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Abstract: There are many areas in medicine and industry where it would be advantageous to orally
deliver bioactive proteins and peptides (BPPs), including ACE inhibitors, antimicrobials, antioxidants,
hormones, enzymes, and vaccines. A major challenge in this area is that many BPPs degrade during
storage of the product or during passage through the human gut, thereby losing their activity.
Moreover, many BPPs have undesirable taste profiles (such as bitterness or astringency), which makes
them unpleasant to consume. These challenges can often be overcome by encapsulating them within
colloidal particles that protect them from any adverse conditions in their environment, but then
release them at the desired site-of-action, which may be inside the gut or body. This article begins with
a discussion of BPP characteristics and the hurdles involved in their delivery. It then highlights the
characteristics of colloidal particles that can be manipulated to create effective BPP-delivery systems,
including particle composition, size, and interfacial properties. The factors impacting the functional
performance of colloidal delivery systems are then highlighted, including their loading capacity,
encapsulation efficiency, protective properties, retention/release properties, and stability. Different
kinds of colloidal delivery systems suitable for encapsulation of BPPs are then reviewed, such as
microemulsions, emulsions, solid lipid particles, liposomes, and microgels. Finally, some examples
of the use of colloidal delivery systems for delivery of specific BPPs are given, including hormones,
enzymes, vaccines, antimicrobials, and ACE inhibitors. An emphasis is on the development of
food-grade colloidal delivery systems, which could be used in functional or medical food applications.
The knowledge presented should facilitate the design of more effective vehicles for the oral delivery
of bioactive proteins and peptides.
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1. Introduction

Bioactive proteins and peptides (BPPs) exhibit a diverse range of biological activities and functional
attributes that make them suitable as therapeutic agents, such as anti-hypertension, antimicrobial,
antioxidant, enzyme, hormone, and immunological activities [1–7]. Consequently, there is considerable
interest in incorporating them into supplements, pharmaceuticals, and functional foods specifically
designed to prevent or treat certain chronic conditions. For practical and consumer compliance reasons,
it is usually advantageous to administer BPPs via the oral route. There are, however, numerous
challenges that must be overcome before these bioactive substances can be orally delivered.
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Two main challenges associated with the creation of an orally administrable BPP are the need to
maintain the activity of the cargo molecule: (i) during formulation and (ii) during delivery to the site of
action. While these two challenges are not specific to oral delivery, they are complicated by the harsh
chemical environments present within the human gastrointestinal tract (GIT), such as the strongly
acidic and enzymatically active gastric fluids within the human stomach [8]. For these reasons, BPPs
may need to be administered using some kind of colloidal delivery system (CDS) to protect them from
degradation during storage and passage through the GIT, but then release them at the required location
inside the human body [3,9–11]. Many kinds of CDS have been created that may be suitable for this
purpose, including microemulsion droplets, emulsion droplets, solid fat particles, liposomes, and
microgels (Figure 1). Each of these systems has its own benefits and limitations for specific applications.
Consequently, it is important to understand the factors impacting their formation, properties, and
performance in order to select the most appropriate one for a particular application [12].
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Figure 1. Schematic diagrams of colloidal delivery systems that could potentially be used to encapsulate,
protect, and delivery hydrophilic bioactive proteins and peptides. All these systems could be dispersed
in aqueous-based products.

This review article provides an overview of the key parameters influencing the rational design of
colloidal particles for the oral delivery of BPPs. In particular, an emphasis is given to the development of
food-grade colloidal particles that could be used in functional or medical food applications. It should be
noted that there are important differences in the nature of the ingredients that can be used to assemble
colloidal delivery systems for food and pharmaceutical applications [13]. In the pharmaceutical
industry, a broad range of synthetic polymers, lipids, and surfactants are available to assemble
colloidal particles with specific functionalities. In the food industry, however, the ingredients available
are much more limited. For instance, in the USA, only ingredients that are generally recognized
as safe (GRAS) can be utilized. Moreover, many consumers are demanding “clean-label” food
products, so manufacturers are restricted to using more natural ingredients rather than synthetic ones,
such as proteins, polysaccharides, phospholipids and lipids from plants, meat, eggs, or milk. This
makes it much more challenging to create food-based colloidal delivery systems with the required
functional attributes.
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2. Protein Characteristics

The selection of a suitable CDS for a particular application depends on the molecular and
physicochemical attributes of the bioactive proteins and peptides to be delivered [12].

2.1. Molecular Dimensions

The size and structure of proteins and peptides influences their retention and release within
CDSs. The molar mass of BPPs can vary considerably, from around 1000 Da for small peptides to
over 100,000 Da for large proteins. For BPPs with the same molar mass, the molecular dimensions in
aqueous solution are strongly influenced by their three-dimensional structure: globular proteins <

random coil < rigid rod [14]. Furthermore, BPPs may be present as single molecules, small clusters of
molecules, or complex hierarchical structures depending on their biological function, the extraction
methods used to isolate them, and the processing operations used to treat them [15,16]. As a result,
the molecular size of BPPs may vary from a few nanometers to a few hundred nanometers or more.
Information about the size of BPPs is critical for identifying and selecting an appropriate CDS. In the
case of phase separated CDSs, such as water-in-oil microemulsions, nanoemulsions, or emulsions
(Figure 1), the BPPs should have molecular dimensions that are smaller than the dimensions of the
water domains if they are going to be successfully encapsulated [17]. On the other hand, in the case of
biopolymer microgels (Figure 1), the BPPs should have molecular dimensions that are larger than the
dimensions of the pores in the biopolymer network that makes up the interior of this kind of colloidal
particle in order to achieve physical entrapment and limit release via diffusion.

2.2. Electrostatic Effects

The electrostatic properties of BPPs also influence their functional performance within CDSs,
because their retention and release depend on the nature of any electrostatic interactions between the
polypeptides and the colloidal particles [18–20]. As most BPPs have both anionic and cationic groups,
their net charge changes from negative to positive as the pH is reduced from above to below their
isoelectric point (pI). The electrical properties of BPPs in aqueous solutions are typically measured
using electrophoresis instruments and are conveniently represented by their ζ-potential versus pH
profile (Figure 2).

