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Abstract: Many efforts have been made in the past two decades into the search for novel natural
and less-toxic anti-diabetic agents. Some clinical trials have assigned this ability to anthocyanins,
although different factors like the food source, the amount ingested, the matrix effect and the time
of consumption (before or after a meal) seem to result in contradictory conclusions. The possible
mechanisms involved in these preventive or therapeutic effects will be discussed—giving emphasis to
the latest in vitro and in silico approaches. Therapeutic strategies to counteract metabolic alterations
related to hyperglycemia and Type 2 Diabetes Mellitus (T2DM) may include: (a) Inhibition of
carbohydrate-metabolizing enzymes; (b) reduction of glucose transporters expression or activity;
(c) inhibition of glycogenolysis and (d) modulation of gut microbiota by anthocyanin breakdown
products. These strategies may be achieved through administration of individual anthocyanins or by
functional foods containing complexes of anthocyanin:carbohydrate:protein.
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1. Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by high sugar concentrations
in the blood. It may be due to impaired insulin secretion, resistance to peripheral actions of insulin,
or both. It can also be accompanied by metabolic abnormalities of lipids, proteins, mineral salts or
electrolytes [1]. According to the International Diabetes Federation (IDF), approximately 415 million
adults between the ages of 20 to 79 years had diabetes mellitus in 2015 [2]. DM is proving to be
a global public health burden as this number is expected to rise to further 200 million by 2040 [2].
Chronic hyperglycemia in synergy with the other metabolic aberrations in patients with diabetes
mellitus can cause damage to various organ systems, leading to the development of disabling and
life-threatening health complications, most prominent of which are microvascular (retinopathy,
nephropathy, and neuropathy) and macrovascular complications leading to increased risk of
cardiovascular diseases. DM is rapidly increasing worldwide, powered by the prevalence of unhealthy
lifestyles, such as obesity, dietary patterns, sedentarism, alcohol consumption, or smoking [3,4].
With an increase in age, the prevalence of DM also increases. About 25% of the population above
65 years of age has diabetes [5].

DM is generally classified into three types by etiology and clinical presentation, type 1 diabetes,
type 2 diabetes, and gestational diabetes (GDM). Since type 2 diabetes mellitus (T2DM) accounts for
around 90% of all cases of diabetes, this review will focus on T2DM.
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In T2DM, the response to insulin is diminished, and this is defined as insulin resistance. During this
state, insulin is ineffective and is initially contradicted by an increase in insulin production to maintain
glucose homeostasis, but over time, insulin production decreases, resulting in T2DM. This disease is
most commonly seen in persons older than 45 years. Still, it is increasingly seen in children, adolescents,
and younger adults, due to rising levels of obesity, physical inactivity, and energy-dense diets.

1.1. Diabetes and Related Diseases

1.1.1. Diabetic Peripheral Neuropathy

Although there are many possible causes of peripheral neuropathy, the most prevalent subtype,
diabetic peripheral neuropathy (DPN), can lead to major complications [6]. Over half of people with
diabetes develop neuropathy, and DPN is a major cause of reduced quality of life due to pain, sensory
loss, gait instability, fall-related injury, and foot ulceration and amputation. Early assessment of
symptoms of peripheral polyneuropathy helps to avoid neuropathic foot ulcers to ultimately combat
potential morbidity and mortality [7]. The exact cause of diabetic peripheral neuropathy is not known.
Proposed theories include metabolic, neurovascular, and autoimmune pathways.

1.1.2. Diabetic Retinopathy and Macular Edema

Currently, a major concern of our aging society is to efficiently delay the onset of age-related
diseases, which are progressively rising in incidence. Diabetic retinopathy (DR) and age-related
macular degeneration (AMD) are retinal degenerative diseases which are leading causes of vision loss
and blindness worldwide (WHO 2019). Of an estimated 468 million people with diabetes mellitus
worldwide, more than 90 million diabetics have some form of diabetic retinopathy. Due to the
increasing prevalence of diabetes, aging of the population, and increased life expectancy of those with
diabetes, these numbers are expected to rise. Considering AMD, in 2040, it is estimated that 288 million
will have the disease.

Many interconnected mechanisms are implicated in the complex pathogenesis of DR, including
oxidative stress [8]. Crosstalk between oxidative stress-related and inflammatory pathways is likely to
be important to induce blood-retinal barrier (BRB) breakdown and pathological neovascularization [9].
Disruption of this barrier results in the accumulation of macular edema; however, the process is more
complicated than this and also involves various inflammatory markers (such as VEGEF, leukocyte
adhesion, and protein kinase C) upregulated by advanced glycation end products (AGEs).

The paradigm that a diet rich in phenolics, prevalent in e.g., in fruits, is beneficial to delay
age-related diseases has reached the public, especially concerning the awareness of the antioxidant
properties of red fruits. Consequently, oxidative stress and inflammatory biomarker inhibitors may
have a protective effect on the retina. Antioxidants, in particular anthocyanins, may be considered
beneficial to DR because they reduce ROS production and enhance the antioxidant defense system [10].

A better understanding of this dysfunction and the elucidation of the complex crosstalk between
nutrition and the initial stages of disease progression may facilitate the development of novel
personalized diets with significant clinical benefit in comparison with existing therapies. Simultaneously,
chronic interventions addressing multiple metabolic and signaling pathways may be beneficial to
attenuate oxidative stress and inflammation and ameliorate the retinal injury.

2. Why Anthocyanins?

In trying to find new antidiabetic compounds with fewer side effects, natural sources are being
explored [11]. In fact, their consumption in association with trace elements such as chromium or zinc
is also receiving attention from researchers. The activation of insulin receptor signaling (chromium),
antioxidant properties (selenium, zinc) or inhibition of phosphatases (vanadium) thus appear promising
in view of the key importance of these processes in glucose homeostasis and insulin sensitivity [12].
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Bioactive-compound-rich foods, including alkaloids, phenols, flavonoids, saponins, polysaccharides,
terpenoids, glycosides and xanthones, can be consumed on a daily basis [13].

Anthocyanins (Figure 1), a sub-class of dietary flavonoids, are a large group of water-soluble
pigments responsible for many of the colors, ranging red, orange, pink, violet and blue, in fruits,
vegetables, flowers and leaves [14,15]. Anthocyanins can be found in daily foods, highlighting
berry-like fruits, such as cranberry, chokeberry, blackberry, gooseberry, black grape, bilberry, blueberry,
red raspberry, blackcurrant, redcurrant or strawberry, other fruits as red apple, nectarine, peach, plum,
radish, pomegranate and cherry; vegetables as red onion, red cabbage, eggplant, purple potatoes,
seeds as black beans and beverages as red grape wines or red fruit juices [16]. Anthocyanin content
and composition varies greatly in plant foods with berries being the ones with the higher anthocyanin
concentration in the diet [17].
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Figure 1. Structure of different anthocyanins (flavylium cation form) commonly found in typical diets.
Cyanidin-3-O-glucoside can be found in different berries, while cyanidin-3,5-O-diglucoside may be
found in pomegranates. Malvidin-3-O-glucoside is the main anthocyanin in Vitis vinifera grapes and
red wine, while sophoroside anthocyanins are abundant in purple sweet potato and purple cabbage.

The human diet includes six main anthocyanidins (aglycone): cyanidin, delphinidin, malvidin,
pelargonidin, peonidin, and petunidin. Color is a general guide to which anthocyanins are present,
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which may be important for dietary guidance as research identifies specific effects of certain anthocyanins
and/or their metabolites in T2DM risk reduction. Average daily intake of anthocyanin is ~10.3 mg/day in
the USA [18]. However, a higher intake of anthocyanins has been reported in Italy (44.1-64.9 mg/d) [19]
and Finland (47 mg/d) [20], possibly due to a higher berry consumption [21] compared with berry
intake in the USA [22].

