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Abstract: Infectious diseases hold third place in the top 10 causes of death worldwide and were
responsible for more than 6.7 million deaths in 2016. Nanomedicine is a multidisciplinary field which
is based on the application of nanotechnology for medical purposes and can be defined as the use of
nanomaterials for diagnosis, monitoring, control, prevention, and treatment of diseases, including
infectious diseases. One of the most used nanomaterials in nanomedicine are nanoparticles, particles
with a nano-scale size that show highly tunable physical and optical properties, and the capacity
to a wide library of compounds. This manuscript is intended to be a comprehensive review of the
available recent literature on nanoparticles used for the prevention and treatment of human infectious
diseases caused by different viruses, and bacteria from a clinical point of view by basing on original
articles which talk about what has been made to date and excluding commercial products, but also
by highlighting what has not been still made and some clinical concepts that must be considered for
futures nanoparticles-based technologies applications.
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1. Introduction

Infectious diseases still represent a huge constant threat for humanity [1]. In fact, they
hold third place in the top 10 causes of death worldwide and were guilty of more than
6.7 million deaths in 2016 [2]. Among them, 3 million deaths have been caused by lower
respiratory infections, 1.4 million deaths have been caused by diarrheal diseases, 1.3 million
deaths have been caused by tuberculosis, and one million deaths have been caused by human
immunodeficiency virus (HIV) and its complications [2]. These diseases are linked together
to both important economic risk for the health system and social ones, and the implications
of these associations ranging from individual ordinary people to geopolitical stability [1].

Although this global mortality has recently dropped worldwide thanks to the discov-
ery of antimicrobials and the use of adequate treatments, death rates continue to differ
depending on the economy of each country [3]. Despite the existence of many adequate
antimicrobial treatments, these will always be connected to the problem of antimicrobial
resistance. The introduction in the clinical practice of a new antibiotic is followed by
the detection of resistant microorganisms after some variable period in almost all cases.
This antimicrobial resistance is due to three major factors: (1) the increasing frequency of
antimicrobial-resistant phenotypes among microbes as a result of the selective pressure
which the widespread use of antimicrobials exert on the microbes; (2) the globalization,
which allows the rapid spread of pathogens from a specific localization to the whole
world; and (3) the inappropriate use of antimicrobials in many different settings [4]. The
importance of antimicrobial resistance seems to be increasing, and a multidisciplinary,
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collaborative, regulatory approach is imperiously required for combating this problem,
this approach should mainly include rational use of antimicrobials, regulation on over-
the-counter availability of antibiotics, improving hand hygiene and improving infection
prevention and control, but also the understanding of resistance mechanism and innovation
in new drugs and vaccines [5]. One of these innovative approaches is nanomedicine.

Nanomedicine is a multidisciplinary field that is based on the application of nanotech-
nology for medical purposes and can be defined as the use of nanomaterials for diagnosis,
monitoring, control, prevention, and treatment of diseases [6–12] (Figure 1). Nanomedicine
intends to change the clinical practice and introduce novel medicines for both diagnosis
and treatment, which can: (1) integrate effective molecules that otherwise could not be used
due to their intrinsic high toxicity, (2) exploit multiple mechanisms of action, (3) maximize
efficacy whilst dose and toxicity are reduced, and (4) provide drug targeting, controlled
and site-specific release [7,11,13]. One of the most used nanomaterials in nanomedicine are
nanoparticles, nano-scale particles that show highly tunable physical and optical properties
and the capacity to form a wide library of compounds [13]. This manuscript is intended to
be a comprehensive review of the available recent literature on nanoparticles used for the
prevention and treatment of human infectious diseases caused by different microorganisms
from a medical point of view by basing on original articles which talk about what has
been made to date and excluding commercial products, but also by highlighting what
has not been still made and some clinical concepts that must be considered for futures
nanoparticles-based technologies applications.
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Figure 1. Different types of nanoparticles, both inorganic and polymeric ones, are represented on
the outside. Inside, the different functions that can be achieved with the use of nanomedicine are
represented: drug release and targeted therapy (improving the pharmacological profile, specific re-
lease to target tissues, overcoming biological barriers, and reducing side effects), diagnosis (increased
sensitivity, speed and accuracy, early diagnosis, and specific detection of pathological biomarkers),
theranosis (focused detection and therapy of diseases, visualizing and evaluating the effectiveness of
treatment), and nanodevices (biosensors with greater accuracy and sensitivity, and nanorobots for
detection and repair at the cellular level).
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2. Nanoparticles Types and Their Uses

A nanoparticle (NP) is a nanoscopic object with three external nanoscale dimen-
sions [8] generally ranging from nanometers or minus to micrometers [14] which may
show antimicrobial properties per se or even act as an antimicrobial carrier. One of the
main attractions of NPs is the possibility of functionalization. Functionalization allows
altering the chemical and physical properties of an NP with a specific purpose or multiple
ones (multifunctionalization). This process can give rise to local or directed antimicrobial
delivery, prolong antimicrobial effects, facilitate transport into target microbial cells, and/or
locate an area of infection, among others [10,15,16]. This functionalization can be carried
out by incorporating different components such as surface ligands that mediate the specific
attachment of NPs, linker molecules that release the cargo carried by the NP at the desired
site in response to a concrete environmental trigger, one or more therapeutic cargoes that
are transported by the NP, and/or a coating, which is generally designed for improving
the biocompatibility and bioavailability of the NPs in the inside of human body [16,17].

Considering the temporal order, NPs related to an infection can be divided into NPs
from the old toolbox (e.g., liposomes, viruses, and dendrimers), and the young toolbox
(e.g., mesoporous silica NPs, carbon nanotubes, fulerenes, graphene). However, the main
classification used classifies them into two categories: (1) inorganic and (2) polymeric NPs.