Information about the electrical attributes of BPPs is often essential for the design of an efficacious
CDS. As an example, the retention/release of BPPs from biopolymer microgels is strongly influenced
by the electrical interactions between the proteins and the biopolymer network inside the microgels.
BPPs are electrostatically attracted to anionic biopolymers, like alginate, carrageenan, or pectin, when
the pH is less than their isoelectric point, but they are electrostatically repelled when the pH is above
their isoelectric point [21,22]. As a result, they may be retained at low pH values, but released under
high pH values due to the change in electrostatic interactions. The opposite phenomenon occurs for
cationic biopolymers, such as chitosan or polylysine. The magnitude of any electrostatic interactions in
aqueous solutions is reduced when dissociable salts are added as a result of electrostatic screening, i.e.,
accumulation of salt counter-ions around charged groups on the proteins [23]. This has important
practical implications because it means that it may be challenging to keep BPPs trapped within the
interior of biopolymer hydrogels using electrostatic attraction in commercial products that contain
salts. Conversely, it means that it may be possible to develop CDSs that can release proteins in response
to changes in the ionic strength of their environment.

Beyond net charge considerations, it is important to note that the complex chemical and physical
nature of many BPPs means that the spatial arrangement of the charges can also be important in
dictating their interactions with CDSs [24–26]. For example, serum proteins such as bovine serum
albumin (BSA) tend to have a uniform charge distribution, while lysozyme has a cluster of cationic
residues on its surface. This clustering of cationic charge has been shown to drive nearly 100-fold
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higher loading of lysozyme into microgels formed from equimolar mixtures of oppositely-charged
polymers than for BSA [27].Molecules 2020, 25, x FOR PEER REVIEW 4 of 25 
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Figure 2. The electrical potential of biopolymers, such as proteins and polysaccharides, changes
appreciably with pH due to ionization/deionization of charged groups.

2.3. Polarity, Solubility, and Surface Activity

The polarity of BPPs is another critical factor influencing their ability to be encapsulated, since it
impacts their three-dimensional structure, solubility, surface activity, and molecular interactions. BPPs
may be predominantly polar, non-polar, or amphiphilic depending on the number and distribution of
hydrophilic and hydrophobic amino acids in the polypeptide chain, which in turn influences their
structural arrangement in aqueous solutions. Polar groups are able to form dipole-dipole interactions
with water, whereas non-polar ones are not. A major driving force for protein folding is the tendency
to reduce the number of hydrophobic non-polar groups exposed to water [28]. As a result, BPPs may
be either soluble or insoluble in aqueous solutions depending on their surface polarities. The surface
activity of BPPs depends on the distribution of polar and non-polar groups on their surfaces. Many
polypeptides are amphiphilic molecules that are able to adsorb to air-water, oil-water, or solid-water
interfaces, which allows them to be utilized as functional ingredients to stabilize foams, emulsions,
or suspensions [29].

2.4. Stability

The physical and chemical stability of BPPs is important because it impacts their
functionality [30,31]. The three-dimensional structure and functionality of proteins may be irreversibly
altered by environmental factors, such as changes in pH, ionic composition, solvent quality, temperature,
pressure, or adsorption to surfaces. It is therefore important to identify and specify the major factors
impacting the stability of the BPPs one is trying to encapsulate, such as the temperatures or pH values
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where they become denatured. In many cases, CDSs are specifically designed to enhance the stability
of BPPs by encapsulating them within protective environments.

3. Hurdles to the Oral Delivery of Proteins

Various challenges have to be overcome when designing oral delivery systems for BPPs [32,33].

3.1. Delivery Vehicle Compatibility

BPPs may be encapsulated within functional foods, supplements, medical foods, or pharmaceutical
preparations that differ in their physicochemical attributes and storage conditions. As an example,
the delivery vehicle may be a fluid, a gel, a powder, a capsule, or a tablet. Moreover, these products
can experience a range of temperatures, light exposures, oxygen levels, and humidity throughout
their lifetime. The delivery vehicle must therefore be carefully designed to ensure that the BPPs are
effectively encapsulated without negatively impacting the desirable quality attributes (appearance,
texture, and taste) of the product, as well as remaining stable during production, transportation,
storage, and application [34–37].

3.2. Stability in Gastrointestinal Tract

After ingestion, the three-dimensional structure and functionality of BPPs may be altered as they
move through the human gut. For instance, they may undergo hydrolysis, structural rearrangements,
or aggregation when exposed to the fluids within the GIT [35,37]. The gastrointestinal fluids vary
greatly in pH throughout the GIT, ranging from highly acidic in the stomach to neutral or slightly
basic in the duodenum [38,39]. There are also various kinds of digestive enzymes (proteases) that
can hydrolyze BPPs and alter their functionality [40,41]. Finally, the gastrointestinal fluids contain
biological surfactants (bile salts and phospholipids) that may bind to BPPs and alter their biological
activity. The stability of BPPs within the GIT can often be improved by trapping them inside colloidal
particles, thereby isolating them from the stressors in the gastrointestinal fluids. This requires that
the particles be designed so that they do not breakdown until they reach the targeted region (such as
mouth, stomach, small intestine, or colon, depending on the application). Moreover, the particles may
have to be designed to be impermeable to stressors in the gastrointestinal fluids (such as bile salts or
digestive enzymes). Otherwise, these substances may penetrate into the particles and degrade the
encapsulated BPPs. On the other hand, changes in the integrity or permeability of the particles can
be used to deliver BPPs to different regions of the GIT. For instance, colloidal particles that do not
degrade in the upper GIT but do degrade in the large intestine (such as those made from dietary fibers
or certain synthetic polymers) can be used to deliver BPPs to the colon.

3.3. Absorption from Gastrointestinal Tract

The biological activity of BPPs may also be limited because they are not efficiently absorbed by
the body [35,37]. BPPs have to be released from any matrix they are trapped in, then travel through the
gastrointestinal fluids and mucus layer before being absorbed by the epithelium cells (Figure 3). Their
transport rate and residence time will depend on the viscosity of the gastrointestinal fluids surrounding
them, which can be modulated by adding components such as thickening agents [42–44]. The BPPs,
or the colloidal particles containing them, must be small enough to penetrate through the mucus
layer [45–47]. The particles in some CDSs are relatively large (>500 nm) and are therefore too large to
penetrate through the mucus layer intact. Nevertheless, they may be dissociated or degraded within
the GIT, thereby releasing the BPPs, which can then diffuse through the mucus layer. Once they reach
the surface of the epithelium cells the BPPs may be absorbed through numerous mechanisms, such
as active or passive transcellular routes, paracellular (tight-junctions) routes, or endocytosis [11,33].
Moreover, the BPPs may be absorbed by different kinds of epithelium cells (such as enterocytes or
M-cells) depending on their size and surface chemistry. M-cells, which are located in the Peyer’s
patches, are typically much more effective at absorbing colloidal particles (d < 500 nm) than enterocytes,
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but they are much less prevalent in the GIT, which limits their effectiveness for this purpose [11]. Many
kinds of proteins and BPP-loaded colloidal particles are too large or too hydrophilic to be absorbed by
the mechanisms typically used for smaller pharmaceuticals or nutraceuticals. For instance, they are too
large to pass through the tight junctions and too hydrophilic to pass through the phospholipid bilayers
that make up the epithelium cell membranes. Moreover, efflux inhibitors are typically less effective for
BPPs than for small hydrophobic molecules (with the exception of the peptide cyclosporine).

