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Abstract: Iron oxide nanoparticles/microparticles are widely present in a variety of environments, e.g.,
as a byproduct of steel and iron degradation, as, for example, in railway brakes (e.g., metro station) or in
welding fumes. As all particulate material, these metallic nanoparticles are taken up by macrophages,
a cell type playing a key role in the innate immune response, including pathogen removal phagocytosis,
secretion of free radical species such as nitric oxide or by controlling inflammation via cytokine release.
In this paper, we evaluated how macrophages functions were altered by two iron based particles of
different size (100 nm and 20 nm). We showed that at high, but subtoxic concentrations (1 mg/mL,
large nanoparticles induced stronger perturbations in macrophages functions such as phagocytic
capacity (tested with fluorescent latex microspheres) and the ability to respond to bacterial endotoxin
lipopolysaccharide stimulus (LPS) in secreting nitric oxide and pro-cytokines (e.g., Interleukin-6 (IL-6)
and Tumor Necrosis Factor (TNF)). These stronger effects may correlate with an observed stronger
uptake of iron for the larger nanoparticles.

Keywords: macrophage; iron oxide; nanoparticle

1. Introduction

Determining the toxicity of nanoparticles (NP) is very complex due to the multitude of types of
materials, the various mixes of materials, the shape and size polymorphisms [1] and the various coatings
which compose NP, etc. However, comparing only the effects that various materials have on cells (e.g.,
Au-NP vs. Ag-NP or other materials) is not sufficient [2] because the toxicity of particles depends on
numerous parameters, such as their aggregation or dissolution, the corona, influenced itself by the
particles size [3,4], the shape of particles which influence their kinetic of internalization, their surface
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charge that may cause bilayer lipidic disorders of cells (positive charge induce high risks of membrane
disruption contrary to negative charge) [5], etc. Hence, it is important to go deeper into the field of
nanotoxicology and take these parameters into account, but it is almost impossible to evaluate such
a variety of parameters in a single series of experiments. In this direction, we sought to assess the possible
effects that NP size may have on cell functions for a given nanomaterial, as previously suggested [6].
In this article, we thus assessed the effect of two maghemite/hematite iron oxide nanoparticles (Fe2O3-NP)
of different sizes. Such NPs are commonly found in the urban landscape, for example, in train or
metro stations (subway) where particles comprising predominantly Fe2O3-NP are emitted/released
in large amounts due to wheel-rail contact, in particular, during braking [7,8]. Therefore, drivers and
railroad workers inhale a large amount of maghemite NP. Train or metro users are impacted, although
to a lesser extent. Other occupational exposures to Fe2O3-NP include welding with the inhalation of
welding fumes during the soldering process. These forms of air pollution raise public health questions.
As an example, mild steel welding fumes induce inflammation and increase adhesion and infection of
bacteria such as Streptococcus pneumonia via the increase of platelet-activating factor (PAFR) in lungs,
leading to an increase in pulmonary infections [9].

In order to pursue studies perform on pulmonary cells [10], assessing the effect of NP on macrophages
is not meaningless as various nanomaterials are known to be responsible for respiratory illnesses (such as
asbestosis or silicosis) and many toxicological studies have found that nanoparticles are able to induce
pro-inflammatory responses [11–15] and/or immunological effects [16,17]. In this context, macrophages
are of paramount importance in toxicology as (i) they are present in all the tissues of the human
body [18,19], (ii) their scavenger function may increase their sensitivity to the effects of NP [20] and (iii)
they play a key role in the management of inflammation [21,22]. An impairment of the functionalities of
macrophages could cause damage to tissues and induce other immunological diseases (autoimmunity or
immune deficiency) [23–26].

Very different particle sizes can be found in airborne NP present in train stations [27]. Therefore,
we decided to investigate the effects of iron oxides nanoparticles of two different sizes (20 and 100 nm) on
macrophages at a single and subtoxic exposure concentration of 1 mg/mL. As iron oxide nanoparticles show
a strong tendency to aggregate strongly in aqueous solutions, we had to use an organic and biocompatible
coating to limit this aggregation. We therefore used a commercially available ferric carboxymaltose nanoparticle
(FERINJECT®, Vifor Pharma, Bern, Switzerland) for the 20 nm size. FERINJECT® is composed of Fe(III)-
oxyhydroxide core obtained through a thermal annealing process described in the original patent [28] and
similar to [29] and stabilized/surrounded by a carbohydrate (carboxymaltose) shell which is derived from
maltodextrin [30]. We also used a plain 100 nm Fe2O3-NP purchased from Sigma-Aldrich that we then coated
with carboxymaltose. Experiments on the J774A.1 macrophage cell line carried in this manuscript show
a significant difference between the way macrophages respond to these two types (and sizes) of iron-based
nanoparticles. We show that at the same subtoxic exposure concentration, the larger-sized Fe2O3-NP produced
more effects on macrophages than the smaller-sized ones. In this article, we sought to understand the causes
of this difference.

