
as air conditioning, automobile radiators, power plants, etc. [2]. Common fluids such as
water, glycols, and oil are used as cooling liquids in the applications mentioned above [3].
However, they have some limited heat characteristics [4].

In 1993, Masuda et al. utilized the aluminum oxide nanoparticles (13 nm) in water
base fluid. The obtained nanofluids had k enhancement of 30% [5]. In 1995, Choi et al.
called the fluid containing nanoparticles as nanofluids first [6]. In 1999, a linear model of k
and concentration was developed by Lee et al. with nanofluid containing copper oxide
(CuO) and alumina (Al2O3) into a mixture of ethylene glycol and water [7]. Then, the ex-
periments of Wang et al. showed knf was higher than the base fluids [8]. In 2001, multiwall

Nanomaterials 2021, 11, 608. https://doi.org/10.3390/nano11030608 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0003-1203-8914
https://orcid.org/0000-0002-6359-768X
https://orcid.org/0000-0001-9419-689X
https://orcid.org/0000-0002-5938-8543
https://doi.org/10.3390/nano11030608
https://doi.org/10.3390/nano11030608
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11030608
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/2079-4991/11/3/608?type=check_update&version=2


Nanomaterials 2021, 11, 608 2 of 17

carbon nanotubes (MWCNT) were added into the water for enhancing k up to 160% with
1% volume concentration [9]. The nanofluids have been potential materials with improved
electrical, optical, and thermal characteristics [10]. During the last decades, there were nu-
merous attempts to enhance k, convective thermal transfer coefficient, and thermal transfer
rate by adding nanoparticles into the base fluid [11–13]. The property enhancement is
dependent on the type, size, shape, and concentration of nanoparticles. Moreover, the na-
ture and characteristic of base fluids such as pH, µ, and the presence of surfactants affect
the increment of k [14,15]. However, the disadvantage of nanofluids is the stability issue
because the nanoparticles tend to aggregate into larger particles and clusters. This limits
the usability of nanofluids in heat transfer applications [16–18].

Several kinds of nanoparticles have been utilized in the preparation of nanofluids
for enhancement of k, including metal (metal: Au, Ni, Cu, Ag; metal oxide: TiO2, ZnO,
MgO, Fe2O3; metal carbides: TiC), carbon (diamond, carbon nanotube, graphene, graphene
oxide, graphite, carbon dots [19]), and metalloid (SiO2, SiC) [20–22]. Some composite
materials have been developed with enhanced k, such as Al/diamond, Al/SiC [23,24].
However, these materials have a high cost. Recently, liquids containing two or more
nanoparticles, also called hybrid nanofluids, are under extensive research [25–27]. Due to
the superior properties of the carbon-based nanoparticles, they are potential materials that
can be utilized for many applications [3].

Generally, nanofluids can be produced with one of two methods: a single-step and
two-step approach. For the first one, nanofluids are obtained by direct synthesis of the
nanoparticles into the base fluid. In 2011, carbon/water nanofluid was prepared by Teng
et al. by utilizing the plasma arc technique and showed that compared to water, k is
enhanced by 25% at 50 ◦C [28]. Then, in 2013 a revised water-assisted synthesis system was
utilized to produce carbon/water nanofluids [29]. In the two-step method, nanoparticles
are produced first and then dispersed into the based fluid. The two-step method has been
used mostly due to its simplicity and low cost [3].

The most important issue of nanofluids is stability, which affects their thermal proper-
ties and commercialization. While the thermal properties depend on a complex motion
with a combination of agglomeration, Brownian movement, and thermophoresis effect,
the stability is dependent on the interactions between the base fluid and the nanoparticles.
These motions and interactions are affected by temperature [30], the properties of nanopar-
ticles and base fluid [31], the pH of the medium [32], and the used surfactants [33]. In order
to improve the stability of the nanofluids for the short term, the mechanical technique can
be used, such as an ultrasound bath. In this method, the van der Waals attractive force is
broken down between nanoparticles. This supports to disperse the nanoparticles better
into the base fluids [34]. The surface modification and the particle size can enhance the
repulsive force between the nanoparticles [35].