Molecules 2020, 25, x FOR PEER REVIEW 6 of 25 

 

Moreover, efflux inhibitors are typically less effective for BPPs than for small hydrophobic molecules 
(with the exception of the peptide cyclosporine). 

Because the absorption of many BPPs is inherently low, special strategies have to be developed 
to increase it e.g., permeation enhancers, mucoadhesive materials, or colloidal carriers can be utilized 
[11,48]. Permeation enhancers can increase the absorption of substances in the GIT by temporarily 
disrupting the intestinal barrier, by increasing membrane fluidity, or by opening the connections 
(tight junctions) separating the epithelium cells [11,49]. For instance, the pharmaceutical company 
Chiasma has developed a Transient Permeability Enhancer (TPE®) technology to increase the 
absorption of macromolecules by opening up the tight junctions. An important consideration in the 
design of these permeation enhancers is to ensure that they allow the BPPs through, but do not 
promote the absorption of undesirable toxins or microbial pathogens. Other types of permeation 
enhancer are also used commercially to increase the absorption of BPPs within the human gut. For 
example, semaglutide (Rybelsus®, Novo-Nordisk, Plainsboro Township, NJ, USA) is an orally 
administered drug designed to treat Type 2 diabetes, which contains a permeation enhancer 
(salcaprozate sodium) to increase the amount of a GLP-1 receptor agonist absorbed by the body 
[48,50,51]. Some CDSs naturally contain components (such as surfactants or medium chain fatty 
acids) that can increase the permeability of cell membranes, which may also be useful for increasing 
BPP absorption [50]. 

Typically, it is difficult to create colloidal particles that are able to retain the BPPs as they travel 
through the GIT tract and then be absorbed intact by the epithelium cells. This is because only a very 
small fraction of the colloidal particles is typically absorbed by the body. The fraction of colloidal 
particles that is absorbed depends on their size and charge [52,53]. Hence, it may be possible to design 
more effective BPP-loaded colloidal particles by carefully controlling these parameters. Incorporating 
protease inhibitors in CDS can help to reduce the hydrolysis of BPPs in the gut (but can also have 
adverse effects on normal digestion processes), whereas coating colloidal particles with 
mucoadhesive materials can increase their retention in the small intestine, thereby allowing more 
time for absorption to occur [11]. 

 

 
Figure 3. BBPs or BBP-loaded colloidal particles must move through the GIT fluids and mucus layer 
and then be absorbed by the epithelium cells before they can reach the systemic circulation. It should 
be noted that the M-cells are actually in the Peyer’s patches and only make up a small percentage 

Mucus layer
BPPs or BPP-loaded colloidal 
particles must travel through 

mucus layer to reach 
epithelium cells

Trans-cellular
Uptake

Para-cellular
Uptake

GIT
Fluids

Epithelium 
Cells

EnterocytesM-Cells

BPPs or BPP-loaded colloidal 
particles must travel through 

GIT fluids to reach mucus 
layer

BPPs or BPP-loaded colloidal 
particles must be absorbed 
by epithelium cells to reach 

systemic circulation

Figure 3. BBPs or BBP-loaded colloidal particles must move through the GIT fluids and mucus layer
and then be absorbed by the epithelium cells before they can reach the systemic circulation. It should be
noted that the M-cells are actually in the Peyer’s patches and only make up a small percentage (<5%) of
the total intestinal cells. In practice, BPP-loaded colloidal particles are rarely absorbed through M-cells
in vivo.

Because the absorption of many BPPs is inherently low, special strategies have to be developed
to increase it e.g., permeation enhancers, mucoadhesive materials, or colloidal carriers can be
utilized [11,48]. Permeation enhancers can increase the absorption of substances in the GIT by
temporarily disrupting the intestinal barrier, by increasing membrane fluidity, or by opening the
connections (tight junctions) separating the epithelium cells [11,49]. For instance, the pharmaceutical
company Chiasma has developed a Transient Permeability Enhancer (TPE®) technology to increase the
absorption of macromolecules by opening up the tight junctions. An important consideration in the
design of these permeation enhancers is to ensure that they allow the BPPs through, but do not promote
the absorption of undesirable toxins or microbial pathogens. Other types of permeation enhancer
are also used commercially to increase the absorption of BPPs within the human gut. For example,
semaglutide (Rybelsus®, Novo-Nordisk, Plainsboro Township, NJ, USA) is an orally administered
drug designed to treat Type 2 diabetes, which contains a permeation enhancer (salcaprozate sodium)
to increase the amount of a GLP-1 receptor agonist absorbed by the body [48,50,51]. Some CDSs
naturally contain components (such as surfactants or medium chain fatty acids) that can increase the
permeability of cell membranes, which may also be useful for increasing BPP absorption [50].

Typically, it is difficult to create colloidal particles that are able to retain the BPPs as they travel
through the GIT tract and then be absorbed intact by the epithelium cells. This is because only a very
small fraction of the colloidal particles is typically absorbed by the body. The fraction of colloidal
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particles that is absorbed depends on their size and charge [52,53]. Hence, it may be possible to design
more effective BPP-loaded colloidal particles by carefully controlling these parameters. Incorporating
protease inhibitors in CDS can help to reduce the hydrolysis of BPPs in the gut (but can also have
adverse effects on normal digestion processes), whereas coating colloidal particles with mucoadhesive
materials can increase their retention in the small intestine, thereby allowing more time for absorption
to occur [11].

3.4. Product Requirements

After the properties of the BPPs have been specified, and the challenges limiting their potential
efficacy have been established, then the requirements of the end product that will be used to deliver
them needs to be defined, such as a functional food, medical food, supplement, or pharmaceutical
preparation. Attributes such as the look, feel, taste, and shelf life of the end product should be
determined and specified [54]. Obviously, different end products have different required product
attributes. For instance, a functional food may be in the form of a fluid beverage or a soft cereal bar,
whereas a supplement or drug may be in the form of a hard pill or soft capsule. When deciding which
end product is most suitable for a particular BPP, it is important to consider its optical properties
(which may go from clear to opaque), its rheological properties (which may go from fluid to solid),
its behavior in the mouth (such as flavor profile, disruption/dissolution, and residence time), and
the environmental stresses it experiences during its lifetime (such as heat, moisture, light, oxygen,
and mechanical stresses) The BPPs should be compatible with the end product matrix, they should
remain stable throughout the lifetime of the product, they should be present at a sufficiently high dose,
and they should be stable within the mouth and gastrointestinal tract until they reach the required
absorption site.