Amongst the several classes of dietary flavonoids, anthocyanins are regarded as the least
bioavailable. However, data reported in the literature regarding the bioavailability of anthocyanins
may be underestimated due to some singularities of this class of flavonoids. Besides glycosylation,
that may also be observed in other types of flavonoids, the unique physical-chemical properties
of anthocyanins influence their stability, absorption patterns and metabolic fate, clearly affecting
their behavior in vivo. Indeed, conversely to other classes of flavonoids, anthocyanins may occur
under different equilibrium structures that may have a different biological influence, depending on
the surrounding pH [23]. Moreover, they are also very unstable at neutral pH and physiological
temperature, and can interact with proteins or carbohydrates [24].

Poor absorption in the upper part of the gastrointestinal tract, susceptibility to gastrointestinal
pH, enzymatic environments and the action of the microbiota may also contribute to the reported low
bioavailability of anthocyanins; such features result in the detection a relatively small portion of the
initial parent anthocyanins in blood and urine [25,26]. Additionally, even absorbed intact anthocyanins
may undergo further metabolization in the liver or kidney [27,28]. After ingestion, anthocyanins may
be readily absorbed in the oral or gastric cavity [29]; however, the majority of these compounds are
not absorbed in the stomach and small intestine, reaching the colon in their intact form [30]. In fact,
the bioavailable forms of anthocyanins in vivo are not exclusively the same as those that occur in
food, since they are also largely metabolized, yielding several types of metabolites [31]. These include
anthocyanin phase II metabolites (glucuronide, methylated and sulfate) or simpler phenolics, e.g.,
phenylpropionic, phenylacetic, benzoic acids and m-hydroxyphenylpropionic acids, intact or phase II
metabolites, which can be absorbed by enterohepatic recirculation [32-34]. So, although anthocyanins
present an apparent low bioavailability, their metabolites may play an important role in the in vivo
protective effects observed.

For example, protocatechuic acid, the main gut metabolite of C3G, exhibited a slight inhibitory effect
onnitric oxide (NO) production and Tumor necrosis factor alpha (TINF-«) secretion in lipopolysaccharide
(LPS)- gamma interferon (INF-y) -induced macrophages [35]. Also, gallic acid, the gut metabolite of
D3G, caused a decrease in the secretion of monocyte chemoattractant protein-1 (MCP-1), intercellular
Adhesion Molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in endothelial
cells [35].

In addition, the potential antidiabetic properties of intact anthocyanins could also be partly related
to their antioxidant and anti-inflammatory activities. Anthocyanins may decrease the levels of reactive
oxygen species, increase the enzyme activity of catalase and superoxide dismutase [36], and may
influence angiogenesis by decreasing the vascular endothelial cell growth factor (VEGF) level and
inhibiting the protein kinase B (Akt) pathway [36]. In particular, anthocyanins interact with the NF-«xB
and activator protein-1 (AP-1) signal transduction pathways, which respond to oxidative signals and
mediate a proinflammatory effect, and the nuclear erythroid 2-related factor 2/antioxidant response
element (Nrf2/ARE) pathway and its regulated cytoprotective proteins (Glutathione S-transferase (GST),
NADPH quinone oxidoreductase-1 (NQO-1), Heme oxygenase-1 (HO-1), etc.), involved in both cellular
antioxidant defense and the elimination/inactivation of toxic compounds, thereby countering the
alterations caused by conditions of chemical/oxidative stress [37]. In addition, possible crosstalk could
partially explain the protective effects of anthocyanins and their metabolites in diabetes, characterized
by an altered balance among these pathways.

However, the concentrations of anthocyanins and their metabolites, when used in in vitro assays,
are often many times higher than those that could be physiologically achievable.
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2.1. Clinical Trials

The available literature on the effect of dietary anthocyanins to reduce the risk of diabetes in
human clinical trials is growing.

Twenty-seven overweight or obese men were enrolled in a randomized, placebo-controlled
crossover study. Subjects were fed a high-fat diet which contained either 600 g/day blackberries or
a calorie and carbohydrate matched amount of gelatin for seven days [38]. Blackberry consumption
may promote increased fat oxidation and improved insulin sensitivity in overweight or obese males fed
a high fat diet. However, glucose area under the curve (AUC) was not different between the blackberries
and gelatin groups [38]. Similarly, consumption of freeze-dried wild blueberry powder in smoothie
form did not reduce postprandial glucose levels [39]. Also, consumption of blueberries with a higher
carbohydrate meal positively affected the plasma pancreatic polypeptide concentrations which may
have an impact on reducing food intake by inducing satiety and meal termination, although glucose
metabolism was not significantly altered [40].

Nevertheless, postprandial trials with strawberries suggest intake 2 h after a meal or within 2 h
before a meal may be required to attenuated postprandial glucose without additional insulin, providing
support for a role of early phase strawberry/berry metabolites in peripheral glucose regulation [41].

However, in a dose-response study in obese individuals with insulin resistance, a beverage
containing 40 g of freeze-dried strawberry powder consumed with a high-carbohydrate high-fat meal
significantly reduced the post-meal demand for insulin compared to a control beverage devoid of
polyphenols, but matched for fiber [42].

Furthermore, statistical evaluation of the dose-dependent strawberry metabolite profiles relative to
clinical outcomes indicated an inverse relationship between the primary anthocyanin metabolites of
strawberry and insulin responses and glucose clearance [42]. In individuals with pre-diabetes and
insulin resistance, intake of 250 g of frozen red raspberry (~2 cups) in a breakfast meal significantly
reduced peak and postprandial (2 h) glucose concentrations when compared with the control [43].

Two recent meta-analyses of randomized controlled trials were conducted to investigate the
effects of anthocyanin intake/anthocyanin rich foods as sources of anthocyanins on a range of
cardiometabolic risk biomarkers. The meta analyses indicated that the effects of anthocyanins
significantly reduced fasting glucose, 2-h postprandial glucose, glycated hemoglobin, total cholesterol,
low-density lipoproteins (LDL) and blood pressure [44,45], specifically highlighting the beneficial
effects of berries as a source of anthocyanins in comparison with red grapes/wine.

In an intervention studies, in people with T2DM, 58 patients were given 160 mg of anthocyanins
twice daily or placebo (n = 29/group) for 24 weeks in a randomized, placebo-controlled, double-blind
trial [46]. Anthocyanin supplementation exerts beneficial metabolic effects in subjects with type
2 diabetes by improving dyslipidemia, enhancing antioxidant capacity, and preventing insulin
resistance compared to the placebo group [46]. Overall, there appears to be complementary data
from the collective epidemiological and human clinical trial investigations suggesting that dietary
anthocyanins have a strong potential to modulate the risk of T2DM in humans.