2.1. Inorganic Nanoparticles

These NPs include metal and metal oxide NPs which can be synthesized from metals
such as gold (Au), silver (Ag), copper (Cu), and/or aluminum (Al) NPs, metal oxides such
as iron oxide, magnesium oxide (MgO), titanium oxide (TiO2) and zinc oxide (ZnO) NPs,
and semiconductors such as silicon and ceramics [18]. Inorganic NPs can withstand harsh
process conditions and have been considered safe materials for humans and animals [19].
The antimicrobial effect of these NPs depends on certain characteristics such as size, shape,
ζ-potential, ligands, pH, roughness, stability, crystal structure, and material used, but
the relationship between these characteristics and their antimicrobial ability is not well-
understood to date [20,21]. Their antimicrobial abilities may generally result from at
least four mechanisms: reactive oxygen species (ROS) generation, metallic cations release,
nanoparticles accumulation on the immediate environment of microbes, and nanoparticle
internalization [22]. Furthermore, microbicidal properties from inorganic NPs do not
use to select resistance [20,21]. Among inorganic NPs, worthy of note is the mesoporous
silica NPs (MSNPs). These nanoparticles are characterized by high chemical stability, high
mechanical and heat resistance, and high specific surface area of 1000 m2/g. They can be
chemically synthesized with particle sizes between 75 and 150 nm, with pore diameters
between 2 and 12 nm. Each nanoparticle has about 1400 pores, which provides excellent
charge storage inside the nanoparticle to store various molecules, particularly drugs. And
they have silanol groups that are key to functionalize both its surface and its interior to
suit the specific function being pursued [23]. All these features together back up MSNPs as
a more than promising nanocarrier for locally antimicrobial delivery for the treatment of
different infections [9,10,17,24–26].

2.2. Polymeric Nanoparticles

These NPs are made mostly from organic matter. Organic NPs are less stable than
inorganic ones, especially at high temperatures and/or pressures [19], but otherwise
show excellent biocompatibility, stability, targeting efficiency, and low-hydro-soluble drug
storage [27,28]. They represent more than two-thirds of the nano-systems [20,29]. Examples
of organic NPs are liposomes, polymeric NPs, micelles, dendrimers, and solid lipid NPs.
Liposomes are spherical nanocarriers with a size between 20 and up to 1000 nm [30] which
are made from phospholipid bilayer with an aqueous core [28]. Polymeric NPs are colloids
solids with a size from 10 to 1000 nm and can be made from polycaprolactone, polyacrylate,
but also natural polymers such as alginate, and chitosan or even proteins like albumin [31].
Micelles are also spherical nanocarriers composed of a surfactant monolayer, their size is
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ranged between 10 and 1000 nm [31]. Dendrimers are symmetrical macromolecules with a
sized ranging from10 to 100 nm composed of three parts (a core, a hyper-branched zone,
and terminal functional groups) which allows them to charge multiple chemical molecules
and to display multiple surface groups [32]. Lipid solid NPs are formulated from lipids
which are solid in the physiological temperature and stabilized by emulsifiers and show a
size that varies between 10 to 1000 nm [33]. Some advantages of organic NPs such as drug
protection against harsh environmental situations, ease of large scale production using
high-pressure homogenization technique, biocompatibility, and biodegradability set them
up as a better alternative lipid-based system [33]. Nanoemulsions are colloidal dispersions
composed by small oil droplets suspended in an aqueous phase whose size varies between
20 to 200 nm [34].

3. Nanoparticles and Human Infections
3.1. Nanoparticles and Human Viral Infections

Viruses are the most frequent pathogens of epidemic potential. They can give rise
to outbreaks in human populations sometimes related to different animal reservoirs [1].
Eleven of the 14 prominent outbreaks humanity have suffered worldwide along 120 years
have been viruses, a crucial motive what justifies the importance these pathogens have
aroused in nanoparticles field. Moreover, many viruses cause common diseases that can
be found worldwide, such as common colds, that can be the cause of enormous economic
losses, apart from important morbidity and even mortality [35].

Respiratory viruses are the main cause of mortality worldwide by causing up to
2.7 million deaths in 2015 alone [36]. Among of viruses causing lower respiratory tract
infections, the main viruses involved in these diseases are influenza A virus, influenza B
virus, metapneumovirus, parainfluenza virus (1–4), rhinovirus, coronavirus (HKU1, NL63,
OC43, E229, MERS, SARS-CoV and SARS-CoV-2), enterovirus, and syncytial respiratory
virus [37]. Only a few of these viruses, such as influenza A virus, respiratory syncytial
virus, and MERS, have been approached by an NPs-based therapy as can be seen in Table 1.
Among the most recently published works, the NPs employed against viral infections are
mainly used as antimicrobial per se, and then as antimicrobial plus nanocarrier and they
are often inorganic and functionalized. The antiviral mechanisms can be grouped into four
types, viral deformation/ inactivation, block the viral entry, virus replication inhibition,
and cellular apoptosis inhibition. Unfortunately, most of these mechanisms are focused
on viral infection prevention, and the works that approach viral treatment are scarce. This
point hinders hugely the NPs clinical use against respiratory viral infection because the
treatment would be the most useful. Moreover, most of these works are limited to in vitro
studies that do not use to evaluate the cytotoxicity on pneumocytes, and the intranasal or
inhaled application by using in vivo model should be explored [38]. In vivo models still
keep on being an important outstanding issue for this kind of infection. These models
must be performed not only for detecting the infecting virus, but also for evaluating the
interaction between NPs and the different tissues and organs involving in the respiratory
tract (pharynx, larynx, trachea, and lungs) and the possible local inflammation resulting
from it.
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Table 1. Nanoparticles for therapeutical approaches against respiratory viral infections.

Virus Nanoparticles (NPs) w/o
Conjugate Size (nm) Nanoparticle

Role Action Mechanism Cytotoxicity
(%)

Level
Study

Cell
Lines/Animal
Used In Vivo

Reference

Influenza A virus
(subtype H1N1)

Ag NPs conjugated with
oseltamivir 3 Antimicrobial and

nanocarrier

Viral deformation/viral
entry blocking/apoptosis

inhibition
<10 in vitro MDCK [39]

Ag NPs conjugated with
zanamivir 3 Antimicrobial and

nanocarrier

Viral deformation/ viral
entry blocking/apoptosis

inhibition
<20 in vitro MDCK [40]

Au NPs with sialic acid 14 Antimicrobial Viral entry blocking <1 in vitro MDCK [41]

Liposome loaded with
glycan

sialylneolacto-N-tetraose
1–1000 Nanocarrier Viral entry blocking - in vitro/

in vivo
MDCK/C57BL/

6 mice [42]

Se NPs conjugated with
zanamivir 82 Antimicrobial and

nanocarrier

Viral entry
blocking/apoptosis

inhibition
<50 in vitro MDCK [43]

Se NPs conjugated with
amantadine 70 Antimicrobial and

nanocarrier

Viral entry
blocking/apoptosis

inhibition
<20 in vitro MDCK [44]