4. Characteristics of Colloidal Particles

The characteristics of the colloidal particles used to encapsulate BPPs will depend on their specific
properties, as well as the nature of the end product used to administer them [54]. The most important
characteristics of colloidal particles influencing their ability to encapsulate, protect, and deliver BPPs
are briefly outlined here.

4.1. Composition

The colloidal particles used to encapsulate BPPs can be produced using a range of different
edible ingredients, such as proteins, polysaccharides, lipids, phospholipids, and surfactants [55–57].
These ingredients influence the functional attributes of the colloidal particles (such as their ability to
encapsulate, protect, retain, and release the BPPs). Consequently, the selection of the most appropriate
ingredients to fabricate a CDS is a crucial decision. As an example, colloidal particle composition
determines the region in the GIT where they are digested and release the BPPs. For instance, starches
may be digested within the mouth (by amylases), proteins and lipids within the stomach and small
intestine (by proteases and lipases), and dietary fibers in the colon (by microbial enzymes). The nature
of the ingredients used may also be impacted by labeling or regulation issues. For some products, it is
important to select ingredients that are suitable for particular populations, such as those with Kosher,
non-GMO, vegan, vegetarian, or non-allergenic dietary needs. The economics, stability, ease of use,
and consistency of the ingredients used may also have to be accounted for.

4.2. Particle Morphology and Dimensions

The morphology and dimensions of the colloidal particles utilized to encapsulate BPPs must also
be controlled for specific applications. It is possible to create colloidal particles that range in diameter
from about 10 nm to 1 mm depending on the nature of the ingredients and manufacturing processes
utilized to assemble them. In most cases, colloidal particles are spherical, but other morphologies are
also possible, including ellipsoid, cubical, fibrous, or irregular. The size and shape of the particles in
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a CDS influence their optical, rheological, stability, retention, release, and absorption characteristics.
For instance, colloidal dispersions containing particles with dimensions < 50 nm tend to be optically
clear and have very good stability to aggregation and gravitational separation. Conversely, colloidal
dispersions containing particles with dimensions from around 1 to 10 µm tend to be turbid, and be
highly prone to gravitational separation. The retention/release characteristics of CDSs can be controlled
by manipulating the particle dimensions, with greater retention and slower release for larger particle
sizes. The degradation rate of enzyme-digestible particles (such as those made from lipids, proteins, or
starches), tends to increase as their particle size decreases because this increases their specific surface
area. Finally, the penetration through the mucus layer and the absorption by the epithelium cells also
depends on particle dimensions, with smaller particles typically having a higher permeability.

4.3. Interfacial Characteristics

The interfacial characteristics of colloidal particles, such as their chemistry, polarity, charge,
rheology, and thickness, play an important role in many of their functional attributes, such as their
physicochemical stability and interactions with surfaces. These characteristics can be controlled by
assembling the colloidal particles from different ingredients. The surface charge can be manipulated
by adsorbing charged emulsifiers or biopolymers to their surfaces, which can be utilized to tailor their
functionality for particular applications. For instance, the surface charge can be controlled to modify
their mucoadhesive properties: positively-charged particles bind strongly to the negatively-charged
mucus layer that lines the GIT, thereby giving them more time to release the BPPs.

4.4. State of Aggregation

Colloidal particles may be present as individual entities that are evenly spread throughout a
system, or they may be present as clusters that vary in their size and shape. The state of aggregation of
colloidal particles often influences their functional performance. For instance, the formation of clusters
may decrease the stability to gravitational separation, increase the viscosity, reduce the gastrointestinal
digestibility of colloidal particles, or reduce their ability to penetrate through the mucus layer [58,59].
For these reasons, it is often critical to carefully control the state of aggregation of colloidal particles,
which usually involves manipulating the colloidal interactions between them (such as electrostatic or
steric repulsion).

5. Functional Performance of Colloidal Particles

The functional performance of colloidal delivery systems can be defined in terms of their ability
to encapsulate, retain, protect, and release BPPs [12].

5.1. Loading Capacity and Encapsulation Efficiency

The loading capacity (LC) and encapsulation efficiency (EE) are two of the most important
characteristics of CDSs [60]. The LC is a measure of the maximum amount of the BPPs that can be
loaded into a particular delivery system, whereas the EE is a measure of the fraction of the BPPs in the
system that are actually trapped inside the colloidal particles:

LC = mB,E/mP (1)

EE = 100 × mB,E/mB,T (2)

Here, mB,E is the mass of the BPPs encapsulated inside the colloidal particles, cP is the mass of
the colloidal particles (BPPs + carrier material), and mB,T is the total mass of the BPPs in the system
(encapsulated and non-encapsulated). The LC is often expressed as µg of encapsulated BPPs per mg of
colloidal particles, whereas the EE is expressed as the percentage of the added BPPs trapped inside the
particles. The values of LC and EE for a particular colloidal system are governed by the molecular and
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physicochemical attributes of the BPPs (particularly the oil-water partition coefficient), in addition to
the nature of the carrier material used (particularly the permeability). Many BPPs are predominantly
polar and so colloidal particles need to have some hydrophilic regions inside them, such as those found
in reverse micelles, W/O microemulsions, W/O emulsions, W/O/W emulsions, liposomes, and microgels
(Figure 1). Some BPPs are predominantly hydrophobic, or at least have appreciable hydrophobic
patches on their surfaces, and so they may be held inside colloidal particles throughout hydrophobic
attraction. Many BPPs are electrically charged and can therefore be trapped inside colloidal particles by
binding to oppositely charged groups. The sign and magnitude of the electrostatic interactions between
BPPs and carrier materials can often be manipulated by altering solution conditions (such as pH or salt
concentration), which may be advantageous for the development of triggered release systems.

5.2. Retention/Release

In some applications, it is desirable to retain the BPPs inside the colloidal particles until they
are exposed to specific conditions that trigger their release, e.g., a variation in solution pH, salt
concentration, enzyme activity, or temperature [60]. The BPPs may be released from the colloidal
particles via various mechanisms, including simple diffusion, swelling, surface erosion, dissociation, or
changes in molecular interactions (Figure 4). It should be noted that once the BPPs are released, they
may no longer be protected from any stressors within their environment (such as acids or proteases).
For this reason, the colloidal particles must be carefully designed to retain the BPPs until they reach an
environment where they can survive long enough to exhibit their beneficial biological effects, which
may be inside the gut or the body.