2. Material and Methods

Most experiments have been carried out as described in the publications [31–33] but details are
given in this article to assist in the understanding of this paper. Biological experiments were driven on
three independent biological replicates. For cytometry measurement, dead cells were systematically
excluded of the assessment with propidium iodide at 1 µg/mL or SytoxRed (Fisher Scientific, Illkirch,
France) at 5 nM.

2.1. Nanoparticles

Twenty-nanometer ferric carboxymaltose nanoparticles (FERINJECT®, 50 mg/mL) were purchased
from Vifor Pharma (Bern, Switzerland). One hundred-nanometer maghemite nanoparticles were
purchased from Sigma-Aldrich (catalog number: 720704, Sigma-Aldrich, Saint Quentin Fallavier,
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France), directly as a concentrated suspension at 20% in H2O. We added carboxymaltose in accordance
with the patent on FERINJECT® [28] in order (i) to limit aggregation of the particles in the culture
medium and (ii) to assess and compare exclusively the effect of size on cells without interferences
brought by possible effects of the coating.

2.2. Nanoparticle Characterization

The hydrodynamic diameter and particle size distribution were characterized using dynamic light
scattering (DLS) after dilution in H2O or culture medium DMEM after 0 h or 24 h of incubation at 37 ◦C,
5% CO2. Nanoparticles were diluted at final concentration at 10 µg/mL for measurement. The size and
distribution of the particles were assessed after dilution in water or in culture medium by DLS using
a Wyatt Dynapro Nanostar machine (Wyatt Technology, Santa Barbara, CA, USA). The morphology of
nanoparticles was observed using Transmission Electron Microscopy (TEM) (Thermo Fisher Scientific,
Eindhoven, The Netherlands), as previously described [34].

2.3. Cell Culture

The mouse macrophage cell line J774A1 was obtained from the European Cell Culture Collection
(Salisbury, UK). The cells were cultured in DMEM medium supplemented with 10% fetal bovine serum
(FBS). Cells were seeded at 200,000 cells/mL in suspension culture flasks (Greiner Bio-One, Reference
658195, Dutscher, Brumath, France) and harvested at 1,000,000 cells/mL. For treatment with nanoparticles,
cells were seeded at 500,000 cells/mL. They were treated with nanoparticles on the following day and
analyzed after a further 24 h in culture. In some control experiments, cells were treated with an iron citrate
complex (1:2 molarity) prepared for iron (III) sulfate and trisodium citrate, so that an iron concentration
in the medium equivalent to the one obtained with 1 mg/mL Fe2O3 was obtained (i.e., 12.5mM iron).
The viability of cells was measured via Facscalibur flow cytometer (BD Biosciences, Le Pont-de-Claix,
France) using dye exclusion (propidium iodide at 1 µg/mL or sytoxRed at 5 nM).

Primary macrophages were obtained as described by Dalzon et al. [34].

2.4. Particle Internalization Measurement

Qualitative (Perls staining), and quantitative measurement (bathophenantroline and ICP-MS
assays) of iron uptake were performed as already described in Dalzon et al. [34].

For TEM- and EDX-microscopy, exposed cells or control cells where fixed for 1 h at room temperature
in a fixative solution composed of paraformaldehyde 2% and glutaraldehyde 0.2% in PHEM 0.1 M.
Post-fixation was performed during 1 h under shaking in an osmium solution composed of 1% osmium
and 1.5% potassium hexaferrocyanate in 0.1 M PHEM buffer. Then, samples were washed with water
and stained 30 min under shaking with uranyl acetate 0.5% (in 30% ethanol). Before substitution
then impregnation in Embed 812 resin (EPON substitute, EMS), samples were dehydrated in graded
series of ethanol (50 to 100%). After polymerisation during 48 h at 65 ◦C, the blocs were ready to be
cut via an Ultramicrotome UC7 (Leica, Rueil-Malmaison, France) in order to produce 80-nm sections.
Sections were then collected on formvar-carbon coated copper grids and observed via an FEI Tecnai
G2 Spirit BioTwin transmission electron microscope operating at 120 kV with an Orius SC1000B CCD
camera (Thermo Fisher Scientific, Eindhoven, The Netherlands) [35,36]. Scanning Transmission Electron
Microscopy (STEM) and Energy Dispersive X-rays Spectrum (EDX) (Bruker, Berlin, Germany) for
elemental mapping, were achieved via a TECNAI OSIRIS electron microscope (Thermo Fisher Scientific,
Eindhoven, The Netherlands) operated at 200 kV and equipped with a 4K GATAN camera (GATAN,
Portland, Oregon, USA). The EDX maps were treated with the “ESPRIT” software (version 1.9, Bruker,
Berlin, Germany) to minimize the noise.