Se NPs conjugated with
ribavirin 65 Antimicrobial and

nanocarrier

Viral entry
blocking/apoptosis

inhibition
<20 in vitro MDCK [45]

Se NPs conjugated with
oseltamivir 100 Antimicrobial and

nanocarrier

Viral entry
blocking/apoptosis

inhibition
<10 in vitro MDCK [46]

(H1N1, H3N2,
and H9N1
subtypes)

Porous AuNPs 154 ± 37 Antimicrobial Viral entry blocking <5 in vitro MDCK [47]

(subtypes H1N1,
H3N2, PR8, B-Bris,

and B-Shan)

Au NPs conjugated with
MES 4 ± 1 Antimicrobial Infection inhibition - in vitro MDCK [48]

TiO2 NPs conjugated
polylysines w/o DNA >5 Antimicrobial Virus replication inhibition - in vitro MDCK [49]

ZnO NPs conjugated with
PEG 18 Antimicrobial Viral inactivation <20 in vitro MDCK [50]
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Table 1. Cont.

Virus Nanoparticles (NPs) w/o
Conjugate Size (nm) Nanoparticle

Role Action Mechanism Cytotoxicity
(%)

Level
Study

Cell
Lines/Animal
Used In Vivo

Reference

(H3N2 subtype)
Ginkgo biloba leaves

polyphenols
nanoemulsions

389–988 Nanocarrier Virucidal and protective
effect 0 in vitro MDCK [51]

Respiratory
syncytial virus Ag NPs 10 Antimicrobial Viral replication inhibition 0 in vitro/

in vivo

A549, a human
alveolar type

II-like epithelial
cell, and

HEp-2/BALB/c
mice

[52]

Ag NPs with curcumin 20 Antimicrobial Viral entry blocking <5 in vitro HEp-2 [53]

Au NPs conjugated with
MES/MUS-OT 2.5 ± 0.7 Antimicrobial Viral inactivation/viral

deformation 0 in vitro/
in vivo

HeLa, HEK 293T,
CHO-K1, Vero,

Hep-2, and
HT-1080/BALB/c

mice

[54]

Porous Si NPs 5–50 Antimicrobial Viral entry blocking 0 in vitro CEM SS and
MA-104 [55]

MERS Au nanorod conjugated
with PH-petide+PEG 54 ± 18 Antimicrobial Viral entry blocking 0 in vitro/

in vivo
Huh-7, 293T, and

L02/ICR mice [56]

Abbreviations: PLA: poly(lactic) acid, RSV: respiratory syncytial virus, MES: 3-mercaptoethylsulfonate, MUS: undecanesulfonic acid, OT: 1-octanethiol, MCDK: Madin-Darby Canine
Kidney cells, HeLa: human cervical carcinoma cell line ATCC CCL-2, HEK 293T: human embryonic kidney ATCC CRL-3216, CHO-K1: Chinese hamster ovary cell line ATCC CCL-61, Vero:
African green monkey fibroblastoid kidney cells ATCC CCL81, Hep-2: human larynx carcinoma epithelial cell line ATCC CCL-23, and HT-1080: human fibrosarcoma cell line ATCC
CCL-121, MERS: Middle East respiratory syndrome.
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The contributions which can be added by nanomedicine related to SARS-CoV-2 are
noteworthy. This virus is emerging as a huge threat to healthcare and the economy in
the whole world [57] and has caused 77,667,963 million cases and at least 1,709,295 [58]
million deaths up to date. The main nanotechnological approach can be grouped into three
categories: diagnosis technologies, vaccines, and possible therapies [59]. Interestingly, one
of these approaches is based on the synthesis of ACE2 coated/embedded nanoflowers or
quantum dots for using them to produce chewing gums, nose filters, masks and clothes,
and gloves which can inactivate SARS-2 and to limit the viral spread [60].

Viruses are also the most common cause of infectious diarrhea in Western coun-
tries [61]. Mortality rate that is inversely proportional to the degree of development of
each country [61]. The most common viruses causing diarrhoea are rotavirus, norovirus,
and adenovirus. There are few nanoparticles-based prevention or treatment approaches
against this type of infection. One of them is Au/CuS core/shell NPs which can inactivate
norovirus GI.1 (Norwalk) [62]. Only two vaccine-based approaches have been evalu-
ated: (1) a recombinant rotavirus VP6–ferritin NPs against rotavirus infection [63], and
(2) norovirus-rotavirus recombinant polyethylene glycol NPs against these viruses [64].
A recent study asserts that gold spheres of 2–20 nm put onto SiO2 spheres or aggregates of
50–200 nm can inhibit adenovirus reproduction by 90–100% in the range of dilutions from
2.5 × 10−2 mg/mL to 2.5 × 10−6 mg/mL and did not show cytotoxicity in vitro [65]. The
potential NPs-based treatment of these diseases is an attractive clinical opportunity that still
rises two important issues, (1) the NP-intestine interaction using in vivo model, and (2) the
impact of NP on the natural ecosystems and the measures required for minimizing it [66,67]
due to this treatment must be ideally orally-administered and, hence, faecally-eliminated.

More than one million sexually transmitted infections (STIs) are diagnosed every
day worldwide [68]. Approximately half of these STIs are caused by four viruses which
are currently incurable: HIV, herpes simplex virus (HSV), human papillomavirus (HPV),
and hepatitis B virus (HBV). New virus as hepatitis C virus have been added to this list
due to the new high–risk sexual practices [69]. Some of these NPs-based therapies are
summarized in Table 2 and some of them are illustrated in Figure 2. Their currently
incurable character up to date of these viruses made more than necessary the exploration
of new treatments against them. Not all of these viruses have attracted the same attention
from NPs-based therapies, since HIV has taken up most of it. Approximately 38 million
(36.2 million were adults, and 1.8 million were children under 15 years of age) people
worldwide were infected by HIV in 2019, and it is foreseen that 1.5 million adults and
150,000 children contract the disease each year [70]. Current HIV treatment is based on the
use of antivirals that target the various stages in the life cycle of the virus [31]. The current
antiretrovirals are nucleoside/nucleotide reverse transcriptase inhibitors, non-nucleoside
inhibitors protease inhibitors, entry/fusion inhibitors, CCR5 antagonists, and integrase
inhibitors [71]. Despite this treatment cannot cure HIV, do help HIV patients to live
longer, healthier lives at the same time which reduces the risk of HIV transmission [72].
Antiretroviral drug resistance threatens to become the main responsible of HIV treatment
failure [73]. Therefore, NP-based studies have proposed different alternatives against this
virus (Table 2). The main anti-HIV mechanisms based on NP used are viral inactivation,
viral entry blocking, cyto-protection, inactivation, infection inhibition, and latency-breaking.
From all these mechanisms those that are nearest from the clinical use would be those
related to HIV prevention because the NP incorporation to products like lubricants could
be locally and topically prevent HIV transmission. However, in vivo model and clinical
trials would be necessary for supporting this use. The use of NP as HIV treatment would
still remain so far from the clinical application due to the use of CD4+-T cells specific NPs
for attacking the virus in its host cells could cause the same damage than the virus in its
worst moment, and the use of a non-CD4+-T cells specific NP could represent an inefficient
treatment for this infection.
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Table 2. Nanoparticles for therapeutical approaches against viral STIs.