5.2.1. Simple Diffusion

BPPs may simply be released from colloidal particles as a result of diffusion–the BPPs move from
inside the particles to outside due to the concentration gradient. In this case, the rate of release increases
as the diffusion coefficient of the BPPs through the carrier matrix increases, and as the dimensions of
the colloidal particles decrease [61]. For polymeric colloidal particles, the diffusion coefficient can be
controlled by manipulating the pore size of the polymer network–the smaller the pore size, the slower
the release [62,63]. Typically, the pore size must be smaller than the size of the BPPs to greatly reduce
the release rate, which is often difficult to achieve for individual proteins and peptides because they
are so small (<5 nm).

5.2.2. Swelling

In some cases, the dimensions of the pores within polymeric colloidal particles can be tuned by
altering solution or environmental conditions (like pH, salt content, or temperature) to promote swelling
or shrinkage [64,65]. As an example, the pores in colloidal particles fabricated from polyelectrolytes
swell when there is a strong electrostatic repulsion between them, but shrink when there is a weak
electrostatic repulsion or an electrostatic attraction. The size of the pores can therefore by tuned by
increasing or decreasing the ionic strength, or by changing the pH to alter the sign and magnitude of the
charge on the polyelectrolytes [66,67]. As a result, it may be possible to develop salt-triggered colloidal
delivery systems for BPPs. Polymeric colloidal particles may also swell or shrink in response to an
alteration in their temperature, since this may promote a structural change in the polymer chains [65].
For instance, the pores in native starch granules suspended in water are relatively small at ambient
temperature, but they increase appreciably when the temperature is raised [68,69]. This type of particle
could be used to create temperature-triggered colloidal delivery systems.

5.2.3. Molecular Interactions

The retention and release of BPPs from colloidal particles may also be controlled by manipulating
the molecular interactions between them and the carrier material [20,23]. The BPPs will be retained
when there is a sufficiently strong attractive force, but released when there is a repulsive force or only a
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weak attractive force. A frequently employed approach based on this phenomenon is to manipulate
the molecular interactions by altering the pH or ionic strength of the surrounding solution to alter the
electrostatic interactions [19]. The electrical potential on many proteins goes from negative to positive
as the pH is decreased from above to below their isoelectric points (Figure 2). In the case of colloidal
particles assembled using anionic polymers (like alginate), the proteins are attracted (retained) at low
pH but repelled (released) at high pH [22]. The magnitude of any electrostatic interactions is greatly
reduced in the presence of salts because of electrostatic screening [23]. As a result, the BPPs may be
released from a colloidal particle if the salt concentration is sufficiently high, even when the proteins
and carrier matrix have opposite charges.

5.2.4. Particle Erosion or Dissociation

Encapsulated BPPs can be released from colloidal particles by designing them to degrade
or dissociate when they encounter specific environmental conditions, such as pH, ionic strength,
temperature, or enzyme activity (Figure 4) [21]. The environmental responsiveness of colloidal particles
can be tuned by assembling them from different types of ingredients. Starches are degraded in the
mouth by amylases, proteins in the stomach by proteases, lipids in the small intestine by lipases, and
dietary fibers in the large intestine by colonic bacteria [21]. Consequently, the release of encapsulated
BPPs may be triggered by a change in enzyme activity when the colloidal particles reach a certain
region of the human gut by assembling them from specific ingredients. Colloidal particles can also be
designed to fall apart in response to an alteration in the pH or ionic composition of their surroundings,
since this may weaken any electrostatic attractive forces holding the molecules inside the particles
together [70]. Studies have shown that microgels fabricated from proteins and anionic polysaccharides
remain intact when the pH is below the pI value of the protein because of the electrostatic attraction
between the cationic protein and anionic polysaccharide [71]. Conversely, the microgels fall apart when
the pH is above the pI value because both the protein and polysaccharide are negatively charged and
therefore repel each other. However, it may be necessary for the pH to be increased significantly above
the pI in order to overcome electrostatic interactions from clusters of charge on the protein [27]. It is also
possible to design temperature-triggered colloidal particles that fall apart and release their contents
when the temperature is increased above or decreased below a specific value. As an example, studies
have shown that microgels fabricated from gelatin and pectin remain intact at room temperature, but
fall apart when they are heated, which was linked to a helix-to-coil transition of the gelatin [72–74].
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Figure 4. Colloidal particles can be designed to release encapsulated BPPs through various mechanisms,
including changes in molecular interactions, pore size, network disintegration, or simple diffusion.
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One application where control of the retention and release of BPPs is particularly important is for
the delivery of proteins or peptides to the colon. The BPPs may be used to target diseases of the large
intestine, such as inflammatory bowel or irritable bowel syndromes [75]. Alternatively, BPPs may be
used to alter the gut microbiome by selectively promoting the growth of some bacteria and suppressing
the growth of others. Colloidal particles can be created that will stay intact within the upper GIT but be
degraded by the enzymes released by the bacteria residing inside the colon. Food-grade nanoparticles
or microgels can be assembled from dietary fibers, whereas pharmaceutical-grade ones can also be
assembled from various kinds of synthetic polymers [75]. A number of BPP-loaded colloidal particles
for this purpose are undergoing clinical development, which have recently been reviewed in detail
elsewhere [75].

5.3. Protection

The stability of BPPs to physical transformations or chemical degradation can sometimes be
enhanced by controlling the microenvironment within a colloidal particle. Some of the materials used to
construct colloidal particles, including proteins, polyphenols, and chelating agents, exhibit antioxidant
activity and so are able to protect encapsulated BPPs from oxidation [76,77]. Other construction
materials, including antacids and buffers, are capable of inhibiting pH changes inside colloidal particles,
and so are able to enhance the pH-resistance of encapsulated BPPs [78,79]. Some construction materials,
including sugars, polyols, salts, and surfactants, can stabilize the native structure of BPPs, and so are
able to improve their resistance to denaturation [31,80].

5.4. Particle Stability

The particles in CDSs may have to remain stable over a wide range of environmental conditions,
including pH changes, salt levels, enzyme activities, light, oxygen, and temperatures. For this reason,
they should be carefully constructed so they are stable under all of the environmental conditions they
encounter throughout their lifetimes. This means that they have to be designed to resist gravitational
separation (usually sedimentation) and aggregation. Gravitational separation can be retarded by
reducing the size of the colloidal particles, matching their density to the surrounding liquids, or
increasing the viscosity of the surrounding liquids. Aggregation can be prevented by ensuring there is
a strong electrostatic or steric repulsion between the colloidal particles.