For the same materials, the values measured by different investigators were non-
identical, mainly due to the preparation procedure and the morphology of agglomeration.
One benchmark study was performed by Buongiorno et al. to compare k from different
research groups. The samples were measured at various laboratories between 20 and 30 ◦C
with some available methods, and the experimental error was obtained [36]. Moreover,
the available theory does not explain the experimental results. The aggregation mechanism
presents phonon transport from each massive particle to another one. This is affected by
the size and shape of nanoparticles and the formed clusters [37,38].

The effect of concentration, temperature, and surfactants was studied on k increment
by Estellé et al. [39]. Talaei et al. investigated the MWCNT and presented that the functional
group concentration supports to increase the stability and knf [40]. The effects of the base
fluid on k were reported by Nanda et al. [41] and Aravind et al. [42]. Chen et al. [43] and
Nasiri et al. [44] studied k with the different structures of carbon nanotubes. Recently,
Brzóska et al. [45] reported the thermal physical characteristics of long MWCNT.

A lot of attention has been paid to carbon spheres due to their utilizations, such as
lubricants, catalyst supports, etc. [46]. Generally, carbon spheres can be prepared with
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three methods. First, carbon spheres may be produced directly as pyrolysis [47,48], chemi-
cal vapor deposition [49], and hydrothermal treatment [50]. The second method uses rigid
templates as 3D macroporous silica [51], zeolite Beta beads [52]. Finally, carbon spheres
can be obtained from the synthesized polymer spheres with thermal treatment [53,54].
Carbon nanospheres may be utilized in a lot of applications as photoluminescence [55],
multiphoton bioimaging [56], anode materials in batteries [46], nanofluids [46,57], etc.

Among others, no study has been performed on the comparison of knf and µnf con-
taining carbon nanomaterials with different sizes. In this paper, the carbon nanomaterial
nanofluids based on water/ethanol are studied. The CNS is synthesized from cheap sugar,
while CNP is supplied by the manufacturer. The particles were first analyzed with SBET,
XPS, SEM-EDX, XRD, FTIR, and TGA. The nanofluids were prepared at three concentra-
tions (0.5, 1.0, and 1.5 vol%), and their knf and µnf were measured at five temperatures (20,
30, 40, 50, and 60 ◦C).

2. Materials and Methods
2.1. Materials

Carbon nanospheres were prepared using the hydrothermal method [58]. Sucrose was
put in an autoclave; then, the pH was set to 12 with NaOH solution. Under autogenous
pressure at 180 ◦C, the mixture was treated for 12 h. The reaction’s product was washed
three times with distilled water then suspended in a 45% ethanol-water solution. The sus-
pension was centrifuged at 4000 rpm for 20 min. The settled material was filtered and
dried at 70 ◦C after washing with warm distilled water overnight. The product was a
brown powder [59].

Carbon nanopowders, base fluids (ethylene glycol and ethyl alcohol), surfactants
(Gum Arabic (GA), Triton X-100, and Tween 80 (T80) were purchased from Sigma Aldrich
(Saint Louis, MO, USA).

2.2. Preparation of Nanofluid

The stability of nanofluids was investigated by using different kinds of solvents and
surfactants. Various ratios of the solvent mixture were considered as well, and in the fol-
lowing, we report about only those configurations that were observed as stable nanofluids.

The nanofluids were obtained by adding CNS and CNP into the base fluid of deionized
water (DI)/ethanol and DI/ethylene glycol, respectively. The ratio of DI and ethanol was
5:1. In the case of DI and ethylene glycol, the ratio was 1:1, and T80 was used as a surfactant
with a concentration of 3.3 vol%. For CNP, the different base fluids were investigated;
however, the nanofluids without surfactant were not stable. The volume fraction of
nanoparticle content was 0.5, 1.0, and 1.5%. The CNS and CNP nanofluids were sonicated
using an ultrasonication instrument for 1 h at 130 W and 45 kHz. The prepared nanofluids
were stable for several days.