Virus Nanoparticles (NPs) w/o Conjugate Size (nm) Nanoparticle
Role Action Mechanism Cytotoxicity

(%) Level Study Cell Lines/Animal
Used In Vivo Reference

HIV PVP-coated Ag NPs 1–10 Antimicrobial Cyto-protection - in vitro Hut-CCR5 [74]

Au NPs conjugated with peptide triazoles 13–123 Antimicrobial Viral inactivation - in vitro HOS.T4.R, 293T [75]

Au NPs coated with sulfate-ended ligand 2 Antimicrobial Infection inhibition 0 in vitro MT-2 [76]

Carboxilan dendrimers - Antimicrobial Infection inhibition <20 in vitro human CD4+, CD25+,
CD127low [77]

Carboxilan dendrimers conjugated with
RNA decoy - Nanocarrier Cyto-protetion <20 in vitro MT4 [78]

Fe3O4 NPs loaded with
tenofovir+dextran sulphate] + vorinostat 10 ± 3 Nanocarrier Latency-breaking 0 in vitro MTT, primary human

astrocytes [79]

PEG-MA NPs loaded with SMAPP1 - Nanocarrier Latency-breaking - in vitro CCRP-CEM [80]

PLGA NPs loaded with efavirenz or
saquinavir 340 Nanocarrier Infection inhibition/infection

treatment 0 in vitro/ex vivo
TZM-bL, PM-1 and
CEMx174/macaque
cervicovaginal tissue

[81]

PLGA NPs loaded with maraviroc,
etravirine, and/or raltegravir 200 Nanocarrier Infection inhibition/infection

treatment <20 in vitro/ex vivo TZM-bl/human
ectocervical explants [82]

Porous Si NPs 5–50 Antimicrobial Viral entry blocking 0 in vitro CEM SS [55]

SiO2 NPs conjugated with GPTMS,
APTES, and TMPES 354 Nanocarrier Infection inhibition 0 in vitro HEK 293T [83]

HSV-1 Fe3O4 SiO2 NPs conjugated with
biguanide, polymeric aziridine 150–250 Antimicrobial

and nanocarrier Viral inactivation <20 in vitro Vero

MES-coated Ag NPs 4 Antimicrobial Infection inhibition 0 in vitro Vero [84]

PLA NPs loaded with cloroquine <300 Nanocarrier Viral entry blocking <30 in vitro Vero [85]

PLGA nanosphere loaded with acyclovir 190–700 Nanocarrier Treatment tolerance - in vivo Rabbit [86]

HSV-2 Liposomes with siRNA - Nanocarrier Infection inhibition 0 in vitro/in vivo NIH3T3, Vero/BALBc
mice [87]

PVC NPs loaded with acyclovir 400 ± 6 Nanocarrier Infection treatment - in vivo Wistar rats [88,89]

HSV-1/2 Mycosinthetized Ag NPs 4–46 Antimicrobial Infection inhibition - in vitro Vero [90]

HBV Ag NPs 10–50 Antimicrobial Viral inactivation/Infection
inhibition <50 in vitro HepAD38 [1]

(mPEG)–PLA/PEI, mPEG–PLA–chitosan
NPs loaded with siRNA 500–800 Antimicrobial

and nanocarrier
Inhibition of the HBV surface

antigen <6 in vitro PLC/PRF/5 c [91]

Ginkgo biloba leaves polyphenols
nanoemulsions 389–988 Nanocarrier Inhibition of the HBV surface

antigen 0 in vitro HepG 2215 [51]
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Table 2. Cont.

Virus Nanoparticles (NPs) w/o Conjugate Size (nm) Nanoparticle
Role Action Mechanism Cytotoxicity

(%) Level Study Cell Lines/Animal
Used In Vivo Reference

HCV PEG-PLDn+PEG-PLEm NPs loaded with
antiviral peptides 20–40 Nanocarrier Cyto-protection 0 in vitro Huh-7.5 [92]

Anionic poly(amino acid)-based NPs
loaded with antiviral peptides 108 Nanocarrier Infection treatment 0 in vitro/ in vivo Huh-7.5/BALBc mice [93]

Chitosan-TTP NPs loaded with siRNA <500 Nanocarrier Infection treatment <10 in vitro CHO K1 [94]

Solid lipid NPs loaded with RNAi 240 Nanocarrier Infection treatment 10 in vitro HepG2 [95]

Cu NPs 45.4 ± 6.8 Antimicrobial Viral entry blocking <5 in vitro Huh-7.5 [96]

Dextran-coated magnetic Fe oxide NP
conjugated with DNAzyme 75–80 Nanocarrier Inhibition of expression of the

HCV NS3 gene - in vitro/in vivo Huh-7
Luc-Neo/BALBc mice [97]

Silibinin-encapsulated liposome 129 ± 3 Nanocarrier Viral entry blocking/viral
inactivation <20 in vitro Huh7.5,

Huh7.5/Conl/FL-Neo [98]

Aptamer-functionalized Fe2O3 NPs 100 Antimicrobial Viral inactivation - ex vivo Human plasma [99]

Polyanionic carbosilane dendrimers w/o
sofosbuvir - Nanocarrier Viral entry blocking 0 in vitro Huh-7, Huh-7.5.1,

Huh-7.5.1-c2 [100]

Abbreviation: PVP: polyvinylpyrrolidine, PLA: polylactide acid, PLG: poly(lactide-co-glycolide, PEG-MA: poly(ethylene glycol) monomethyl ether monomethacrylate, SMSPP: small
Molecular Activator of PP1, PGA: polyglycerol adipate, PEG-PLDn: poly(ethylene glycol)-block-poly(α,β-aspartic acid, PEG-PLEm: methoxy-poly(ethylene glycol)-block-poly(L-glutamic
acid), TTP: tripolyphosphate.