5.5. Particle Permeability

The movement of BPPs throughout the interior of colloidal particles influences their retention and
release in a delivery system. In addition, the movement of substances from the surrounding fluids
into the colloidal particles, such as ions, enzymes, or surface-active molecules, can negatively impact
the stability of the encapsulated BPPs. Molecular movement inside colloidal particles is influenced
by various factors, including the rheology, pore size, and interactions of the particle interior [81,82].
Mass transport processes can therefore be controlled by altering the composition and structure of the
particle interior. This phenomenon is particularly important for colloidal particles that are comprised
of polymer networks, such as microgels.

5.6. Potency and Half-Life

Other factors that need to be considered are the potency and half-life of the BPPs encapsulated
within the colloidal particles [83]. The potency of a bioactive agent is a measure of its biological activity,
which is related to the concentration required to give an effect of specific intensity: the higher the
potency, the lower the concentration needed. Commonly, the potency is taken to be the concentration
of a bioactive substance required to give the half the maximal effect. It is therefore important that the
amount of BPPs reaching the intended site-of-action is high enough to ensure that they are effective,
which will depend on the initial dose of the BPPs ingested, as well as any degradation that occurs
within the GIT and body. The half-life of the BPPs is related to the time that they remain in the systemic
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circulation (plasma): it is normally taken as the time for the concentration of the BPPs to decrease by
50%. This value will depend on the properties of the BPPs, as well as any colloidal particles they are
encapsulated within.

6. Delivery System Selection

The past decade or so has led to a large increase in the development and testing of CDSs for the
encapsulation of functional ingredients [12,57,60,84]. In this section, the ones that are most suitable for
application with BPPs are briefly outlined. Since most BPPs are predominantly hydrophilic, the focus
will be on delivery systems containing colloidal particles with internal hydrophilic domains.

6.1. Microemulsions and Emulsified Microemulsions

Microemulsions are a type of colloidal dispersion that is thermodynamically stable [85,86].
They contain small surfactant-based colloidal particles (typically 5 to 100 nm) that self-assemble
due to the hydrophobic effect. Both oil-in-water (O/W) and water-in-oil (W/O) microemulsions
can be created, but the latter are most suitable for encapsulating hydrophilic substances like most
BPPs [87,88]. W/O microemulsions consist of small surfactant-coated water droplets that are dispersed
within an oil phase (Figure 1). The hydrophilic BPPs can be dissolved within the water droplets.
Previous research has demonstrated that chymotrypsin and lysozyme can both be trapped inside W/O
microemulsions and still retain their enzymatic activity [89]. Some of the advantages of microemulsions
are that they are thermodynamically stable systems that can often be prepared using straightforward
processing operations, such as simply mixing of the different components. The main limitation of
microemulsions is that they typically require high levels of synthetic surfactants to formulate them.
Another limitation of W/O-type microemulsions is that they can only be used in oral formulations that
consist predominantly of oil, such as oil-filled soft capsules. Nevertheless, water-dispersible forms
can be obtained by homogenizing the W/O microemulsion with water and a hydrophilic emulsifier
to form a W/O/W type system [90,91] (Figure 1). Researchers have successfully encapsulated both
BSA and cytochrome C in this kind of emulsified microemulsion, thereby protecting them from any
stressors in the external aqueous phase [92]. It is possible to encapsulate some BPPs within the oil
droplets in O/W microemulsions if they are naturally hydrophobic or they can be made hydrophobic,
e.g., by hydrophobic ion pairing (HIP) [93]. Typically, HIP involves forming a complex between the
charged BPPs and oppositely charged surfactants. In the pharmaceutical industry, one of the most
successful means of orally delivering BPPs has been using self-emulsifying drug delivery systems
(SEDDS) [93–95]. In these systems, BPPs are typically mixed with a hydrophobic surfactant and
possibly a co-surfactant and/or lipid. When this mixture encounters aqueous gastrointestinal fluids,
either a microemulsion or nanoemulsion is spontaneously formed, which encapsulates and protects
the BPPs within the GIT, thereby leading to enhanced absorption [93]. It is important to design the
system so that the BPPs remain trapped inside the oil droplets, otherwise they will not be protected [94].
Commercial products have been developed based on this technology, such as Neoral® from Novartis
(Cambridge, MA, USA), which is used to encapsulate cyclosporine (a bioactive cyclic polypeptide).

6.2. Emulsions

Typically, emulsions are formed by blending oil and water together to form a fine colloidal
suspension of one of the liquids in the other [96]. Emulsions are thermodynamically unstable systems
because the contact of oil and water is unfavorable due to the hydrophobic effect. Both O/W and W/O
emulsions can be prepared, but the latter type is most suitable for encapsulating hydrophilic BPPs [97].
Nevertheless, W/O emulsions are only suitable for encapsulating BPPs in oral delivery systems that
are primarily oil, such as oil-filled capsules [96]. BPPs can be incorporated into O/W emulsions if
they are first converted into a hydrophobic form using the HIP approach discussed in the previous
section. The BPPs can then be dispersed into an oil phase that is homogenized with an aqueous
phase containing a hydrophilic emulsifier to create an O/W emulsion. In addition, W/O/W emulsions
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that can be dispersed in an aqueous environment can be formed by homogenizing W/O emulsions
with water and a hydrophilic emulsifier [98]. In this case, the BPPs are encapsulated inside the small
water droplets inside the larger oil droplets (Figure 1). W/O/W emulsions have been successfully
employed to encapsulate insulin [99–101]. This kind of system should be able to protect this bioactive
peptide from degradation in the mouth and stomach, but then release it in the small intestine where
it can be absorbed. The main disadvantages of utilizing W/O/W emulsions for this purpose are that
they are more costly and laborious to manufacture, requiring two homogenization steps and two
emulsifiers (one hydrophilic and one hydrophobic), and they are often highly susceptible to breakdown
during storage or when exposed to environmental stresses [102,103]. On the other hand, they can
be formulated from a wide range of natural emulsifiers and oils, which is an advantage over most
microemulsion systems.