2.3. Characterization Techniques

The morphology analysis of nanoparticles was completed by LEO 1440 XB SEM
(LEOGmbH, Oberkochen, Germany) at 5 kV with a secondary electron detector in a high
vacuum mode.

The chemical components of CNS and CNP were examined by utilizing EDX analysis
with a JEOL JSM-5500LV electron microscope (Tokyo, Japan) and XPS with X-ray photoelec-
tron spectrometer (Berlin, Germany) having 150 W (14 kV) X-ray source. The investigation
on the crystallinity of the CNS and CNP was performed by using Panalytical X’PERT PRO
MPD XRD with Cu Kα irradiation, resolution of 3 degrees/min, and the 2θ range of 5◦ to
65◦. The FTIR spectroscopy of CNS and CNP was performed by Excalibur FTS 3000 BioRad
FTIR (Bio-Rad, Digilab, UK) in the wavenumber range of 400–4000 cm−1 and transmittance
mode. The sensitivity was 4 cm−1, and the number of scans was 64.

According to the multipoint Brunauer–Emmett–Teller technique, the SBET of CNS and
CNP was determined by utilizing nitrogen adsorption isotherms at −196 ◦C.
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The effect of temperature on the nanoparticles was studied by utilizing an STD
2960 TG/DTA (TA Instruments Inc., New Castle, DE, USA) instrument with a heating rate
of 10 ◦C/min. The temperature range was from room temperature to 800 ◦C. The experi-
ments were performed in air.

The stability of CNS and CNP nanofluids was tested by using an Avantes AvaSpec-
2048 Fiber Optic spectrometer (Avantes BV, Apeldoorn, Netherlands). After a period, 20 µL
of each sample was diluted with 2 mL of DI, and their maximum absorbance was recorded.

The rheology of CNS and CNP nanofluids was investigated with three replicas using
an Anton Paar Physica MCR 301 (Anton Paar, Ashland, VA, USA) rotation viscometer at
15 different shear rates and five temperatures. The amplitude was 5%. The range of angular
frequency was 100 to 2000 s−1.

Based on the modified transient plane source approach, an SKZ1061C TPS Thermal
Conductivity Tester (SKZ Industrial, Shandong, China) was used for measuring k of CNS
and CNP nanofluids. All nanofluids were measured three times at five temperatures (20,
30, 40, 50, and 60 ◦C). The mean value and standard error were calculated for use in the
figures. In order to increase the temperature of the nanofluids at the defined setpoint,
a temperature-controlled oven was used.

3. Results and Discussion
3.1. Structure of CNS and CNP

The XRD pattern of CNS and CNP is shown in Figure 1. The figure showed that
the structure of CNS was amorphous due to the single broad diffraction peak centered
at 20◦. For CNP, it can be seen that there are two broad peaks at 2θ = 25◦ and 2θ = 43.8◦.
The diffraction peaks correspond to the (002) and (101) planes of graphite. The crystallinity
in CNP is higher than in CNS because of the higher degree of graphitization [60]. This can
increase the thermal conductivity of CNP nanofluids due to the amorphous particles
scatter phonon [61].
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Figure 1. XRD pattern of (a) carbon nanosphere (CNS) and (b) carbon nanopowder (CNP) at the
following XRD conditions: X-Ray: 40 kV, 30 mA. Scan speed: 3.0 degree/min.
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Figure 2 shows the SEM photographs of the morphology of CNS (a, b) and CNP (c, d).
From the figure, it can be seen that the CNS was uniformed in a well-shaped sphere with
a smooth surface, while the CNP was irregular; and the particles of both types tend to
aggregate. By treatment of the SEM images, the average diameter of the particles was
obtained. The diameter of CNS and CNP was 198 and 60 nm, respectively. The size of the
CNP is in agreement with the manufacturer (<100 nm). The size of the CNP is smaller than
the CNS’s. This supports CNP nanofluids with higher k. However, the attractive force
between CNP particles is larger, due to that most of the particles bond together to form a
cluster; it makes the CNP nanofluid challenging to stabilize.
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Figure 2. SEM images of (a,b) CNS and (c,d) CNP with magnification ×20,000 and ×100,000.