Nanomaterials 2021, 11, 137 10 of 26

Nanomaterials 2021, 10, x FOR PEER REVIEW 8 of 23 
 

 
Dextran-coated magnetic 
Fe oxide NP conjugated 

with DNAzyme 
75–80 Nanocarrier 

Inhibition of expres-
sion of the HCV NS3 

gene 
- 

in vitro/in 
vivo 

Huh-7 Luc-Neo/BALBc 
mice 

[97] 

 
Silibinin-encapsulated lipo-

some 
129 ± 3 Nanocarrier 

Viral entry block-
ing/viral inactiva-

tion 
<20 in vitro 

Huh7.5, 
Huh7.5/Conl/FL-Neo 

[98] 

 
Aptamer-functionalized 

Fe2O3 NPs 
100 Antimicrobial Viral inactivation - ex vivo Human plasma [99] 

 
Polyanionic carbosilane 

dendrimers w/o sofosbuvir - Nanocarrier Viral entry blocking 0 in vitro 
Huh-7, Huh-7.5.1, Huh-

7.5.1-c2 [100] 

Abbreviation: PVP: polyvinylpyrrolidine, PLA: polylactide acid, PLG: poly(lactide-co-glycolide, PEG-MA: poly(ethylene 
glycol) monomethyl ether monomethacrylate, SMSPP: small Molecular Activator of PP1, PGA: polyglycerol adipate, PEG-
PLDn: poly(ethylene glycol)-block-poly(α,β-aspartic acid, PEG-PLEm: methoxy-poly(ethylene glycol)-block-poly(L-glu-
tamic acid), TTP: tripolyphosphate. 

 
Figure 2. Some of the antiviral mechanisms of NPs. (a) Inactivation of HSV-1 virions. (b) Inactivation of HIV virions (1) 
and viral entry blocking (2) throughout interaction between NPs and viral cell receptors. (c) Transcription HIV viral DNA 
favoured by NPs (green arrow) or translation HIV mRNA inhibition (red line). 

Herpes genitalis can be a result of HSV-1 or HSV-2 infection. This disease can mani-
fest as a primary or recurrent infection, where the virus replicates in epithelial tissue and 
establishes dormancy in sensory neurons from where it can reactivate periodically as lo-
calized recurrent lesions [101]. Due to the pathogeny of this kind of viruses, the best ther-
apeutical approach should be prevention. Several in vitro studies using NPs have demon-
strated the ability to inactivate virions, blocking the viral entry, and the viral infection 
inhibition (Table 2). However, in vivo model and clinical trials would be necessary for 
backing up this use. At this point, it is worth making a specification between these viruses 
since HSV-2 infection prevention can take place previously to sexual contact, but HSV-1 
infection prevention is much more difficult because this infection can be transmitted by 

Figure 2. Some of the antiviral mechanisms of NPs. (a) Inactivation of HSV-1 virions. (b) Inactivation of HIV virions (1)
and viral entry blocking (2) throughout interaction between NPs and viral cell receptors. (c) Transcription HIV viral DNA
favoured by NPs (green arrow) or translation HIV mRNA inhibition (red line).

Herpes genitalis can be a result of HSV-1 or HSV-2 infection. This disease can manifest
as a primary or recurrent infection, where the virus replicates in epithelial tissue and
establishes dormancy in sensory neurons from where it can reactivate periodically as
localized recurrent lesions [101]. Due to the pathogeny of this kind of viruses, the best
therapeutical approach should be prevention. Several in vitro studies using NPs have
demonstrated the ability to inactivate virions, blocking the viral entry, and the viral infection
inhibition (Table 2). However, in vivo model and clinical trials would be necessary for
backing up this use. At this point, it is worth making a specification between these viruses
since HSV-2 infection prevention can take place previously to sexual contact, but HSV-1
infection prevention is much more difficult because this infection can be transmitted by
both genital-genital, oral-genital and oral-oral routes, this would hinder the use of specific
NPs-based prevention treatment and the application site (mouth or genitals).

Regarding HPV, the nanoparticle-based approaches are mainly focused on the vaccine
against this virus and have been recently reviewed [102].

HBV is mainly related to an acute hepatitis that rarely gives rise to fulminant hepatitis.
HCB instead does not use to cause acute icteric hepatitis buy do cause a chronic infection
in the majority of cases [103]. Both of infections are able to cause cirrhosis and liver
cancer ensue in 20% or more over the next 10–50 years [103]. The main mechanism based
on NP against viral hepatitis are viral inactivation, viral entry blocking, cyto-protection,
inactivation, and infection inhibition (Table 2). Again, the most promising mechanism are
associated with the local and topical prevention by incorporating the NP to lubricants.
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Despite there are multiple functionalizations that can be performed on NPs for becoming
them in a perfect medication capturable by the liver (e.g., positively-charged >200 nm-sized
nanoparticles [104]), an inflammation derivate from NP-recruitment by liver could generate
a hepatitis similar to the viral acute infection.