6.3. Solid Lipid Particles

Traditionally, this kind of colloidal delivery system consists of fully or partially crystallized lipid
particles dispersed in an aqueous medium [104,105]. As described earlier, BPPs can be complexed
with oppositely charged surfactants using the HIP approach to make them hydrophobic, and then
dispersed within a molten oil phase. The molten oil phase, a hydrophilic emulsifier, and water
can then be homogenized to form an O/W emulsion or nanoemulsion, which is then cooled below
the crystallization temperature of the lipid phase to promote the formation of solid lipid particles
or nanoparticles. For these systems, it is important to select a lipid phase that is solid at ambient
temperature but liquid at the emulsion preparation temperature. Alternatively, structured solid
lipid particles suitable for encapsulating hydrophilic BPPs can be fabricated by preparing a W/O/W
emulsion and then crystallizing the lipid phase [104,105]. Again, a lipid phase is used that is solid
within the final W/O/W, but liquid during the emulsion preparation process [106,107]. This type of
W/O/W emulsion can be formed using lipids that can be melted or dissolved in an organic solvent
during homogenization. The lipids are then converted to solids by cooling or removing the organic
solvent, although a requirement is that the BPP cargo must be able to withstand such temperature or
solvent exposure. As a result, a solidified lipid phase is formed around the BPP-loaded water droplets
(Figure 1). Solid lipid particles formed from W/O/W emulsion templates have been used to encapsulate
insulin [106,108,109], thereby enhancing its oral bioavailability [106]. As with conventional W/O/W
emulsions, a major disadvantage of this type of delivery system is that it is costly and laborious to
produce, and it is susceptible to breakdown during storage.

6.4. Liposomes

Liposomes are comprised of one or more phospholipid bilayers held together by hydrophobic
interactions between the non-polar tails (Figure 1) [110–112]. They are able to trap hydrophilic BPPs
within the water core or between the polar head groups in the phospholipid bilayers [113]. BPPs
with hydrophobic regions, including those naturally located in cell walls, can also be trapped in
the phospholipid bilayers. A potential advantage of using liposomes is that they are comprised of
phospholipids, which may lead to enhanced cell membrane permeability [114]. An important limitation
of liposomes as delivery systems is that they typically have a low encapsulation efficiency (a large
fraction of the BPPs is not trapped inside the aqueous interior) and are quite fragile (they easily break
down during storage or before they reach the small intestine) [113,115,116]. Liposomes have been
widely employed to encapsulate, protect, and delivery BPPs in pharmaceutical applications [1,117,118].
For instance, an appetite-stimulating hormone (ghrelin) has been encapsulated in liposomes, which
enhanced its biological activity [119]. BPPs derived from hydrolysis of whey protein have also been
encapsulated in liposomes [120]. A rat study, showed that encapsulation of insulin within liposomes
enhanced its ability to lower blood glucose levels after oral administration [121].
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6.5. Biopolymer Microgels

Biopolymer microgels are small particles containing a network of cross-linked polymer molecules,
which are often proteins, polysaccharides, or their combination in food applications [122,123] (Figure 1).
BPPs are trapped inside microgels by blending them with the biopolymers before microgel formation,
or by loading them after microgel formation. Particularly for microgel formulations where the BPPs
are loaded in after formation, there is the potential to achieve higher loading efficiencies (LE) due to
favorable partitioning, as compared with emulsion or liposomal formulations. This type of colloidal
particle can be constructed using a number of fabrication approaches, such as antisolvent precipitation,
coacervation, emulsion templating, and injection-gelation [27,122,124]. The functional performance
of biopolymer microgels can be tailored for particular applications by carefully controlling their
compositions, dimensions, morphologies, porosities, and interfacial attributes. A potential limitation
of microgels is that they are often quite porous, so that BPPs (particularly small peptides) can easily
diffuse out of them. This problem can be overcome by ensuring that the pores are small enough to
trap the BPPs or by having an attractive interaction between the BPPs and the biopolymer network
inside the microgels [124]. The dependence of the BPP-biopolymer interactions on environmental
conditions, such as pH, ionic strength, or temperature, can be used to form triggered delivery systems,
which may be an advantage for some applications. Enzyme-triggered systems can also be produced by
constructing the microgels from different kinds of biopolymers: starch (amylase), proteins (proteases),
or dietary fibers (colonic enzymes).

Biopolymer microgels constructed from anionic polysaccharides have been employed to
encapsulate both lipase and lactase, thereby enhancing their stability [78,79,125]. For instance,
the gastric stability of the enzymes was increased by trapping them inside biopolymer microgels with
an antacid [126]. BSA has been trapped inside alginate microgels by coating them with successive
layers of cationic (chitosan) and anionic (dextran sulfate) biopolymers [127]. Insulin has been trapped
inside hydroxypropyl cellulose-polyglutamic acid microgels, which enhanced its stability under gastric
conditions [128].

7. Applications

There have been a large number of academic and commercial studies of the potential application
of CDSs for encapsulation, protection, and delivery of peptides and proteins. In this section, only a few
examples are given to highlight the potential of different kinds of CDSs for this purpose. Most of the
information on this topic comes from pre-clinical studies, but a number of CDSs have been developed
that are in various stages of clinical testing or are available commercially, which have been reviewed
by other authors [129,130]. For instance, these authors reported that liposomes have been used to
encapsulate insulin, anticancer peptides, and virus antigens, but not all of these applications were for
oral delivery. In the future, however, it may be possible to use some of the same technologies to create
oral formulations. Moreover, microemulsions have been developed to encapsulate insulin (Phase I
trials), while SEDDs have been used to encapsulate cyclosporine to prevent organ rejection after organ
transplants (commercially available as Neoral®).

7.1. Hormones

In this section, the encapsulation, protection, and delivery of insulin is used as an example of
the utilization of CDSs for hormones. Insulin is administered to patients that have diabetes so as
to control the glucose levels in their blood. At present, this hormone is usually administered by
injection, which can be painful and inconvenient to patients, thereby reducing compliance [131]. As a
result, the medical industry is interested in developing insulin formulations that can be administered
orally [132,133]. There are, however, many hurdles to the successful oral delivery of insulin associated
with its tendency to be chemically or enzymatically degraded within the human gut, as well as its
relatively poor absorption into the systemic circulation [4,134]. For this reason, many researchers are
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examining ways of overcoming this problem using CDSs. A well-designed CDS should ensure that the
insulin remains stable throughout the lifetime of the commercial formulation; inhibit its breakdown
in the upper gastrointestinal tract; release it inside the small intestine; and, promote its absorption
through the gut lining.