In the longest-duration randomized controlled trials, the effect of 6-month blueberry
intake on insulin resistance and cardiometabolic function in metabolic syndrome was evaluated in
115 volunteers [47]. A daily intake of 1 cup of blueberries improved endothelial function, systemic
arterial stiffness and attenuated cyclic guanosine monophosphate concentrations. In statin nonusers
(n =71), elevated high-density lipoprotein cholesterol, high-density lipoprotein particle density and
apolipoprotein A-I concentrations were observed following the 1-cup/d intervention. Treatment
compliance was 94.1% (wrapper returns), and total concentrations of anthocyanin-derived phenolic
acid metabolites significantly increased, dose-dependently, in serum and 24-h urine. Despite insulin
resistance remaining unchanged, the first sustained improvements in vascular function, lipid status,
and underlying NO bioactivity following 1 cup blueberries/d were shown. With effect sizes predictive
of 12-15% reductions in CVD risk, blueberries should be included in dietary strategies to reduce
individual and population CVD risk.
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These findings are further supported by a number of preclinical studies in animals and in vitro
models indicating that anthocyanins can work through several cellular signaling pathways, to achieve

glucose homeostasis (Figure 2).
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Figure 2. Cellular signaling pathways by which anthocyanin can modulate glucose homeostasis.
2.2. Animal, In Vitro and In Silico Studies

2.2.1. Anthocyanins Acting as Promising Inhibitors of a-Amylase and x-Glucosidase Enzymes, and
Glucose Transporters (GLUTSs)

Carbohydrate-metabolizing enzymes are attractive therapeutic targets of T2DM, due to their key
role in the balance of postprandial blood glucose. The human digestive system has different enzymes
that work in synergy to completely digest dietary carbohydrates. The breakdown of polysaccharides
begins with the salivary and pancreatic x-amylases cleaving the «-1,4 glycosidic bonds of starch into
maltose, maltotriose and oligoglucans [48]. Afterwards, these shorter molecules are then broken
down further to absorbable monosaccharides by x-glucosidases (maltase and sucrase) located in the
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brush-border of the small intestine [49]. Then, the glucose transporters or carriers across the small
intestine will be activated.

Since the inhibition of the carbohydrate-digestive enzymes reduces the postprandial glycaemia
levels, it is one of the best therapeutic strategies to counteract metabolic alterations related to
hyperglycemia and T2DM, as well as to help to avoid the onset of late diabetic complications. Currently,
synthetic inhibitors, such as acarbose and miglitol, are marketed and widely used as therapeutic
drugs for T2DM treatment. However, they still have several side effects (e.g., hepatic injury and
gastrointestinal complications) and are restricted for patients with renal insufficiency, which limits
their success [50]. As a consequence, many efforts have been made in the past two decades to search
for novel natural and less-toxic molecules. Many studies have demonstrated that anthocyanins
or anthocyanin-rich food intake is beneficial and suppress postprandial glycaemia through the
effective inhibition of a-amylase and «-glucosidase enzymes, as well as by interfering with glucose
transport [51]. Specifically, previous studies have proven the ability of phenolic-rich ingredients (berry
extracts, soft-fruits, grape seeds and bitter melon to inhibit the activities of pancreatic x-amylase and
intestinal a-glucosidase in the gut lumen [51,52]. Other studies have shown that anthocyanin-rich
fractions from blueberry [53], blackberry [54], black legumes [55], black mulberry [56], bilberry and
cranberry [57], red aril fruits [58], camelina and ophia seeds [59], royle fruits [60], fruits of Chilean
berberis species [61], peach fruit and A. melanocarpa fruit juice extracts [62,63], colored extracts of Saco
sweet cherry [64], and anthocyanin extracts from black bean hull, black currants and black rice [65,66]
exhibited higher effectiveness to inhibit x-glucosidase. Therefore, diet-induced treatments from
anthocyanin-based extracts, often combined with other polyphenols, may offer a natural alternative
to achieve better glycemic control in T2DM. However, despite the validity of all these studies,
anthocyanins are very unstable and susceptive for degradation under physiological conditions (from
the mM concentrations within the intestine, only nM concentrations reach the bloodstream). Therefore,
several technologies (e.g., nanoparticles and co-microencapsulation) were developed to overcome
this issue [67-69], and subsequently may yield the use of anthocyanins as a viable alternative for
prevention/treatment in T2DM models. For example, Enache et al. co-microencapsulated anthocyanins
from black currant extract and lactic acid bacteria using a gastrointestinal-resistant biocomposite [70].
They showed the x-amylase and «-glucosidase inhibitory activity of this co-microencapsulated
powder of ca. 87% and 37%, respectively, indicating a high degree of protection and functionality of
the anthocyanins.

In this section, the inhibitory effects and potential inhibitor selectivity of anthocyanins into
the carbohydrate-digestive enzymes will be collected. Table 1 shows the available kinetic data for
anthocyanins against the human carbohydrate metabolizing enzymes.
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Table 1. ICsy values (in uM) for anthocyanins against the human «-glucosidase, x-amylase and
glycogen phosphorylase (GPa and GPb forms) enzymes. *—values obtained in assays with porcine

pancreatic x-amylase; **—values in pug/mL.

Anthocyanin a-Glucosidase a-Amylase GPa/GPb
cyanidin (Cyd) 5293 [71(];111312;—; BOI2L 5731380 + 10 [72,74] 3.0 [75]/9.0 [75]
delphinidin (Dpd) 0.5 * [73] 3.1[75)/10.7 [75]
peonidin (Peo) 200 + 4.1 [74] 25.1[75)/17.6 [75]
malvidin (Mvd) 16.4 ** [73] >50 [75]/>50 [75]
pelargonidin (Pgd) 60 [76] 43.6 [75]/6.2 [75]

25550 [77]; no inhibitory
effect [71]; 1025.32 [78];
970 + 50 [72]

cyanidin 3-glucoside
(C3G)

2.6 ** [73]; 180 +£ 20 [79]; 24 + 3
*[80]; 300 + 10 [72,74]

+ 50 (sucrase) [81]; 250.2

cyanidin 3-galactoside (sucrase) [S1]; 2300 [81]

(C3Ga)

>1000 [72,74]

(maltase)

Cyanidir(‘ g;;tinoside 608.69 [Zéfif]écrtl? ;?]hibitory 200 + 24 [79]; 31 + 7 * [80]
cYanidin(—(?;—;:;binoside 56.9 ** [73]
3—sambct}1]ljinoijig:3 (C35) Tl
delphinic(:lli;;—é—)glucoside 142.68 [78] 41.8 **[73]
delphini?li)ng-i)arabinoside 22.7 78]

delphiniC(‘[i;;;')rutimSide 69.82 [78]

delphini(cll:;gggalactoside 148.2 [78]

3—san(1:1belllpl;?(i)2iigin(D35) ~4000 176]

pelargorg):l;r;g)—rutinoside 1.69 [78]

pelargor}}flgigg)—glucoside 10.35 [78]

petumdi;iﬁ?bmmde 81.47 [78]

petuniiilgzggl)ucoside 158.65 [78]

petunid(i;;iéézl)actoside 234.4 [78]

malvidirzﬁ?gbinoside 11.32 [78]

malvidi(rll\;l?;’-cg;l)ucoside 116.77 [78] 675 + 73 [79]; 44 + 4 * [82] (Ki)
malvidig\-gée;lfdoside 139.64 [78]

peonidig§;2§?inoside 18.75 78]

Peonicl(ilrjzi—ggch)moside 75+ 7*[80]
peonid(i;i-ggégctoside 143.31[78]

cyanidin-3,5-diglucoside

(C3,5diG) >2000 [72,74]

40 + 7 *[80]; >1000 [72,74]
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The most potent anthocyanins (ICsp < 20 uM (or pg/mlL) targeting o-glucosidase
are pelargonidin-3-rutinoside (Pg3R), cyanidin (Cyd), pelargonidin-3-glucoside (Pg3G),
malvidin-3-arabinoside (M3A) and peonidin-3-arabinoside (Peo3A); whilst for x-amylase the most
potent anthocyanins are Cyd, delphinidin (Dpd), malvidin (Mvd) and cyanidin-3-glucoside (C3G).
This suggests a more susceptibility of the a-glucosidase and a-amylase activities to glucoside
anthocyanins and non-glucoside compounds, respectively.