2.5. Phagocytosis Assays

Phagocytosis was assayed by internalization of fluorescent latex beads using flow cytometry as
previously described [31,37].



Nanomaterials 2020, 10, 266 4 of 18

2.6. NO and Cytokines Production

In the supernatant culture of cells exposed to NP and activated by LPS, the concentration of NO
and cytokines such as interleukin 6 (IL-6), interleukin 10 (IL-10), monocyte chemoattractant protein-1
(MCP-1) and tumor necrosis factor (TNFa) were measured as prevously described [34,38].

2.7. F-Actin Staining

Visualization of F-Actin cytoskeleton was assayed by phalloidin staining according to previously
published protocols [38–40]

2.8. Glutathione Assays

Intracellular glutathione levels were assessed using the monochlorobimane technique, with some
modifications [33]. Briefly, the cells were harvested, centrifuged during 5 min, and labeled with 75 µM
monochlorobimane (diluated in warm PBS) for 5 min at 37 ◦C. The reaction was stopped via an incubation
in ice for 5 min in the dark. The cells were washed twice with cold PBS and finally, the they were
analyzed via BD FACSMelodyTM flow cytometer (BD Biosciences, Le Pont-de-Claix, France) using
a laser excitation at 405 nm and an emission at 448 ± 45 nm.

2.9. Mitochondrial Transmembrane Potential Measurement

The mitochondrial transmembrane potential was assessed using the rhodamine 123 uptake assay,
as previously described [40].

2.10. Quantitative Bathophenanthroline Assay

The assays were conducted as described in [41] but with some changes. After incubation for
0 h or 24 h at 37 ◦C, 5% CO2 in H2O or culture medium, to check the quantity of iron in the two
iron-based nanoparticle conditions i.e., FERINJECT® and NP-Fe2O3 (Sigma, Saint Quentin Fallavier,
France), 1 volume of particles (theoretical concentration = 1 mg/mL) or standard solution (Mohr’s salt
17.9 mmol/L) was dissolved with 4 volumes of aqua regia (3:1 volume of 37% hydrocholoric acid and
70% nitric acid). This step required several agitations with vortex mix and a period of incubation of
at least 1 h. After dissolution, the samples and standard solution were diluted with water at 1/100.
They were then mixed v/v with a protein precipitant solution (composed of ascorbic acid 2.5 g/L and
trichloracetic acid 100 g/L). Then, they were centrifuged at 1500× g for 30 min. Finally, an equivalent
volume of chromogen solution (composed of bathophenanthroline 0.25 g/L and Na-acetate 123 g/L)
was added to the samples. After 10 min of incubation, the absorbance was measured at 535 nm.

For supernatant measurement, 1 mL of iron-based particle suspension was ultracentrifuged at
279,000× g for 45 min at 4 ◦C. The recovered supernatant or standard solution (Mohr’s salt 35.78 µmol/L)
was processed as described above from the protein precipitation step to the absorbance measurement step.

For calculating the iron concentration:

Abs sample unknown − Abs blank
Abs iron standard − Abs blank

× 35.78 = concentration of iron µmol/L

3. Results

3.1. Nanoparticle Behavior

NPs were characterized using DLS and TEM microscopy. Overall, the commercial 20 nm ferric
carboxymaltose named FERINJECT®was considered monodisperse (percentage of dispersity < 15%) and
had a hydrodynamic diameter comprised between 23 and 25 nm in H2O or DMEM. After 24 h of incubation
at 37 ◦C, 5% CO2, FERINJECT® was still considered monodisperse and the hydrodynamic diameter is
similar to 0 h of incubation (but maybe with a very slightly decreased diameter (1 to 2 nm) in DMEM).
The 100 nm Fe2O3-NP (with carboxymaltose coating) from Sigma-Aldrich had a higher hydrodynamic
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diameter in H2O (both at t0 and after 24 h of incubation) and contrarily to FERINJECT®, these NP were
strongly agglomerated in the culture medium, with the size of agglomerates > 1 µm of diameter even
with the carboxymaltose coating. (Table 1) Examination via Transmission Electron Microscopy (TEM)
revealed that FERINJECT® have an irregular shape whereas NP-Sigma are rod-shaped. NP-Sigma have
different sizes and we confirmed that they were agglomerated in culture medium (Figure 1).