3.2. Nanoparticles and Human Bacterial Infections

Only three of 14 most important outbreaks humanity has suffered worldwide during
the past 120 years have been caused by two bacteria, Vibrio cholerae and Yersinia pestis.
Cholera is an acute, secretory diarrhoea provoked by infection with Vibrio cholerae of the O1
and O139 serogroups [105]. This disease is endemic in over 50 countries and also causes
large epidemics and have been causing severe pandemics since 1812 [105]. Its epidemics
have been recently increasing in intensity, duration and frequency, underlying the need
for more effective approaches to prevention and control [105]. One of these approaches
is the NPs-based therapy. A recent work asserts that ZnO NPs form a complex with
cholera toxin, compromises its secondary structure, and blocks its interaction with its
receptor in enterocytes and thus reduces cholera toxin uptake [106]. The main inconvenient
of this approach would be the possible threat which ZnO NPs would suppose for the
environment [107]. Another current work has demonstrated that GM1 ganglioside-coated
PLGA hybrid NPs able to recruit cholera toxin and impede its interaction with its receptor
in enterocytes by using a murine in vivo model [108]. The biodegradable character of
PLGA NPs made them more clinically applicable and harmless to the environment. Plague
is caused by Yersinia pestis and is infrequent in clinics, though natural plague foci can be
found widely distributed around the world [109]. Its three major clinical forms include
bubonic, pneumonic, and septicaemic plague and all of them are usually related to a very
high mortality rate [109]. Recently, nanomedicine has provided a new promising vaccine
based on bacteriophage T4 capsid-derivate nanoparticles which induce immunity by using
the capsular protein Caf1 and the low calcium response protein LcrV from Y. pestis [110].
Another bacterial species related to outbreaks during human history is Mycobacterium
tuberculosis [111]. In 2018 only, approximately 10 million incident cases and 1.5 million
deaths were attributed to this bacterium [112]. The current increasing existence of multi-
drug resistant and extensively drug-resistant strains makes the treatment of this disease an
important problem in the present and, potentially, future years [113]. Some current NPs-
based approaches have been concerned about this infection and have demonstrated that
M. tuberculosis show in vitro susceptibility to Ag [114], selenium (Se) [115], and TiO2 [116]
NPs, but their intracellularly anti-tuberculosis activity remains unclear. Up to date, only a
work asserts that PLGA NPs loaded with a highly hydrophobic citral-derived isoniazid
analogue promote antibiotic targeting into replicating extra- and intracellular M. tuberculosis
bacilli [117].

A present problem with bacterial infections is the emerging threat of antibiotic resis-
tance since bacteria are the most common microorganisms associated with many human
infections including most of the healthcare-related infections throughout the world [1].
According to a report from the Centers for Disease Control, more than 2.8 million antibiotic-
resistant bacterial infections occur in the United States every year and are associated with
more than 35,000 deaths [118]. The priority pathogens related to this antibiotic resistance are
(in order of priority) Acinetrobacter baumannii, Pseudomonas aeruginosa, enterobacteria (e.g.,
Klebsiella pneumoniae and Enterobacter cloacae), Enterococcus faecium, Staphylococcus aureus,
Helicobacter pylory, Campylobacter spp, Samonella spp., Neisseria gonorrhoeae, Streptococcus pneu-
moniae, Haemophilus influenzae, and Shigella spp. [1,119]. Despite this, only a few species from
this list have been evaluated in NP-based studies (Table 3). The antibiotic-resistance mech-
anisms can be summarized in four groups: limiting uptake of an antibiotic, modification of
an antibiotic target, inactivation of an antibiotic, and active efflux of an antibiotic [120]. It is
indisputable that the antibiotic-resistant bacteria appearance is taking place faster than the
new antibiotic discovery and development, a process that requires tremendous economic
and labour investment for pharmaceutical industries and is time-consuming [21,121]. More-
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over, some of these antibiotic-resistant bacterial infections demand the use of high and/or
longer doses of antibiotics or the use of antibiotics generally relegated to a second or even
third treatment line because of their toxicity. Thus, behind this scenario, the application of
NPs is showed as a potential strategy against these microorganisms [98]. The main antibac-
terial mechanisms of NPs that show an antibacterial effect per se can be grouped into four
categories: (outer and/or cytoplasmatic) membrane damage, protein blocking/inactivation,
protein synthesis blocking, and DNA damage (Figure 3). The antibacterial effect of metal
NPs have explored and widely reviewed the in vitro antibacterial ability of different heavy
metal NPs [122–128]. Nanoparticles containing Ag [129–135], Au [136–139], TiO2 [140–142],
ZnO [143–145], CuO [146,147], MgO [148,149], CaO [150–152], Al2O3 [153–155], SiO2 [156],
and clay [157] have shown a great potential antibacterial activity. Some modifications using
proteins such as zein protein can give certain metal nanoparticles greater antibacterial
capacity, for example zein-coated Au NPs against P. aeruginosa [158] or the composite
consisting of zein protein and Ag NPs against S. aureus [159]. Most of metallic NPs showed
positive in vitro antibacterial effects mainly resulting of the bacterial toxic cationic release
or ROS generation (Table 3), but these two mechanisms could be diminished by several
in vivo considerations. Firstly, the in vivo environment is an polyanionic system [160]
where metal cations might be attracted by other host molecules, what might deviate these
NPs from its antimicrobial path at systemic level or decrease the cation concentration in the
immediate environment of the area of infection. Secondly, ROS generated by NPs could be
considerably decreased or neutralized in vivo by biomolecules that can hijack them, e.g.,
ascorbic acid (vitamin C), uric acid, bilirubin, albumin, glutathione, γ-tocopherol (vita-
min E) or ubiquinol of blood lipoproteins [161,162]. Moreover, metals NPs may give rise
to immunotoxicity, cytotoxicity, and genotoxicity in both pathogenic bacteria and health
human cells [163,164]. Taking into account all these points, the most probable clinical use
against bacterial infections of metal NPs would be restricted to topical or local use. Over
the last few years, other element such as, nickel [165,166], cerium [166,167], Se [168,169],
caesium [170], yttrium [171], palladium [172,173], or superparamagnetic Fe NPs [174] have
been recently employed in the battle against antibiotic-resistant bacteria [21,125], but more
studies that include cytotoxicity and biocompatibility are necessary.
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Table 3. Nanoparticles designed for therapeutical approaches against bacterial infections.

Nanoparticles (NPs)
w/o Conjugate Size (nm) Nanoparticle

Role
Action

Mechanism
Bacterial
Species Application Life Style Cytotoxicity

(%) Level Study
Cell

Lines/Animal
Used In Vivo

Reference

Au/Ag nanorods 12–14 × 50–55 Antimicrobial Ag+ release E. coli, MRSA
S. aureus-related

and E. coli-related
infections

Planktonic 0 In vitro/
in vivo -/C57BL6 mice [175]

TBD-PEG NPs loaded
with IR786S, ONOO-

and ClO-
50 Nanocarrier ROS generation E. coli

Wound infection
and abscessus

cauded by E. coli
Biofilm - -/In vivo -/BALBc mice [176]

Ag NPs anchored on Ti
surface 18–24 Antimicrobial Ag+ release S. epidermidis Metallic implant

infection
Planktonic/

biofilm <10 In vitro/
in vivo

MC3T3-
E1/Sprague
Dawley rats

[177]