Previous studies have suggested that the reaction mechanism of both enzymes uses a nucleophilic
and general acid/base catalysis and occurs via a double displacement mechanism characterized by
oxocarbenium-ion-like transition state geometries [83,84]. In addition to the catalytic carboxylic residues
positioned on opposite sides to embrace the substrate, some polar and aromatic surrounding residues
(e.g., Y, R and W amino acids) provide an extensive network of H-bonds that causes conformational
distortion of the substrate upon binding. Such distortion favors nucleophilic attack on anomeric carbon
and subsequent cleavage of the glycosidic bond, and lowers the energetic barriers [85,86].

Recent enzymatic kinetics and in silico studies [53] determined the x-glucosidase inhibition
activities of the main polyphenolic molecules present in blueberry, blackcurrant, and blue honeysuckle
fruits. Despite the higher quantity of glycosidic anthocyanins, they observed a better inhibitory
activity for anthocyanidins, namely Dpd, Cyd and peonidin (Peo). Molecular docking studies
revealed that all three molecules bound into the active site of x-glucosidase, and the ranking of their
binding affinities agrees with the order of their ICsy values: Dpd > Cyd > Peo. The binding mode is
similar, occurring mainly via H-bonds and electrostatic interactions with polar and charged residues,
and 7-7r stacking contacts with the aromatic residues of the binding site. Similar interactions were
pointed out as relevant for the maintenance of substrate throughout the entire catalytic pathway of
the human maltase-glucoamylase, recently studied with atomistic detail [87]. You and co-authors
found that anthocyanin aglycones have a greater inhibitory activity (Cyd > cyanidin-3,5-diglucoside
(C3,5diG)) [88]. Since during intestinal digestion the glycosidic anthocyanins are hydrolyzed by
cytosolic 3-glucosidase into their aglycon form, it is expectable that the glucoside compounds possess
a-glucosidase inhibitory activity in vivo. Another recent study also reported a strong inhibitory
activity of Cyd from Cinnamomum camphora fruit, and even better than that of the marketed competitive
inhibitor acarbose [71]. However, other studies showed great effectiveness of glucoside anthocyanins.
For example, D'Urso et al. recently reported that the anthocyanins present in black currants are very
effective at inhibiting intestinal a-glucosidase (ranking of C3G > Cyd > Dpd > delphinidin-3-glucoside
(D3G) > Mvd > cyanidin-3-arabinoside (C3A)) [89]. Another in vivo study also showed great
effectiveness of C3R to inhibit x-glucosidase and to decrease plasma glucose levels [81].

A combined in vitro, in silico and in vivo study [78] identified the Pg3R isolated from strawberries
as the most potent inhibitor against «-glucosidase (IC5¢ of 1.69 uM, Table 1). It was found that
compounds with potent inhibitory activity modify the enzymatic secondary structure (namely from
a-helix to 3-sheet). Molecular docking analysis indicated that Pg3R bound into the binding site of
a-glucosidase, establishing H-bonds with the carboxylic catalytic residues. Contrarily, the aglycone
anthocyanins with poor activity, such as D3S and C3S, do not enter deeply in the active site.

In vitro and in silico inhibition experiments showed that glycosylated anthocyanins inhibit
competitively porcine pancreatic c-amylase [80]. The order of the inhibition activity was C3G >
cyanidin-3-rutinoside (C3R) > C3,5diG > peonidin-3-glucoside (Peo3G). The molecular docking data
also indicated that all compounds bound into the active site of x-amylase, establishing H-bonds with
surrounding residues. The interaction with E233 was identified as a common feature for the inhibition
activity of anthocyanins. The importance of E233 was supported by a computational study of the
catalytic mechanism of the human pancreatic x-amylase, in which the D197, E233 and D300 residues
and two water molecules were identified as essential for catalysis [90].

Previous studies reported that Cyd and its glucosides inhibit carbohydrate-digestive enzymes
by establishing covalent and/or non-covalent interactions between their hydroxyl groups and polar
residues of the enzymatic active sites (by their amide, amine and carboxyl groups) [72,81,91]. The order
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of inhibition activity against intestinal sucrose was C3R > cyanidin-3-galactoside (C3Ga) > C3G > Cyd
and C3,5diG. The great potency of C3R may be attributed to the presence of a disaccharide instead of
a monosaccharide at C3.

A study of the influence of the red fruit components on x-amylase and «-glucosidase activities have
identified some anthocyanins (D3G > petunidin-3-glucoside (Pet3G) > Peo3G) as potential inhibitors
(even better than acarbose in the o-glucosidase assays) [92]. The obtained inhibition order, as well as
many other studies, proposed that a high amount of hydroxyl groups on ring B is advantageous
for the inhibition, whilst the methylation and methoxylation reduces the inhibitory activity [79,80].
However, Kaeswurm et al. observed an insignificant impact on the porcine a-amylase activity with
different substitution pattern on the anthocyanin B-ring [93]. These different findings may occur due to
the specific inhibitor selectivity of each enzyme. The same authors also found that the acylation of
anthocyanins of black carrot with cinnamic acids improves the inhibitory effect against the porcine
a-amylase [93]. This could happen due to additional dispersive contacts between the enzyme and the
extra aromatic group. Matsui et al. corroborated the potent inhibitory activity of acylated anthocyanins,
being sometimes better than the non-acylated counterparts [76].

The details, on an atomic level, of the mechanism by which anthocyanins inhibit
carbohydrate-metabolizing enzymes are still not fully understood. However, past experimental
and theoretical studies, as well as the properties and molecular structure of anthocyanins, suggest that
they could act as glycomimetics inhibitors that mimic saccharide substrate structures [94]. They may
inhibit both enzymes by establishing similar interactions with the key active site residues (namely;,
the anthocyanin-glucoside forms) or by mimicking positive-charge buildup at the transition state
geometries, or both. Furthermore, the large size of some substituted anthocyanins also suggests that
they may act as a cap that blocks access to the active site and/or disturb protein folding, as pointed out
by fluorescence studies [78,95], which may subsequently prevent correct substrate binding for catalysis.

Regarding the enzyme activities, synergistic inhibitory effects have been observed between
different anthocyanins and between anthocyanins and other phenolic compounds, when using extracts
from pigmented cereals and grains [96]. Furthermore, Cyd and cyanidin glucosides (C3Ga, C3G,
C3,5diG and C3R) also exhibited a synergistic effect with a low concentration of acarbose in the
inhibition of sucrase, maltase and x-amylase [72,81]. This synergistic effect is particularly relevant for
the development of the combined therapy for T2DM because the intake of anthocyanin-rich foods
together with acarbose may lead to a lower prescribed drug dosage, and in turn lessen the adverse
side effects of acarbose [72].

Several kinetic studies showed that Dpd, Cyd, Peo, C3G, malvidin-3-glucoside (M3G), Peo3G,
Pg3R and C3Ga act by a mixed type of inhibition, in which they can affect both the affinity of the
enzyme to the substrate and the catalytic activity of the enzyme [58,78,82]. Cyd from muscadine grapes
and the anthocyanin extract of a purple-fleshed potato cultivar showed a noncompetitive inhibition
against a-glucosidase and both «-glucosidase and «-amylase, respectively [88,97]. The aglycones Dpd,
Cyd, Mvd and Peo from cherries showed competitive inhibition against «x-amylase [79].