Table 1. Characterization of FERINJECT® and Fe2O3-NP Sigma by DLS. Nanoparticles were incubated
in H2O or DMEM (with carboxymaltose coating for Fe2O3-NP Sigma) after 24 h of incubation at 37 ◦C,
5% CO2.

FERINJECT® Fe2O3-NP (Sigma)

Medium H2O DMEM H2O DMEM

Incubation time 0 h 24 h 0 h 24 h 0 h 24 h 0 h 24 h
Size (nm) 23.4 22.4 24.3 21.9 73.4 79.6 1258 1120

Dispersity (%) 8.8 11.7 8.5 12.2 22.4 22.6 Multimodal Multimodal
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Figure 1. Characteristics of FERINJECT® and Fe2O3-NP by TEM. Nanoparticles were incubated in
H2O or DMEM (with carboxymaltose coating for Fe2O3-NP) after 24 h of incubation at 37 ◦C, 5% CO2.
Scale bar 50 nm.

3.2. Fe2O3-NPs and Iron Uptake by J774A.1

The effect of the two types of Fe2O3-NP nanoparticles on cell viability was analyzed and the
results are shown in Figure 2. For all the subsequent experiments, a concentration of 1 mg/mL−1 was
selected, as it is the highest exposure concentration before observing noticeable mortality. We chose
this concentration because it corresponds to LD20 (lethal dose 20%) on primary macrophages and
allows the testing of functional effects on cells without appreciable cellular mortality. For us, defining
an experimental dose similar to environmental exposure is not feasible due to the extreme variability of
dose exposure. Taking just the example of a metro station, it depends on the city, the traffic frequency,
the age of the metro system and the speed reached, the localization of people: on board or on the
subway platform, the type of ventilation, etc. [8,42–44] In other words, the chosen a concentration for
J774A.1 cells line offered a good compromise between very small cell mortality (J774A.1 were not more
affected by Fe2O3-NP and ferric citrate control, the mortality being below or close to 10%) and the
highest probability of observing biological effects.

As a first test, we checked the presence of NPs and iron in cells by microscopy (Perls staining, TEM
and EDX microscopy) and a quantitative method (bathophenanthroline assay). Perls staining was used
here to reveal the presence of ferric elements inside the cells, as revealed by a prussian blue deposit in
J774A.1 cells when cells are incubated with the two types of Fe2O3-NP (Figure 3A). TEM experiments
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then showed that NP were present in the vesicles (Figure 3B). TEM also revealed some differences
between FERINJECT® and NP-Sigma regarding their uptake. FERINJECT® is present in many vesicles
whereas NP-Sigma are always gathered in a single large phagolysosome. EDX microscopy confirmed
that iron is associated with both types of Fe2O3-NP (Figure 3C). Iron loading in the cells was more
accurately quantified by the bathophenanthroline assay, which shows that there is an important amount
of iron in the cells exposed to Fe2O3-NP. Our results show a large quantitative difference between
FERINJECT® (7.4 pg/cell) and NP-Sigma (73.46 pg/cell) (Figure 3D). The quantification was compared
with advanced-technologies such as ICP-MS (Figure S1) which showed results similar to those of the
bathophenanthroline assay.Nanomaterials 2020, 10, 266 6 of 18 
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Ferric citrate. Viability was measured using propidium iodide (1 µg/mL).
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Figure 3. The presence of iron and nanoparticles in J774A.1 cell line incubated 24 h with or without
FERINJECT® or Fe2O3-NP Sigma. Panel (A): Perls staining. Blue staining: complex KFe [Fe(CN)6]
named Prussian blue. Red staining: Safranin cytosolic staining; Panel (B): TEM microscopy. Scale bar, top
line = 2 µm; below line = 0.5 µm (Control) or 0.2 µm (FERINJECT® and Fe2O3-NP Sigma). Panel (C): Top
line: HAADF (High-Angle Annular Dark Field microscopy) with, in white high-density zone. Below line:
EDX (Energy Dispersive X-ray Analysis) with, in red iron elements. N = Nucleus; M = Microvillosity;
R = Reticulum; MVB = Multivesicular bodies; arrow = vesicle with iron particles. Panel (D): Quantitative
assessment of the iron engulfed by macrophages using the bathophenanthroline method.
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We then studied the ability of macrophages to engulf FERINJECT® and NP-Sigma on a kinetic
basis. TEM microscopy and EDX microscopy revealed that contrarily to FERINJECT®, NP-Sigma are
more rapidly internalized by J774A.1 macrophages after a short period of exposure to NP such as 1 h
30 (Figure 4A). In the case of FERINJECT®, we only noticed a small (if any) quantity of FERINJECT®