The nanoparticle shape strongly affects the transport processes in nanofluids [62],
resulting in that the thermal conductivity and viscosity do not vary only on the volume
fraction of nanoparticle, but in a different extent rely on the particle shape. As the molecular
level interactions take place at the particle surface, the particle shapes impact the thermal
and momentum transfer. The particle shape impacts on the particle–particle interaction
(e.g., collision) and in the particle–fluid interaction (e.g., liquid layering) as well. These com-
plex static and dynamic processes results in differences in augmentation, in the boundary
(hydraulic and temperature) layer formation, in the role of radiation of the heat transfer,
and in the liquid layering.

In order to investigate the functional groups of the used CNS and CNP to select the
type of solvents and surfactants, FT-IR analysis was performed. The FT-IR spectrum of the
used nanoparticles is shown in Figure 3.. For both types of nanoparticles, the property of
vibration of –OH groups is at 3425 cm−1. At 1614 cm−1 and 1618 cm−1, the characteristic
peak of the C=C double bonds is observed. The peaks at around 754, 796, and 840 cm−1

are caused by the hydrogen wagging absorption of aromatic rings [63]. For the CNS,
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the active mode at around 2930 cm−1 refers to the vibration of C–H bonds [60]. The peak
at 1700 cm−1 and 1026 cm−1 is assigned to the –OH and C–O bonds, respectively [64].
For the CNP, the fingerprint bands at 616 and 473 cm−1 present the aromatic structure with
monosubstitution [65].
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Figure 3. FT-IR spectrum of (a) CNS and (b) CNP dry particles.

The chemical composition of the CNS and CNP was obtained by EDX. The main
elements, including C and O (H cannot be observed) from EDX and XPS measurements
and SBET are presented in Table 1. The table presents the average of the atomic percentage
at various measurement points. The atomic percent of the oxygen content in the CNP was
lower than in the CNS. The CNP has 91.6 atomic percent of carbon from EDX analysis.
The SBET of CNP is 10 times higher than that of CNS.

Table 1. SBET, XPS and EDX results of CNS and CNP dry particles.

Nanoparticles SBET Atomic Percent (XPS) Atomic Percent (EDX)

(m2/g) C O C O

CNS 9 76.9 23.1 81.4 18.6
CNP 106 90.7 9.3 91.6 8.4

Figure 4 presents the thermal analysis of the CNS and CNP samples in air. For the
CNS, there are two stages of weight loss observed. The first one refers to the removal of
the absorbed water, the dehydration of the functional groups, and the densification of the
surface layer of the CNS to 245 ◦C, and the weight loss is around 6.3%. The next one can
be attributed to the oxidation of the carbonaceous nanomaterials to 450 ◦C [66]. For the
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CNP, the first stage lasts to 425 ◦C, and the weight loss is 3.9%; then, the oxidizing process
happened to 650 ◦C [67]. The remaining ash from the oxidization was 0.5% and 5.5% for
the CNS and CNP, respectively. This indicates that the structure of the CNP is more durable
than that of CNS. This happened because the carbon atoms were oxidized more in the
CNS nanoparticles. Similarly, reduced graphene oxide is highly stable compared to pure
graphene oxide [68].

Nanomaterials 2021, 11, x FOR PEER REVIEW 7 of 19 
 

 

Table 1. SBET, XPS and EDX results of CNS and CNP dry particles. 

Nanoparticles 
SBET Atomic Percent (XPS) Atomic Percent (EDX) 

(m2/g) C O C O 
CNS 9 76.9 23.1 81.4 18.6 
CNP  106 90.7 9.3 91.6 8.4 

 

 
Figure 4. Thermal analysis curve for (a) CNS and (b) CNP with a heating rate of 10 °C/min in airflow. 