The inhibition of GLUTs also represents an interesting therapeutic strategy. In fact, several studies
demonstrated that the reduction on the expression of these functional proteins reduced the diabetic
conditions in rats [98-100]. Recent studies focused on the absorption of anthocyanins with glucose
have associated these flavonoids to glucose transporters. In caco-2 cells, anthocyanin transportation
across the cell barrier diminished upon the co-treatment with (3)H-2-deoxy-p-glucose in about 60%.
Also, the pre-treatment of the cells with the anthocyanins led to a higher expression of GLUT-2 in
caco-2 cells, suggesting that anthocyanins may modulate the metabolism of glucose not only by
direct competition, but also at the gene level [101]. Another study with red wine anthocyanins,
using MKN-28 cells as a model (with a high expression of GLUT-1 and GLUT-3) showed a direct
competition between the anthocyanins and glucose for the transporters, translated by a reduction of
anthocyanins transport upon the co-treatment with glucose. Molecular docking data also demonstrated
an interesting affinity of monoglucoside anthocyanins for both GLUTs [102]. More recently, a similar
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approach with purple-sweet potato anthocyanins was utilized. Moreover, the complex acylated
anthocyanins demonstrated to have an affinity to glucose transporters translated by a reduction of their
transport in the presence of glucose on both caco-2 and MKN-28 cells [103]. Furthermore, the genetic
silencing of GLUT-1 and GLUT-3 resulted in a significant reduction of anthocyanins transport [104].
In the same study, both monoglucosides and complex acylated anthocyanins interacted with the
glucose transporters as demonstrated by in silico studies. Altogether, these studies demonstrated
that anthocyanins can interact with glucose transporters, with low dependence on their structure.
From a nutritional point of view, this may represent a great advantage to control the postprandial
glycaemia, resulting in a potential strategy to improve the diabetic condition. Interestingly, not only the
native anthocyanins may interact with GLUTs, but also their metabolites (discussed later), as recently
demonstrated for malvidin-3-O-glucuronide [105].

In vivo studies also corroborated the in vitro findings [52]. The intake of anthocyanin-rich
blackcurrant drinks resulted in a decrease of postprandial blood glucose, insulin and incretin after
men and women were given the drinks succeeding a high carbohydrate meal [106]. The ingestion
of bilberry extract by male volunteers with T2DM resulted in a significant reduction of both glucose
and insulin compared with placebo [107]. Lingonberry and blackcurrant purées reduced glucose and
insulin plasma levels in the first 30 min post-consumption by healthy women [108].

2.2.2. Anthocyanin-Rich Functional Foods in the Prevention and Management of T2DM

Although different types of pharmacotherapeutic interventions are available for the management
of T2DM, including oral hypoglycemic agents or insulin sensitizers, the ineffectiveness of the
current medical treatments in the management of long-term diabetes complications confirms that the
development of complementary approaches is, therefore, of utmost importance [109-111]. In the last
years, Medical Nutrition Therapy (MNT) has become an important approach for T2DM management.
In MNT, carbohydrate counting, as well as glycemic index and glycemic load, the estimation of
energy and nutrients requirements or recommendation for dietary fats and cholesterol and protein
intakes, are some of the main components of a healthy diet planning in T2DM patients [112,113].
In recent years, the consumption of plant-based functional foods, rich in polyphenols, has also been
suggested as a potentially complementary approach in the control of several aspects of T2DM and
pre-T2DM patients, mainly due to their biological properties [114-117]. Functional food is a designation
related to foods that beyond the basic nutritional functions, possess potential health benefits related to
the prevention of several chronic diseases, due to biologically active ingredients [118]. Different
types of foods can be included in the functional foods category, ranging from foods with functional
properties, like fruits, vegetables or whole grains, to modified foods in which for instance sugars are
replaced by non-nutritive sweeteners and to fortified foods, like those enriched with phytochemicals
or nutrients [119]. Regarding polyphenol-rich functional food intake, there is a substantial body
of in vitro, in vivo, and epidemiological evidence suggests a positive health outcomes in diabetic
patients [120-123]. Within polyphenols, anthocyanins appear to be one important class supporting the
prevention and treatment of T2DM [124].

Over the past years, numerous studies have demonstrated that anthocyanins can exert a beneficial
effect on T2DM by regulating different signaling pathways in several organs and tissues, such as liver,
pancreas, kidney, adipose, skeletal muscle and brain [51]. Anthocyanins may lower blood glucose by
improving insulin resistance, protecting {3-cells, increasing the secretion of insulin, reducing digestion
of sugars through «-amylase and «-glucosidase inhibition, reduce the oxidative processes, decrease
the inflammatory response, upregulating glycolysis gene expression, downregulating gluconeogenesis
gene expression and activating AMP-activated protein kinase (AMPK) [76,125-127]. As previously
mentioned, carbohydrate enzymatic inhibition by common glycosides, di-glycosides or acylated
anthocyanins, undoubtedly contributes to anthocyanins antidiabetic effects [128,129]. The highest
inhibitory activity was reported to acylated anthocyanins [76], which might be due to its greater
stability in the gut [130]. Anthocyanins fortification of cereal-based food products has also been shown
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to be an alternative way to produce functional food products for T2DM management and control.
Zhou et al., showed that starch digestion rates of bread dough fortified with anthocyanins extract
from black rice were reduced by 12.8% when 1% of anthocyanin extract was added. Carbohydrate
digestion rate dropped further to 20.5% when the number of anthocyanins reached 4%. This suggests
a lower insulin demand, potentially improving the blood glucose control and providing extra health
benefits, due to anthocyanins antioxidant potential [131]. In vitro studies to evaluate the potential of
anthocyanins in insulin resistance have been conducted in hepatocytes (HepG2 cells), human 3T3-L1
adipocytes, rat liver cells (H4IIE cells), muscle cells (L6 myotubes), rodent pancreatic 3-cells and satellite
cell [126,128,129,132-135]. Additionally, a vast number of in vivo protective activities of anthocyanins
rich extracts against insulin resistance and obesity conditions have been reported. These extracts were
found to effectively ameliorate insulin resistance condition, increase insulin sensitivity, decrease body
weight gain and lipids accumulation [136-139].