in cells while a large quantity of NP-Sigma was already present in the vesicles. We confirmed these
results using the quantitative bathophenanthroline assay. After short incubation periods (1 h, 3 h,
6 h), the uptake of NP-Sigma was much higher than that of FERINJECT®. Furthermore, the problem
of cell detachment observed after 24 h was not encountered after shorter periods of time so that the
quantitative determination of iron was more precise in this case. The bathophenanthroline assay
(Figure 4B) confirmed what had been observed using TEM microscopy and revealed that NP-Sigma
were internalized much faster than FERINJECT® (e.g., internalization of FERINJECT® after 1 h
00 = 0.83 pg/cell, whereas internalization of NP-Sigma = 17.9 pg/cell).
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Figure 4. Assessment of Kinetic of iron uptake in J774A.1 cells incubated for various times of incubation
with or without FERINJECT® or Fe2O3-NP. Pannel (A): TEM and HAADF-EDX microscopy. J774A.1
were incubated 1h30 with FERINJECT® or Fe2O3-NP (compared with Figure 3B) TEM scale bar, Left
column = 2 µm; Right column = 0.2 µm. HAADF and EDX microscopy scales bar = 0.7µm. N = Nucleus;
M = Microvillosity; R = Reticulum; MVB = Multivesicular bodies; arrow = vesicle with iron particles.
Pannel (B): Quantitative assessment of the Kinetic of iron engulfed by macrophages (1 h to 24 h of
incubation with FERINJECT® or Fe2O3-NP) using the bathophenanthroline method.

3.3. Functional Studies of J774A.1

Functional studies were set up to determine if macrophages in contact with iron particles retained
their main biological functions. Phagocytic ability consists in cleaning, for example, apoptotic cells and
microorganisms in order to maintain tissue homeostasis. Macrophages should be able to maintain
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their phagocytic activity even in the presence of Fe2O3-NP in order to protect the organism against
pathogens. On the contrary, the secretion of inflammatory mediators should not be exacerbated by
Fe2O3-NP to avoid damaging healthy tissues (e.g., inflammatory disease). This is why we tested
the impact of iron oxide NP on the classical functions of macrophages such as the phagocytic ability,
and the modulation of the LPS-induced production of cytokines and NO.

3.3.1. Phagocytic Activity

Regarding phagocytosis, flow cytometry allows the investigation of two parameters, i.e.,
the proportion of cells that remain phagocytic after being exposed to NP and the intensity of the
phagocytic activity for phagocytosis-positive cells. The results displayed in Figure 5A show that when
J774A.1 macrophages were incubated with FERINJECT® for 24 h, their phagocytic capacity was not
altered. Contrarily to FERINJECT®, NP-Sigma and ferric citrate significantly altered the functionality of
J774A.1 macrophages because the phagocytic capacity dropped drastically. Only 37% of cells (NP-Sigma)
and 13% (ferric citrate) were able to phagocytize fluorescent beads; furthermore, their phagocytosis
ability dropped by 40% to 45% in comparison with the control without NP.Nanomaterials 2020, 10, 266 10 of 18 

 

 
(A) 