ZnO NPs dispersed in
a polyvinyl alcohol gel 4–10 Antimicrobial ROS generation E. coli Vaginitis Planktonic <20 In vitro/

in vivo
HepG-2, A-431/

ICR mice [178]

Ag NPs in a poly
(hydroxyethyl

methacrylate) gel
- Antimicrobial Ag+ release S. aureus/E. coli Idwelling implant

infection Planktonic <20 In vitro/
in vivo

NIH-3T3/BALBc
mice [179]

P(GEMADA-co-DMA)-
b-PBMA NPs loaded

with guanidine lighted
with NIR laser

50 Nanocarrier ROS generation S. aureus Catheter infection Planktonic/
biofilm - In vitro/

in vivo -/BALBc mice [180]

Ag NPs loaded into Ti
nanotubes 10–20 Antimicrobial Ag+ release MRSA Metallic implant

infection Biofilm - In vitro/
in vivo

MC3T3-
E1/Sprague
Dawley rats

[181]

Dendrimer-coated
MSNPs load with

levofloxacin
150 Nanocarrier

Antibiotic-
bactericidal effect

favored by
dendrimer

E. coli
E. coli

biofilm-related
infection

Planktonic/
biofilm - In vitro - [182]

ε-poly-lysine-coated
MSNPs were loaded
with histidine kinase
autophosphorylation

inhibitors (HKAI)

100 Nanocarrier HKAI-inhibitory
effect

E. coli, Serratia
marcensens

Enterobacterial
infection Planktonic 0 In vitro/

in vivo
Caco-2 BBE, RAW
264.7/Zebra fish [183]

EDC/NHS or
ICPTES-functionalized
mesoporous SiO2 NPs

- Nanocarrier

Antibiotic-
bactericidal effect

of the possible
loaded antibiotic

Francisella
tularensis Turalemia Planktonic - In vitro - [184]

Anti-S. aureus
antibody-coated

Fe3O4/MSNPs loaded
with vancomycin

250 Nanocarrier
Vacomycin-
bactericidal

effect
S. aureus

S. aureus-
associated
bacteremia

Planktonic - In vitro Erytrocyte [185]
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Table 3. Cont.

Nanoparticles (NPs)
w/o Conjugate Size (nm) Nanoparticle

Role
Action

Mechanism
Bacterial
Species Application Life Style Cytotoxicity

(%) Level Study
Cell

Lines/Animal
Used In Vivo

Reference

Aptemr-gated MSNPs
loaded with
vancomycin

177.5 Nanocarrier
Vacomycin-
bactericidal

effect

S. aureus/S.
epidermidis

Staphylococcal
infections Planktonic - - - [186]

Lipidids-coated
MSNPs loaded with

gentamicin and
conjugated with

UBI29–41

81.2-99.5 Nanocarrier
Gentamicin-

bacteriostatic
effect

S. aureus
S. aureus-

associated bone
infections

Planktonic/
Intracellular <20 In vitro MC3T3-E1, RAW

264.7 [187]

Lipidids-coated
MSNPs loaded with

colistin and conjugated
with LL-37

80–99.6 Nanocarrier
Colisitn-

bactericidal
effect

P. aeruginosa

P. aeruginosa-
associated
pulmonar
infections

Planktonic/
Intracellular <20 In vitro A549 [188]

Trehalose-coated
PFPA-functionalized
MSNPs loaded with

isozianid

154–188 Nanocarrier
Isozianid-

bactericidal
effect

M. smegmatis Mycobacterial
infections Planktonic - - - [189]

Arginine-coated
MSNPs loaded with

ciprofloxacin
75 Nanocarrier

Ciprofloxacin-
bactericidal

effect

Salmonella
enterica serovar

typhimurium
Salmonellosis Planktonic Low In vitro/

in vivo
RAW

264.7/BALBc mice [190]

FA-CP-FA-coated
MSNPs loaded with

ampicilin
80 Nanocarrier

Ampicilin-
bactericidal

effect
S. aureus/E. coli

S. aureus-related
and E. coli-related

infections
Planktonic 0 In vitro/

in vivo
HEK 2931T/Kin

Ming mice [191]

Vancomycin-
functionalized

mesoporous SiO2 NPs
90–127 Nanocarrier

Vacomycin-
bactericidal

effect
S. aureus/E. coli S. aureus-related

infections Planktonic - In vitro/
in vivo -/BALBc mice [192]

Concavalin-
functionalized MSNPs

loaded with
levofloxacin

120 Nanocarrier
Levofloxacin-
bactericidal

effect
S. aureus S. aureus-related

infections
Planktonic/

biofilm - In vitro - [193]

Amino-functionalized
MSNPs loaded with

levofloxacin
150 Nanocarrier

Levofloxacin-
bactericidal

effect
E. coli E. coli-related

infection
Planktonic/

biofilm <10 In vitro MC3T3-E1 [194]

NB-401 nanoemulsions 400 Nanocarrier
NB-401-

bactericidal
effect

P. aeruginosa, A.
xylosoxidans, S.

maltophilia,
Acinetobacter

species,
Pandoraea

species), and
Ralstonia species

Non-fermenting
Gram-negative
bacteria-related

respiratory
infections

Planktonic/
biofilm - In vitro - [195]
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Table 3. Cont.

Nanoparticles (NPs)
w/o Conjugate Size (nm) Nanoparticle

Role
Action

Mechanism
Bacterial
Species Application Life Style Cytotoxicity

(%) Level Study
Cell

Lines/Animal
Used In Vivo

Reference

NB-201 nanoemulsions 350 Nanocarrier
NB-201-

bactericidal
effect

P. aeruginosa P. aeruginosa burn
infections

Planktonic/
biofilm - In vivo Sprague-Dawley

rats [196]

N5 and
cetylpyridinium

chloride
nanoemulsions

153 Nanocarrier
Cetylpyridinium-

bactericidal
effect

Acinetobacter
baumannii

Acinetobacter
baumannii
infections

Planktonic/
biofilm - In vitro - [197]

Thymus daenensis oil
nanoemulsions 131 Antimicrobial Oil-bactericidal

effect

Haemophilus
influenzae,

Pseudomonas
aeruginosa, and

Streptococcus
pneumoniae

Pneumococcal
infections Planctonic - In vitro/

in vivo - [198]