Despite several in vitro and in vivo lines of evidence, it is not clear the impact of delivering
anthocyanins in whole plant foods, compared with individual functional ingredients, as supplements
(Figure 3). The main difference is the presence of other natural biomolecules, such as proteins
and cell-wall polysaccharides, that co-exist with anthocyanins in most plant-based food products
(vegetables, fruits, fruit juices). When cells are ruptured, during mastication and/or processing
(boiling, pureeing, homogenization, juicing or canning), anthocyanins and biopolymers may interact,
forming complexes through non-covalent forces or covalent bonds [140-142]. The non-covalent
interactions, mainly mediated by hydrogen bonds, van der Waals forces, hydrophobic interactions and
electrostatic interactions, are known to exert heavy impacts on the extractability, stability, functional,
nutritional, biological and sensorial properties of these combined systems. Anthocyanin-polysaccharide
non-covalent complexes have been shown to improve anthocyanins thermostability [143], increase their
stability under in vitro gastric and small intestinal digestion [144,145] or enhance anthocyanins color
stability [146]. Nutritionally, these interactions may also play an important role in the digestive tract of
humans, regarding the metabolism of both anthocyanins and polysaccharides [142,147]. Recently, the
antidiabetic activity of polysaccharides has also been reported [148-150]. These effects were mostly
attributed to enzyme inhibition related to starch digestion and mechanisms related to inflammatory
factors and oxidative stress, exerting favorable effects on glucose homeostasis and reducing insulin
resistance. Due to this, there has been considerable interest in understanding and exploiting the
functions and health benefits of the whole food systems as these conjugates may have the improved
health attributes that cannot be achieved using individual components. However, there is very few
information related to the polyphenols-polysaccharide bound complexes (both non-covalently and
covalently bound) and their anti-diabetic activity, with these works being essentially focused with other
polyphenols classes, rather than anthocyanins. Guo et al., reported an ICsy for x-amylase inhibition
of 6.11 and 5.75 mg/mL and an ICs) for x-glucosidase inhibition of 9.01 and 4.66 mg/mL, for corn
silk polysaccharides and flavonoids-corn silk polysaccharides, respectively [151]. Regarding plant
proteins, Jiang et al., showed that naturally occurring protein-bound anthocyanin complexes from
purple sweet potato were able to ameliorate hyperglycemia, through the regulation of the hepatic
glucose metabolism in high-fat diet/streptozotocin-induced diabetic mice [111]. The results showed
that the administration of anthocyanin-protein complexes improved the glucose tolerance and lipid
metabolism, decreasing the oxidative stress and liver damage by regulating the expression of proteins
in the glucose transport system and then increasing glycolysis and decreasing gluconeogenesis in
the liver.
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Figure 3. Impact of anthocyanin consumption within food matrix and as a supplement (individual compounds).
2.3. The Role of Anthocyanins Targeting Glycogenolysis

Another pharmacological strategy against T2DM focuses on retarding glycogenolysis. Previous
studies proposed that anthocyanin-rich foods also regulate this metabolic cascade by interfering with the
activity of key enzymes, such as Glycogen phosphorylase (GP) [75,152-154]. GP catalyzes the rate-limiting
step of glycogen breakdown, releasing glucose-1-phosphate. After this, phosphoglucomutase shifts
the position of the phosphate in the sugar, making it suitable to fulfill the energetic requirements of
the organism [155]. GP is an allosteric enzyme that changes between active (GPa) and tense (GPb)
conformation states. Recently, the GP catalytic mechanism has been assessed at the atomistic level,
and the characterized transition state geometries could be now used in structure-based drug design
studies [156].

Jakobs et al. studied the inhibition activity of several classes of flavonoids targeting GP [75].
As to anthocyanins, they obtained an inhibitory order of Cyd > Dpd > Peo > Pgd > Mvd (as seen in
Table 1). They also suggested that the substitution pattern of the B ring of anthocyanidins influences
their inhibitory effect. For example, the most potent inhibitors, Cyd and Dpd, have vicinal hydroxyl
groups in the B ring and their inhibition activity occurs in the same low range (IC5p = 3 uM, Table 1).
However, compounds without one of the vicinal groups, such as Pgd, had a significantly reduced
inhibitory activity (ICs5p = 43.6 uM, Table 1) whilst the replacement of some hydroxyl groups by methoxy
groups (exemplified by Mvd) decreases the inhibitory activity even more (ICs5p > 50 uM, Table 1).

Curiously, the most abundant anthocyanidin in nature, Cyd, is a potent inhibitor for the
three human carbohydrate metabolizing enzymes: «-glucosidase, x-amylase and GP. In general,
anthocyanins are able to ameliorate disorders in glucose metabolism and can be more explored as key
natural-based inhibitors in the prevention and treatment of T2DM.

2.4. The Interplay between Anthocyanins and Gut Microbiota

The biological effects of the compounds will mainly depend on their interactions with the colonic
environment. Such a path depends heavily on the microbiota, and its action on the biotransformation
of anthocyanins will play a key role in determining their exerted biological effects [157]. Besides
this, anthocyanins may also modulate microbiota, exerting indirect effects on different pathological
conditions [158].
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2.4.1. Anthocyanins and Gut-Derived Metabolites and Their Antidiabetic Potential

When assessing the metabolization of natural compounds, it is important to have present
that of several factors may influence the action of the enzymatic and bacterial machinery, namely,
inter-individual differences of the subjects used in the studies or the food matrix represent
important examples of factors that may modulate the enzymatic and bacterial action upon these
compounds, in particular anthocyanins. In the study of Czank et al., the human metabolism of
cyanidin-3-O-glucoside (C3G) was assessed using a 3C-tracer [32]. The authors found that upon the
consumption of 500 mg of >C-labeled C3G, the recovery of *C in urine, blood and faeces on the eight
subjects analyzed, varied from 15.1 to 99.3%. In a recent study, it was found that the food matrix
acted as a shield against the enzymatic degradation of anthocyanins upon simulated gastrointestinal
digestions [103]. Such facts contribute to a complex network of metabolic fates, leading to a wide range
of natural compounds metabolites, particularly in the case of anthocyanins.

Although the complete screening and understanding of the bacterial and enzymatic catabolism
of the different dietary anthocyanins are far from being achieved, some food sources are by now
well characterized. A recent study showed that one of the anthocyanins in the extract of Aronia
melanocarpa, C3G, appeared in the plasma of human subjects 30 min after consumption; however, plasma
protocatechuic acid peaked as early as 1 h [159]. Other anthocyanin metabolites were detected in
plasma after a longer period, such as hippuric acid 3-(4-hydroxyphenyl)-propionic acid and Peo3Ga.
In the same study, the authors analyzed urine samples and detected the same metabolites as in plasma
plus intact anthocyanins (such as C3G, C3Ga, C3A) and other metabolites (such as ferulic acid and
3,4-dihydroxyphenylacetic acid). Despite the interindividual differences, the authors suggested that
the majority of the metabolites were derived from the main anthocyanin of Aronia extract, C3Ga,
since it was not detected in any of the plasma samples.

Anthocyanins from blackberry are also extensively metabolized upon ingestion. Blackberry is
characterized by the presence of the main anthocyanin, C3G [160]. The consumption of 200 mg of
blackberry resulted in the presence of intact C3G and metabolized forms in urine after 2 h in the urine
of human volunteers. The total urinary excretion of blackberry anthocyanin metabolites was about
0.2%. The metabolites were identified as being mainly anthocyanin monoglucoronides, and in a lower
extent, methylated and sulfoconjugated derivatives [28]. Similarly, anthocyanins main metabolites
of boysenberry identified in human urine after consumption were monoglucoronides of peonidin,
cyanidin and pelargonidin [161]. In another study, with blueberry, monoglucoronides and methylated
anthocyanins were found in urine [162].

Very recently, 63 blueberry anthocyanin metabolites were identified and quantified in human
plasma. This included the presence of cinnamic acids, benzoic acids, phenols, hippuric acids,
phenylacetic acids and flavonols after 2 h post-consumption [163]. The same authors had previously
identified similar metabolites after blueberry consumption, including phase II metabolites, namely,
catechol-O-sulfate, dihydrocaffeic acid 3-O-sulfate, isoferulic acid 3-O-3-p-glucuronide [164].

In a recent clinical trial, red wine and Port wine were given to volunteers, and after the consumption
of the wines, anthocyanins were detected in their intact forms in both plasma and urine samples,
but the glucuronylated metabolites of peonidin and malvidin were the two main derivatives detected
after both red wine consumptions [25]. Furthermore, evidence that red wine anthocyanins are also
extensively metabolized came up more than a decade ago [165,166].

Elderberry anthocyanin catabolism by three gut microbiota bacteria species was recently explored.
Enterobacter cancerogenous, Bifidobacterium dentium and Dorea longicatena degraded the anthocyanins,
but in interestingly different metabolic pathways [167]. About 30 metabolites, including cinnamic and
benzoic acids, and also intact anthocyanins were detected in the three cell culture samples. Indeed,
a previous study demonstrated different metabolic patterns for the degradation of C3G when incubated
with different bacterial strains and with human faecal slurries [168].