Figure 4 presents the thermal analysis of the CNS and CNP samples in air. For the 
CNS, there are two stages of weight loss observed. The first one refers to the removal of 
the absorbed water, the dehydration of the functional groups, and the densification of the 
surface layer of the CNS to 245 °C, and the weight loss is around 6.3%. The next one can 
be attributed to the oxidation of the carbonaceous nanomaterials to 450 °C [66]. For the 
CNP, the first stage lasts to 425 °C, and the weight loss is 3.9%; then, the oxidizing process 
happened to 650 °C [67]. The remaining ash from the oxidization was 0.5% and 5.5% for 
the CNS and CNP, respectively. This indicates that the structure of the CNP is more du-
rable than that of CNS. This happened because the carbon atoms were oxidized more in 
the CNS nanoparticles. Similarly, reduced graphene oxide is highly stable compared to 
pure graphene oxide [68]. 

(a) 

(b) 

Figure 4. Thermal analysis curve for (a) CNS and (b) CNP with a heating rate of 10 ◦C/min in airflow.

XPS spectrum and the deconvolution of the carbon 1s of CNS and CNP are shown
in Figures 5 and 6. From the figures, the carbon 1s contains five components: sp2, sp3,
C–O, C=O, and O–C=O/loss feature observed at 284.3, 285.3, 286.8, 288.3, and 290.7 eV,
respectively [69]. At 290.7 eV, the peak can be the mixture of plasmonic loss feature and
carbon peak. Table 2 shows the concentration of chemical bonds from XPS measurements.
The percentage of O–H in CNS is greater in CNS than in CNP. Also, the percentage of C–O
and C=O of CNS is higher than that of CNP. This is consistent with the results of SBET.
With greater carbon/oxygen ratio, the SBET values of particles are higher [70].
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Table 2. Concentration of chemical bonds on the surface of CNS and CNP from XPS.

Nanoparticles
C 1s (%) O 1s (%)

sp3 sp2 C–O C=O O–C=O C=O O–H

CNP 72.1 12.3 5.5 4.0 6.1 35.4 64.6
CNS 69.3 12.6 15.0 3.1 8.2 91.8

The maximum absorbance of CNS and CNP nanofluids over days is shown in Figure 7.
It is obvious that the prepared nanofluids are stable for 4 days.
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3.2. Rheological Characteristics of CNS and CNP Nanofluids

One of the most important factors determining the quality of the heat transfer fluid
is µ because the increase of µ causes higher pumping energy. Similar to other fluids,
temperature affects µnf. The viscometer is calibrated with DI and the measured value
matches closely the theoretical result. The rheological measurements are performed on
base fluid, CNS, and CNP nanofluids for three concentrations of 0.5, 1.0, and 1.5 vol%
at different temperatures. Figure 8 presents the shear stress of 0.5 vol% CNS and CNP
nanofluids as a function of shear rate at different temperatures. Increasing temperature
makes the shear stress of the nanofluids lower due to the Brownian motion, while the
concentration of CNS and CNP increases the shear stress [71,72]. The nanofluids are
Newtonian because the chart line can be considered as linear.
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The surface to volume ratio is significantly higher (see Figure 2) for CNP compared
to the CNS. Forming nanofluid with the same concentration results more particle–fluid
interaction resulting in higher shear stresses and higher viscosity.

The relative µ of CNS and CNP nanofluids, which is the ratio of the µ of nanofluids
and base fluid, is shown in Figure 9 from 20 to 60 ◦C. The nanoparticle content increases µ.
This is probably due to the formed clusters [3]. With temperature, µnf increases faster than
that of the base fluid. The similar relative µnf are obtained for the two particles. However,
the µ of CNP nanofluid (at 0.5 vol% at 20 ◦C, 3.911 mPas) is much higher than that of the
CNS nanofluids (1.545 mPas) due to the usage of surfactant [73]. The µ increment of CNS
nanofluid is between 3.11% and 9.31%, while this range of the CNP nanofluids is 5.31%
and 9.56%.

The relative µ obtained in the current study was collated with the values published in
the previous investigations to confirm the results [8,74]. The collation was performed with
different concentrations and at 20 ◦C. Figure 10 shows the comparison between the present
study and the previous results. This study has a result similar to the predicted values
from Hatscheck et al. [74] and Wang et al. [8] at 0.5 vol%, while at higher concentrations,
the Wang formula [8] overestimated the prepared nanofluid viscosities.