 
(B) 
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presence of FERINJECT® as it decreases by only 10%. Conversely, NO secretion drastically decreased 
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because of a strong interference between iron citrate and the Griess reagent. It can be noticed that 
without stimulation with LPS, NO secretion is significantly lower whatever the NP used. This last 
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could not mature to inflammatory M1 macrophages. It also showed that iron particles themselves 
did not induce spontaneous inflammatory signals in J774A.1 cells. A flow cytometric analysis 
revealed that in the presence of LPS, FERINJECT® did not affect the production of pro-inflammatory 
cytokines (Figure 6B). The rates of IL-6, MCP-1 and TNF were similar to those of control without NP. 
However, when cells were incubated with NP-Sigma, the production of pro-inflammatory cytokines 
was defective for two of the three measured (−65% for IL-6 and −27% for TNF). The secretion of MCP-
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Figure 5. Pannel (A): Phagocytic ability. Left graphic: percentage of cells able to phagocyte fluorescent
FITC-labeled latex beads (positive cells). Right graphic: phagocytic ability of positive cells. Pannel
(B): Confocal microscopy (Z-stacks combined): Observation of actin filaments with phalloidin labeled
in red (Atto 560). The cell nucleus is colored blue by Dapi. Upper section = apical microscopy view;
middle section = center of cell; lower section = basal microscopy view. Statistical confidence (student
t-test) is indicated as follows *** p ≤ 0.001.

3.3.2. Actin Cytoskeleton

In order to complement the phagocytosis results, we visualized the integrity of the conformation
state of the F.actin cytoskeleton (Figure 5B). Indeed, a number of studies using cytochalasin D (which
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dismantles the actin cytoskeleton) have shown that the conformation of the actin cytoskeleton has
a critical role in the phagocytosis process [45–47]. When incubated with NP-Sigma, cells were less
adherent and showed fewer cytoplasmic elongations than the control without NP (basal view).
Moreover, cells were more spherical than the control and showed large vacuoles (middle view).
In contrast, we did not observe any differences between the cells incubated with FERINJECT® and
control without NP. Ferric citrate cells were generally smaller, less adherent and with fewer cytoplasmic
elongations than the control. These results confirm that NP-Sigma and ferric citrate induced damages
to the F.actin cytoskeleton, which may explain, at least in part, the results of the phagocytosis assay.
Furthermore, in the case of NP-Sigma, we observed a strong vesicularization of the cells that may be
linked with an autophagic process [48] (Figure S2).

3.3.3. Secretion of Inflammatory Mediators

Figure 6A shows that after stimulation with LPS, the secretion of NO was slightly altered in the
presence of FERINJECT® as it decreases by only 10%. Conversely, NO secretion drastically decreased
(by 69%) for cells exposed to NP-Sigma and was not detectable for cells exposed to ferric citrate because
of a strong interference between iron citrate and the Griess reagent. It can be noticed that without
stimulation with LPS, NO secretion is significantly lower whatever the NP used. This last result
was expected because J774A.1 macrophages were not previously stimulated and therefore, could not
mature to inflammatory M1 macrophages. It also showed that iron particles themselves did not induce
spontaneous inflammatory signals in J774A.1 cells. A flow cytometric analysis revealed that in the
presence of LPS, FERINJECT® did not affect the production of pro-inflammatory cytokines (Figure 6B).
The rates of IL-6, MCP-1 and TNF were similar to those of control without NP. However, when cells
were incubated with NP-Sigma, the production of pro-inflammatory cytokines was defective for two of
the three measured (−65% for IL-6 and −27% for TNF). The secretion of MCP-1 remained unchanged
(Figure 6B). The production of all measured cytokines was significantly decreased with ferric citrate.
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Figure 6. Inflammation ability. Panel (A): NO secretion with or without LPS stimulation. Panel (B):
Secretion of inflammatory cytokines after LPS stimulation. Statistical confidence (student t-test) is
indicated as follows ** p ≤ 0.01; *** p ≤ 0.001.

3.3.4. Cell Physiology Studies: Mitochondrial Potential and Glutathione Level

The various functional studies showed that contrarily to FERINJECT®, NP-Sigma had a significant
effects on the functionality of macrophages. We tried to obtain further insight into the physiology of
macrophages to better understand the differences between the two iron oxide particles. Regarding
the mitochondrial membrane potential, our results show that when J774A.1 macrophages were
incubated with FERINJECT®, their transmembrane mitochondrial potential was not different from
that of control, non-exposed cells (Figure 7A), whereas NP-Sigma and ferric citrate caused severe
damage to the respiratory ability of J774A.1 macrophages: after exposure to NP-Sigma or ferric citrate,
the mitochondrial potential of the cells decreased by 40%. As a consequence, the results suggest
that NP-Sigma may induce a decrease in the available energy in the cells. Regarding glutathione,
FERINJECT® induced a slight decrease in the rate of free glutathione reduced (GSH) in cells (89% of
the control value), whereas with NP-Sigma, it decreased to 43% of the control value (first population)
with a second population where the GSH dropped to 19% (Figure 7B). Here again, the test did not
work for iron citrate-treated cells, for unknown reasons. The decreased free glutathione content may
be due to depletion by metal chelation, as observed for silver [49] and copper [33] nanoparticles. These
results suggested that NP-Sigma may alter free glutathione-dependent cellular processes.
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Our results point to alterations of the macrophage physiology upon exposure to iron and must 
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mentioned in the scientific literature (e.g., silicosis and asbestosis caused by crystalline silica or 