Red cabbage was given to healthy volunteers and metabolites were explored in urine and plasma
after intake of red cabbage products. Apart from the eighteen native anthocyanins, the presence of
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twelve phase II metabolites of cyanidin, including methylated, glucuronidated and sulfated forms,
were found [169]. Interestingly, red cabbage contains complex acylated anthocyanins, and this may
influence the range of metabolization of these compounds. Furthermore, other few studies with
eggplant, purple sweet potato and purple carrot acylated anthocyanins regarding the consumption
of acylated anthocyanins were performed, but in all cases only the native forms were explored and
detected, remaining unclear the clear fate of this kind of anthocyanins [170-172].

The vast majority of the food sources explored have high contents of monoglucosides anthocyanins
such as C3G, the most abundant anthocyanin in nature, which may explain the consistency in
the formation of the known metabolites. Figure 4 summarizes the main gut metabolites derived
from anthocyanins.
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Figure 4. Main gut anthocyanin metabolites. Metabolites can be formed by enzymatic/microbiota
action, and result from the breakdown of the C6-C3-Cé6 structure. Thus, metabolites can be either
derived from ring A or B of the parent anthocyanin structure.

These anthocyanin-rich foods have been linked to antidiabetic properties in vitro and in vivo.
T2DM a chronic exposure to high glucose levels cause the irreversible failure of pancreatic 3-cells via
increased oxidative stress. Recently, it was shown that in pancreatic 3-cells the anthocyanin-rich fraction
of Aronia melanocarpa presented a scavenging effect on the intracellular oxygen species, revealing to
be an interesting therapeutic strategy [173]. In another recent study, the consumption of chokeberry
(Aronia melanocarpa) and dried jujube by C57BL/6 ] mice during a 10-week period, changed the hepatic
protein expression of the insulin receptor, insulin receptor substrate 1, phosphoinositide 3-kinase, Akt,
and catalase, which are associated with insulin resistance. This led to a consequent improvement on
insulin resistance, according to several indicators, such as serum insulin level, fasting blood glucose
level, or oral glucose tolerance test value [174]. In another study, diabetic Wistar rats were fed with
Aronia melanocarpa extract for 16 weeks. The results showed an immunomodulation of key cytokines in
insulin-deficiency diabetes, such as TNF-a and IFN-y, reducing the inflammatory status of the diabetic
rats [175].

Blueberry anthocyanins were linked to the protection of retinal cells from diabetes-induced
oxidative stress and inflammation via the regulation of Nrf2/HO-1 signaling [176]. These anthocyanins
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also showed to prevent the increased blood glucose on diabetic rat models [177]. Another study
showed that red raspberry intake by diabetic mice modulates the oxidative stress and increases the
antioxidant defenses [178].

Either in vivo or in vitro and regardless of the food source, these compounds demonstrated the
capability to act through a multi-target pathway, modulating aspects, such as transcription factors,
pro- and anti-inflammatory cytokines, insulin and glucose metabolism, and lipid metabolism, resulting
in antidiabetic agents [38,46,179-182].

Regardless of the well-explored antidiabetic effects of the different anthocyanin food sources,
it is important to assume that the observed effects may not be totally attributed to the anthocyanins
but rather to their metabolites. Indeed, such metabolites derived from anthocyanins have also been
shown to have biological properties against diabetes. The effect of protocatechuic acid (PCA) in
the chronic inflammation in visceral adipose tissue (VAT) that may lead to insulin resistance and
T2DM was evaluated [183]. The results showed that this metabolite restored the lack of insulin
response in the obese-VAT individuals, by increasing the phosphorylation of key factors for insulin
sensitivity, such as IRS-1 and Akt, which may be due to the inhibition of protein tyrosine phosphatase
1B activity, a well-known insulin signaling regulator. PCA also diminished the overall inflammatory
state of the obese individual by lowering the nuclear factor kappa B (NF-«B) pathway. Hence these
results suggest an important role of this gut-derived metabolite against inflammation and insulin
resistance, two enhancers of diabetes. In another study, protocatechuic acid showed to reduce
the lipid profile and HDL-C levels to near control after treatment of diabetic rats with PCA [184].
The metabolite was also found to stimulate the insulin signaling pathway by increasing glucose
transporters (GLUT4) translocation with a consequent better glucose uptake in human visceral
adipocytes [185]. The metabolic origin of hippuric acid is derived from the action of microbiota,
causing the degradation of phenolic compounds to benzoic acid followed by conjugation with glycine
moiety in the liver [186]. As stated before, the rise in the concentration of this metabolite in urine and
blood is associated with the consumption of anthocyanins [32,164,187,188]. Recently, it was observed
that fasting serum hippuric acid levels were higher after the consumption of bilberry. Interestingly,
in the same study, this metabolite was not detected upon the consumption of other anthocyanin-rich
foods, such as strawberries, raspberries, and cloudberries, as well as in the control group. Moreover,
the authors observed that the increase in hippuric acid levels was associated with an improvement of
fasting plasma glucose concentration and insulin secretion in individuals with the metabolic syndrome
with the risk of developing T2DM [189].

Ferulic acid is also a common metabolite found upon the consumption of anthocyanins.
This metabolite is associated with restored blood glucose, serum insulin, glucose tolerance, and insulin
tolerance to normal range in diabetic rats [190]. Very recently, diabetic rats treated with ferulic acid for
8 weeks demonstrated a reduction of hyperglycemia-injured kidney through the regulation of oxidative
aggressions, inflammation and autophagy [191]. Other studies, performed in similar animal models of
diabetes, are consistent with the efficacy of this metabolite either through a direct effect on glucose
metabolism or through the modulation of genetic factors responsible for the development of diabetes.
A study demonstrated that ferulic acid significantly increased the expression of two important enzymes
for the protection of oxidative stress in obese rats (heme oxygenase-1 and glutathione-S-transferase),
while reducing the expression of other enzymes normally involved in tissue injury or necrosis [192].

Also, in diabetic rats, caffeic acid attenuated the diabetic kidney disease via modulation of
autophagy, after a 12-week treatment. The authors suggested a mechanism of action involving the
suppression of key authophagic miRNAs [193]. In a HepG2 insulin-resistance cell model, caffeic acid
demonstrated antidiabetic effects through the attenuation of insulin-resistance and modulation of
glucose uptake. The expression of IRS-1, Akt, PI3K, and GLUT-4 showed significant up-regulation
in the case of phenolic acids treated samples [194].

Other phenolic acids that appear in plasma and urine after the consumption of anthocyanin-rich
foods have also been extensively studied for their role in diabetes, such as ellagic, syringic, synaptic,
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or coumaric acids [195]. Similarly to the previously discussed, several mechanisms have been described
for the antidiabetic actions of these compounds, including the regulation of glucose transporters
translocation, modulating glucose metabolism, improving insulin resistance and modulating gene
factors involved in the susceptibility for diabetes development [196-199].

Not only the direct products of anthocyanin breakdown present anti-diabetic effects. Enzymatic
phase I and II metabolites of anthocyanins have also been hypothesized as having potential against
diabetes and related disorders [16,105,200].

2.4.2. Gut Microbiota Modulation by Anthocyanins

Host and gut microbiota (GM) live in a synergistic way, as a result of thousands of years of
co-existence and evolution. Therefore, the microbial environment of the gastrointestinal tract has
important roles in the homeostasis of the whole host organism. The role of GM in health and several
diseases have been extensively explored through the years, and a relationship between the imbalance
of GM and type 1 and 2 diabetes is nowadays, a fact [201-203].