3.3. Thermal Conductivity of CNS and CNP Nanofluids

The k and its increment of CNS and CNP nanofluids is shown in Figures 11 and 12
at different temperatures. The used device is trustable with a low error when k of dis-
tilled water was measured. The nanofluids have a higher k than these fluids without
nanoparticles at experimental temperatures. Temperature increases knf because of the
Brownian movement of nanoparticles. At 0.5 vol%, from 20 to 60 ◦C, k increases from 0.534
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to 0.582 W/mK or 8.99% increment for CNS, and from 0.575 to 0.692 W/mK or 20.35% for
CNP. The higher number of nanoparticles dispersed in the nanofluids or concentration
of the nanofluids makes k greater. At 30 ◦C, from 0.5 vol% to 1.5 vol%, k increases by
0.55% for CNS and 6.38% for CNP nanofluids. In literature, from the results of Mirsaeidi
et al. [19], the carbon dots nanofluids have k of 0.261 and 0.27 W/mK, the k enhancement
of 3.6% and 7.1% for 0.4 and 1.0 vol%. Brzóska et al. [45] showed the k increments of
MWCNT nanofluids were 15.4% and 29.3% for 0.5 and 1.0 vol%. Compared to the carbon
dot nanofluids, the CNP nanofluids have a similar result, while the CNS nanofluids have
lower k enhancement.
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The k enhancement of CNP nanofluids is greater than that of the CNS nanofluids.
This occurs due to the smaller sizes and higher crystallinity of the CNP nanoparticle.
Moreover, based on the XPS analysis, CNP has higher carbon/oxygen ratio, this improves
better the k of the CNP nanofluids [70]. It is concluded that although the CNP nanofluids
are difficult for stabilization, these nanofluids have better k. The carbon dots with smaller
size improve more k for the nanofluids based on them [19]. These results are lower than
the k enhancement of MWCNT nanofluids [45]. This can be explained by the long shape
of MWCNT.

The comparison of k enhancement between this study and the previous research is
shown in Figure 13. Clearly, the results estimated from Pak’s model [75] match with CNP
nanofluids, while the Maxwell model [76] is suitable for the CNS nanofluids.
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3.4. Regression Correlations

According to the research of Azmi et al. [77] and based on the mean values of the
measured data, the following correlations are developed:

Relative viscosity =
µnf
µbf

= 1.029
(

1 +
T
60

)0.08543(
1 +

φ

100

)1.379(
1 +

d
60

)−0.01628
(1)

knf = kbf × 1.102
(

1 +
T
60

)0.00192(
1 +

φ

100

)1.142(
1 +

d
60

)−0.06916
, (2)

where ϕ, d, and T are volume concentration, particle size, and temperature.
Figure 14 presents the comparison of the k and µ from the measurement and regression

equations. The average and standard deviations are 0.30% and 0.37% for µ; 1.04% and
0.74% for k. With these results, it can be proved that these correlations are applicable for
future applications.
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4. Conclusions

The CNS and CNP nanofluids were successfully prepared by using ultrasound and
surfactants. The comparative research on stability, µ, and k was performed for the first
time. The CNS and CNP nanoparticles were studied with XPS, SBET, FTIR, XRD, SEM-EDX,
TG/DTA. The results present that the structure of CNP is more durable than that of CNS.
While the uniformity of CNS is higher, the size of CNS is larger. The nanofluids with high
concentrations can be considered as stable for at least 4 days.

The CNP nanofluids have the highest k enhancement of 10.61% for 1.5 vol% concen-
tration compared to the base fluid, while the CNS does not make knf significantly higher.
These nanofluids were Newtonian. The relative µ of CNS and CNP nanofluids was 1.04
and 1.07 at 0.5 vol% concentration and 30 ◦C. With CNP nanoparticles, the T80 surfactant
was used for stabilizing the nanofluids. It makes the µ of CNP nanoparticles much higher.
Based on the measured data, the regression correlations were proposed for future usage.
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