Figure 7. Cell physiology studies of J774A.1 cells incubated 24 h at 37 ◦C, 5% CO2 with or without
FERINJECT® or Fe2O3-NP. Pannel (A). Mitochondrial cell assay is measuring fluorescence of Rhodamine
123 accumulated in cells. Analyses with Facscalibur cytometer. Pannel (B). Analysis of the glutathione-based
antioxidant system. Variations of the intracellular levels of reduced glutathione (GSH). GSH conjugate with
monochlorobimane (MCB) form a fluorescent signal which is analysed by Cytometer. Statistical confidence
(student’s t-test) is indicated as follows ** p ≤ 0.01; *** p ≤ 0.001.

4. Discussion

Our results point to alterations of the macrophage physiology upon exposure to iron and must
first be put into context. Many occupational lung diseases due to the inhalation of particles have
been mentioned in the scientific literature (e.g., silicosis and asbestosis caused by crystalline silica
or asbestos fibers) [50]. These pathologies enlist macrophages and impair their main functionalities,
causing inflammatory and mitochondrial disorders, apoptosis, etc. [25,50,51]. Iron oxide particles are
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now widespread (e.g., present in metro stations or welding fumes). However, contrarily to silica or
asbestos, they can be managed by macrophages [52], but they may be dissolved via acidic phagosomes
and may disturb iron homeostasis locally. Indeed, macrophages, in addition to their key role in the
initiation and sustainability of the inflammatory response, have a central role in the management of
iron homeostasis. This link between inflammatory response, pathogen defense and iron homeostasis
control has already been documented [53–57].

In several diseases, due to iron overload, such as hereditary hemochromatosis, an impairment of the
main functions of macrophages has been observed, especially in the phagocytic activity (a decrease of
62.5% compared with healthy donors) [58] and in the bactericidal activity via, for example, a deficiency
of the secretion of TNF (it is in between 1.9 and 7.0 times lower than the healthy control depending on
the period of incubation with LPS) [59]. Concerning pulmonary diseases such as idiopathic pulmonary
fibrosis (IPF), an impairment of the functionalities of macrophages, with an alteration of iron homeostasis
in pulmonary fibrosis was observed. In this disease, alveolar macrophages are characterized by a deficient
transferrin uptake, a reduced phagocytosis of S. aureus and an increase of NO production for unstimulated
cells [60]. In such diseases, the functional effects observed on macrophages are linked to an overload in
soluble iron. In our experiments, we also observed important effect on macrophages functionalities when
cells were treated with a high concentration of soluble iron. Interestingly, most of these effects were also
observed for macrophages treated with NP-Sigma, but not for cells treated with smaller nanoparticles
(FERINJECT®). Moreover, these effects were not due to a spontaneous strong dissolution of particles
in the culture medium which would release a high quantity of ionic iron. Very little or no iron was
measured in the supernatant for all the conditions tested (Table S1). While we did not observe an intrinsic
effect of NP-Sigma on NO, as observed in lung fibrosis, we also observed a decrease in phagocytosis for
macrophages exposed to these large nanoparticles. Thus, although macrophages are known to manage
iron and thus are less sensitive to iron overload and resist to it (low mortality) [61,62], inhaling a high
quantity of large iron particles may (i) alter the first line of defense mechanisms of the lungs against
pathogens, (ii) promote lung fibrosis, because even if we show that Fe2O3-NP are not toxic at a high
concentration (such as 1 mg/mL, LD20 not reached), the functionalities of macrophages can be strongly
impacted, and iii) increase bacterial infections which use the excess of iron to develop quicker.