The modulation of gut microbiota is highly dependent on dietary habits. Nutrients can act
both directly or indirectly with the microorganisms in order to promote its growth or inhibition and
normally, healthy diets rich in polyphenols are associated with better microbiota composition [204].
In this matter, anthocyanins may also act as modulators of gut microbiota, and although limited
research has been performed, evidence supports the capability of anthocyanins to change the
microbial environment of the gastrointestinal tract. Zhang et al. verified that purple sweet potato
anthocyanins were able to modify the human intestinal microbiota in vitro. The study was conducted
by monitoring bacterial populations and short-chain fatty acids at different time points, and the
results showed that the anthocyanins induced the growth of Bifidocterium and Lactobacillus spp. and
inhibited the growth of Bacteroides-Prevotella and Clostridium histolyticum [205]. In a more recent
study, anthocyanins from the same source had demonstrated specific effects on the modulation
of different gut bacteria strains. After simultaneous incubation, the compounds were able to
induce the proliferation of Bifidobacterium bifidum, Bifidobacterium adolescentis, Bifidobacterium infantis
and Lactobacillus acidophilus, and they inhibited the growth of Staphylococcus aureus and Salmonella
typhimurium, suggesting that purple sweet potato anthocyanins might have prebiotic-like activity [206].
The consumption of different berries rich in anthocyanins led to a change in gut bacterial populations
in C57BL/6 mice model. Animals consuming Concord grape showed the largest expansion of
Actinobacteria from 2% to 18%. Blueberry and blackcurrant supplementation was associated
with significant shifts in the fecal bacterial profiles that simultaneously increased populations of
obligate anaerobes Bacteroidetes (from 7% to 10-12%) and Actinobacteria (from 2% to 9-15%) [207].
Strawberry supplementation increased the abundance of beneficial bacteria Bifidobacterium in
mice [208]. In other recent work, the main anthocyanin from Lycium rythenicum Murray
(petunidin-3-O-[rhamnopyranosyl-(trans-p-coumaroyl)]-5-O-[ 3-p-glucopyranoside]) was able to
reverse the dextran sodium sulfate-induced colitis decrease of Porphyromonadaceae, Rikenellaceae
and Prevotellacea in mice [209]. Black raspberry anthocyanins enhanced the growth of Eubacterium
rectale, Faecalibacterium prausnitzii and Lactobacillus, and inhibited the growth of Desulfovibrio spp. and
Enterococcus spp. [210]. A randomized clinical trial showed that interventions with both red wine
and dealcoholized red wine increased the fecal concentration of Bifidobacterium, Enterococcus and
Eggerthella lenta, compared to gin intervention and baseline [211]. Also, in a recent study, blackberry
anthocyanin-rich extract was found to modulate gut-microbiota composition. Blackberry extract
increased Pseudoflavonifractor when the animals were fed with the control (low fat) diet and increased
Oscillobacter independently of the diet fat content [212].

The interplay between anthocyanins and gut microbiota leads to a network of changes that can
be used to prevent or modulate several pathologies, as already observed. Either by the metabolizing
capability of gut microbiota to biotransform anthocyanins in new structurally different bioactives or by
the modulation capability of native anthocyanins to change levels of specific gastrointestinal bacteria
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populations, this interplay may provide an important strategy against diabetes and related diseases
from a nutritional perspective.

3. Conclusions

Currently, synthetic carbohydrate-digestive enzyme inhibitors are marketed and widely used as
therapeutic drugs for T2DM treatment. However, due to their several side effects (e.g., hepatic injury
and gastrointestinal complications) and limitation to a sub-group of the population, many efforts have
been made to determine the dietary recommendation that could have the same effects. Individual
anthocyanins or anthocyanin-rich food may suppress the postprandial glycaemia through the effective
inhibition of «-amylase and «-glucosidase enzymes, as well as by interfering with glucose transport,
glycogenolysis and lipid metabolism by different molecular pathways (Figure 5).
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Figure 5. Target proteins and genes of anthocyanins and their metabolites with antidiabetic activity. After
reaching the gastrointestinal tract, anthocyanins may be directly absorbed or metabolized. Once in the
blood stream, they may be absorbed by target tissues of further transformed in kidney or liver. Nevertheless,
upon reaching their targets, these compounds can act as antidiabetic agents at different levels, such as
glucose transport, the hepatic machinery or modulation of 3-cells, and on different metabolic pathways,
like Mitogen-activated protein kinase (MAPK), AMP-activated protein kinase (AMPK) or nuclear factor
kappa B (NF-«B), or even act on the lipid metabolism level by modulating peroxisome proliferator-activated
receptors (PPARs). SLC2: Facilitative GLUT transporter family; Pi3K: Phosphoinositide 3-kinases; IRs-1:
Insulin receptor substrate 1; G6P: Glucose 6-phosphatase; PEPCK: Phosphoenolpyruvate carboxykinase;
F-1,6-BP: Fructose 1,6-bisphosphatase; GK: Glucokinase; JNK: c-Jun N-terminal kinase; Bcl2: B-cell
lymphoma 2 proteins; LKB-1: liver kinase B1; CAMKKB: calcium/calmodulin-dependent protein kinase 2;
TAK-1: Transforming growth factor beta-activated kinase 1.

Some studies highlight the importance of glucose on anthocyanin structure, others assign a more
potent activity to the aglycone forms, and there are also examples of the inhibitory potential of
acylated anthocyanins. During gastrointestinal digestion the monomeric or acylated anthocyanins
these may be converted, at least in part, into their aglycon form and metabolized. For example, M3G is
converted into malvidin-3-O-glucuronide by Uridine 5’-diphospho-glucuronosyltransferase (UGT).
The same metabolite is formed with malvidin-3-O-coumaroylglucoside. This point may render the
glycosylation and acylation pattern a hugely important in the physiological stability and modulation
of enzymatic activity during digestion, rather than in the antioxidant or anti-inflammatory effect.
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Both the interaction with endogenous biomolecules and interaction with exogenous biomolecules
have a huge impact. Therefore, diet-induced treatments from anthocyanin-based extracts, often combined
with other polyphenols, may offer a natural alternative to achieve better glycemic control in T2DM.
Considering the beneficial properties of anthocyanin-rich functional foods, it seems that diet planning
based on these healthy foods may constitute an effective strategy for the management of various aspects
of diabetes and for the promotion of health in T2DM patients, with anthocyanins-rich foods becoming
not only food products, but also therapeutic agents. However, the impact of non-covalent and covalent
interactions between anthocyanins and other plant biomolecules, such as proteins or polysaccharides
in whole plant anthocyanin-rich foods and how this affects the anti-diabetic activity of anthocyanins,
remain unclear. Thus, more studies are needed to elucidate how exactly anthocyanin-biopolymer
complexes can contribute to T2DM management, in view to optimize food processes for functional
benefits. Although the mechanistic studies are fundamental to understand the impact of food matrix
for the accessibility, several other factors may influence the action of the phase I and II enzymatic
machinery and bacterial activity, namely, inter-individual differences of the subjects. Therefore, when
the big step towards clinical trials is taken the complexity of the whole scenario rises. Besides the huge
impact of microbiota on anthocyanin degradation also the reciprocal may occur, being anthocyanins
able to act as modulators of gut microbiota.

The nutritional impact of a bioactive should be considered as a long-term chronic consumption
and not in an acute pharmaceutical practice.
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