Cleome viscosa oil
nanoemulsions 86 Antimicrobial Oil-bactericidal

effect

Methicillin-
resistant

Staphylococcus
aureus,

drug-resistant
Streptococcus
pyogenes, and

extended
spectrum

beta-lactamase-
producing

Escherichia coli,
Klebsiella

pneumoniae, and
Pseudomonas

aeruginosa

Multidrug-
resistance
bacterial

infections

Planctonic - In vitro/
in vivo - [199]

Abbreviations: MRSA: methicillin-resistant S. aureus. EDC/NHS: 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide, ICPTES: 3-isocyanatopropyl triethoxysilane,
PEPA: perfluorophenylazide, FA: folic acid, CP: calcium phosphate.
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Liposomes have been considered a useful and valuable tool able to act as drug delivery
systems in the treatment of infectious diseases [200]. Nevertheless, a recent and innovative
work has demonstrated that liposomes made from cholesterol and/or sphingomyelin
were able to sequester the exotoxins of two important pathogenic bacteria, S. aureus and
Streptococcus pneumoniae, and protect from their severe invasive infection in a murine in vivo
model [201]. In the same vein, the so-called cell-membrane-coated NP, nanoobjects made
from a synthetic NP core which can act as nanocarrier surrounded by a layer of natural cell
membrane which mimic the complex biochemical properties of the cells from which they
come [202], have been used in a bacterial infection model. In this model, rifampicin-loaded
and vancomycin-loaded NPs coated with S. aureus extravesicular membrane were able
to eliminate macrophage-internalized S. aureus and to reduce the bacteremia in a murine
in vivo model [203].

STIs provoked by bacterial are gaining importance due to their increasing incidence [1].
Among these bacterial pathogens, there are old known diseases like gonorrhea provoked
by Neisseria gonorrhoeae, chlamydia caused by Chlamydia trachomatis, chancroid provoked
by Haemophilus ducreyi, granuloma inguinale caused by Calymmatobacterium granulomatis,
and syphilis provoked by Treponema pallidum, but also there are new ones like campy-
lobacter caused by Campylobacter jejuni and shigellosis provoked by Shigella sonnei and
S. flexneri [204]. Only few of all these diseases have been approached by the NP-based
therapy. Most studies have been focused on the treatment of N. gonorrhoeae infection.
In this sense, Ag NPs plus ceftriaxone [205], mercaptonitrobenzoic acid-coated Ag nan-
oclusters [206], and chitosan NPs [207] showed a great anti-gonococcal effect with minimal
cytotoxicity. It has been also reported that PDGFR-β siRNA-PEI-PLGA-PEG NP signif-
icantly reduced the intracellular C. trachomatis concentration and bacterial extracellular
release from infected cells more than 65% for both of them, while augmenting autophagic
degradation and reducing bacterial binding in vitro [208]. Thus, the remaining bacteria
STIs set up as a new opportunity for developing new NP-based therapies.

On other hand, there is an important idea that has to be considered: bacteria are
able to exist in two non-excluding lifestyles: planktonic or free-life form, or in a ses-
sile form named biofilm. A biofilm is a structured bacterial community enclosed in a
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self-produced polymeric matrix [209] where numerous and complex sociomicrobiological
relationships rule [210] (Figure 4a). The adobe-mentioned antibiotic-resistance mechanism
can be presented both in planktonic form and in a biofilm of a bacterial strain. However,
biofilm form of a bacterium shows different inherent characteristics that give it resistance
to almost any unfavourable condition, including the attack of immune system, and an-
tibacterial compounds, such as antibiotics, ROS, and heavy metals [211] (Figure 4b). The
biofilm-related infections are estimated about 65% of all bacterial infections [212]. These
bacterial infections include both, device-associated and tissue-associated infections [213],
and both types have been addressed by NPs-based therapies (Table 3). Some device-
related infections are ventricular derivations, contact lenses, endotracheal tubes, central
vascular catheters, prosthetic cardiac valves, pacemakers, vascular grafts, tissue fillers,
breast implants, peripheral vascular catheters, urinary catheters, orthopaedic implants,
and prosthetic joints; and some tissue-related infections are chronic otitis media, chronic
sinusitis, chronic tonsilitis, dental plaque, chronic laryngitis, endocarditis, lung infections,
kidney stones, biliary tract infections, urinary tract infections, osteomyelitis, and chronic
wounds [214], among others. Considering these points, it is pivotal to take into account
the NPs susceptibility of biofilm of some bacteria that always trend to form a biofilm, e.g.,
staphylococci. Still considering the biofilm features, there are NPs-based therapeutical
approaches that are a powerful weapon against biofilm-associated infection, for instance,
the use of the NPs as an antibacterial or even antibiofilm compounds nanocarrier. It is
right here where some porous NPs, e.g., MSNPs, become very important armamentous
plethora that can be specifically directed against different types of biofilms according to
their functionalization and coatings [24,25,215–217]. Recently, this type of nanosystems is
becoming established as a future treatment for biofilm-related infection [182,218], e.g., bone
infections [27,191,195,196]. Nevertheless, MSNPs applications still arouse questions about
their bio-distribution, biocompatibility and the possible inflammatory role they might play
during their systemic use [104,219], questions that could be resolved by more and detailed
in vivo models.
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4. Conclusions

Infections continue to represent a great threat for mankind despite recent medical
advances. Nanomedicine based on nanoparticles use provides promising new therapies
capable of preventing and treating this kind of infections. Here, we summarize and empha-
size multiple approaches that employ nanoparticles as therapeutic agents and antimicrobial
cargo system against both viral and bacterial infections from a clinical point of view. Ac-
cording to our review, not all of these therapeutic approaches are equally close to being
clinically applied, since infection prevention by using nanoparticles is relatively easier to
apply than treatment. In addition, not all administration routes are equally applicable, be-



Nanomaterials 2021, 11, 137 18 of 26

cause topical approaches show less obstacles than systemic ones. The way from the bench
(in vitro and in vivo studies) to the bed (clinical trials) of nanomedicine is riddled with
obstacles. The main challenges linked to the clinical translation of nanoparticles combating
viral and bacterial infections are biological issues (e.g., antigenicity, immunotoxicity, and
reticular-endothelial system recruitment), safety, biocompatibility, intellectual property,
laws and regulations, and cost-effectiveness respect to traditional therapies. These chal-
lenges sometimes create an almost insurmountable breach between the nanoparticle and
the patient.
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