Overall, the uptake kinetics experiments that we performed strongly suggest that the higher effects
induced by large particles may be due to the fact that at the end of the 24 h exposure period, cells
exposed to larger particles have been exposed to a higher concentration of intracellular iron for a longer
time. This observation is in line with sedimentation models to explain the effects of nanoparticles [63].
However, sedimentation is not the only phenomenon that explains the variations in the internalization of
particles/nanoparticles. Indeed, in our experiments presented in Figure S3, we assessed the internalization
of fluorescent latex beads of 30 nm and 1 µm (corresponding to the size of aggregates of NP-Fe2O3)
and we compared this uptake with phagocytic (J774A.1) and non-phagocytic (MPC11) myeloid cells.
This experiment showed that the uptake ratio between J774A.1 and MPC11 changed when we compared
the two latex beads sizes. For the 30 nm latex beads, the uptake was similar for J774A.1 and MPC11, while
for 1 µm diameter latex beads, the uptake was 20 times more efficient in J774A.1 cells than in MPC11
cells. If the internalization of particle depended solely of the sedimentation phenomenon, the uptake
ratios of distinct particles should not be different between the two cell lines. Thus, the final uptake
depends not only on sedimentation, which brings the nanoparticles in contact with cells, but also on
the internalization ability of the cells, i.e., of the uptake pathways used and their efficiency. In this line,
Hslao I-L et al. compared the uptake of 50 nm and 600 nm particles and discussed the differences in their
uptake processes. Small particles are preferentially internalized by pinocytosis if not passive diffusion
pathways (low energy consumption), while large particle are engulfed by active internalization (high
energy consumption) [64].

Nevertheless, although important cell parameters such as the mitochondrial transmembrane
potential and the intracellular glutathione content are deeply affected by the large particles, the cells
are still alive, and retain some level of functionality. However, the strong effects of large Fe2O3-NP
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observed on glutathione and mitochondria resemble ferroptosis, in which the observed effects are
linked to the quantity of iron into cells [65].

The present article highlights that contrarily to the received opinion and some articles, nanoparticles
are not systematically more noxious (or more toxic) than larger particles such as microparticles. Of course,
not all materials react in a similar manner and a lot of parameters influence the toxicity of nanoparticles [66].
Given that the toxicity of NPs depends on a multitude of parameters, the nanotoxicology discipline is
extremely complex [67] and the analysis of one peculiar group cannot be generalized to all nanoparticles.
Regarding our in vitro study, even if the larger Fe2O3 microparticles induce more effects than nanoparticles,
they are not necessarily more toxic in vivo. In fact, nanoparticles, because of their small size, can enter
the respiratory system more deeply (e.g., pulmonary alveoli) [68,69] and seem to cross biological barriers
(mucus, surfactant, etc.) more easily [70] and are thus more likely to enter the bloodstream via the
respiratory tract. Furthermore, particles with a large size are more easily removed by exhalation [63]
whereas small particles are eliminated by phagocytosis via the macrophages or accumulate in the
alveolae [71]. Therefore, it is more difficult to eliminate them from the body and they are more likely to
persist in the lungs. According to a study by TSI Incorporated, when 20 nm nanoparticles are inhaled,
40% to 60% are found in the alveolae.

It must, however, be mentioned that according to the same study (measuring nanoparticle exposure
application note of Thermo-System Inc. via the Nanoparticle Surface Area Monitor (Application Note
NSAM-001), 10% to 20% of inhaled large particles (≥100 nm) are deposited in the alveoli. [72]. Thus,
even if large particles are less present in alveolar regions, their quantity is not negligible, particularly when
a high quantity is released into the air (which is the case of metro stations during braking). Moreover,
the previously mentioned figures are numbers of particles. As large particles imply a considerably higher
mass of material than smaller ones at equal numbers, it is therefore highly relevant to investigate the
toxicity of large particles.

Even if we cannot actually conclude which of the two particles is more toxic in real life due to lack
of in vivo data, it remains interesting to note that at a same concentration, two iron based particles
with different sizes and aggregate forms do not induce the same effects on macrophages. Moreover
we show that even without inducing important cell death, particles can have a drastic impact on the
functionalities of macrophages and thus, may facilitate the occurrence of pathologies, as observed for
welding fumes [9], e.g., by decreasing the overall efficiency of the immune system. Finally, in real-life
conditions, nanoparticles are not isolated but on the contrary, exist alongside a variety of other elements
mix (particulate, nanoparticulate or other chemical species). Therefore, in order to build on our results,
we plan to pursue with cross-toxicity studies which, like existing experiments on other nanoparticles
by [20,31], better reflect real-life conditions. We also aim at investigating the potential cross-toxicity
between exposure to nanoparticles and certain aspects of lifestyle (e.g., cigarette smoke, etc.). [73,74]
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