A wide variety of different CDSs have been shown to be capable of creating insulin-formulations
that can be administered orally [2,133–136]. In this section, only a few examples are given to highlight
the potential of this approach. Insulin has been encapsulated in polysaccharide microgels fabricated
using an emulsification-gelation method [137]. The microgels formed consisted of an insulin-loaded
alginate core surrounded by a protective chitosan coating. The microgels inhibited the breakdown of
insulin when exposed to simulated gastric fluids, but were able to release the insulin when exposed to
simulated intestinal fluids. Oral administration of the insulin-loaded microgels to diabetic rats led
to improved control of blood glucose levels. The emulsification-gelation method has also been used
to create insulin-loaded microgels using alginate and dextran sulfate as construction materials [138].
Another fabrication method, known as ionic-gelation, has been used to create insulin-loaded microgels
from chitosan and tripolyphosphate, which were then encapsulated within W/O microemulsions [139].
Oral administration of this delivery system to rats was again shown to lead to better control of blood
glucose levels in the animals. Insulin-loaded microgels have also been formed from alginate and
calcium using an emulsion-template method [140]. A simulated digestion study showed that the insulin
remained trapped inside these particles under gastric conditions, but was released under small intestine
conditions. Insulin has also been encapsulated inside tiny water droplets that are themselves trapped
inside lipid particles made of solidified fat [106]. These CDSs were prepared using W/O/W emulsions
as templates. Simulated digestion studies demonstrated that the encapsulated insulin was protected
from degradation within gastric fluids, but release in small intestine fluids. Oral administration of
the insulin-loaded particles to diabetic rats increased the oral bioavailability five-fold compared to
free insulin. A number of other CDSs have also recently been shown to have potential for insulin
delivery, including yeast-based microcapsules [141], protein-coated liposomes [142], self-emulsifying
drug delivery systems (SEDDS) [143], and carbon nanoparticles [144].

7.2. Digestive Enzymes

Colloidal delivery systems may also be advantageous for people who are unable to naturally
generate enough digestive enzymes in their gut (particularly the small intestine), and therefore suffer
from malnutrition or gastrointestinal discomfort. As examples, lactase could be orally delivered to
people suffering from lactose intolerance [145,146] whereas pancreatic lipase could be delivered to
people suffering from pancreatitis [147]. The oral delivery of digestive enzymes is often challenging
because there are chemically or physically altered as they pass through the human gut. In particular,
they may be denatured when they encounter the enzyme-rich and highly acidic environment of the
human stomach. These problems may be overcome by encapsulating the digestive enzymes in CDSs
that inhibit their degradation within the stomach, but release them inside the small intestine. A few
examples of attempts to develop CDSs for this purpose are highlighted in this section.

Powdered lactase has been encapsulated in small digestible fat droplets using emulsion
technology [148]. The authors showed that the encapsulated lactase retained its activity when exposed
to simulated gastrointestinal conditions. Lactase has also been encapsulated within hydrophobic
polymer capsules produced using an emulsion-evaporation approach [149]. Using a simulated
digestion model, the researchers showed that the capsules protected the lactase from degradation
under stomach conditions, but released it under small intestine conditions. Lactase has also been
encapsulated within biopolymer microgels assembled from calcium alginate [125]. These microgels
also contained an insoluble antacid that slowly dissolves when it is exposed to acidic conditions. As a
result, the pH inside the microgels remains relatively constant even when they are submerged within
gastric fluids. This type of microgel has also been utilized to encapsulate and protect pancreatic lipase
from degradation under gastric conditions [78]. Various other kinds of CDSs have also been developed
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to protect lactase under gastrointestinal conditions, including biopolymer microgels [125,150,151],
lipid microparticles [152], and plant-based microcapsules [153].

7.3. Vaccines

As with insulin, it would be much more convenient and less painful to administer vaccines
through the oral route rather than through intravenous injections. In order to generate an immune
response, vaccines delivered orally should be absorbed by the M-cells lining the human gut [154]. As
with other BPPs, the delivery of vaccines through the oral route is difficult because of their susceptibility
to degradation under gastrointestinal conditions, and their relatively poor absorption [155]. For this
reason, considerable efforts have been made to create vaccine-loaded CDSs that protect the vaccines in
the human gut and target the M-cells [131,156,157].

Vaccine-loaded polymer microgels orally administered to mice to mice have been shown to have
enhanced bioactivity compared to controls [158]. Similarly, vaccine-loaded liposomes have also been
reported to enhance the vaccines bioactivity after oral administration to mice [157,159]. Vaccine-loaded
microgels fabricated from a synthetic polymer were shown to be taken up by M-cells and simulate an
immune response [154]. Various other kinds of CDSs have also been investigated for their potential of
enhancing the efficacy of orally-administered vaccines, including starch microparticles [160], chitosan
microparticles [161], hydrophobic polymer particles [162], phospholipid liposomes [157,163], W/O/W
emulsions [164,165], and polymer nanoparticles [166].

7.4. Antimicrobials

Some BPPs exhibit strong antimicrobial activity and may therefore be used to prevent or control
microbial infections, including lysozyme, nisin, and cell-penetrating peptides [167]. The effectiveness
of these antimicrobial BPPs is often limited due to their susceptibility to chemical degradation or
tendency to interact with other substances in their environment. For this reason, there has been interest
in the development of CDSs that could help maintain or enhance their antimicrobial efficacy [168,169].
Antimicrobial BPPs encapsulated in W/O microemulsions have shown to have better activity against E.
coli than free BPPs [170]. Encapsulation of nisin and lysozyme within phospholipid liposomes has
been shown to improve their antimicrobial activity against Listeria monocytogenes [171]. Similarly, the
antimicrobial activity of nisin against Listeria monocytogenes has been enhanced by encapsulating it
within biopolymer nanoparticles [172]. Other kinds of CDSs have also been shown to be capable of
improving the activity of specific antimicrobial proteins, such as nisin in liposomes [173], chitosan
microcapsules [174,175], pectin microparticles [176], and alginate/pectin microparticles [177], as well
as lysozyme in zein microparticles [178,179] and starch microgels [180].

7.5. ACE Inhibitors

Some BPPs are able to reduce blood pressure due to their Angiotensin I-Converting Enzyme
(ACE) inhibitor activity [181–183]. These ACE-inhibitors may therefore be suitable for treating people
who suffer from hypertension. The oral administration of these BPPs is a challenge due to their bitter
taste, as well as the fact that they may be hydrolyzed within the human gut, thereby decreasing their
bioactivity. Researchers are therefore working to develop CDSs that will mask their disagreeable taste,
inhibit their degradation within the stomach, and then release them inside the small intestine where
they can be absorbed. An alternative approach is to use delivery systems to control the hydrolysis of
proteins within the human gut, so that ACE-inhibitors are actually produced at an appropriate location
in the GIT.

ACE-inhibitors have been loaded into biopolymer microgels fabricated from chitosan and alginate
using an emulsion-templating method [184]. Using a simulated digestion model, the researchers
showed that the microgels protected the encapsulated BPPs from degradation in the stomach, but
then released them in the small intestine. Researchers have also been examining the potential of other
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CDSs for encapsulating and delivering ACE-inhibitors, including chitosan nanoparticles [185] and
liposomes [186].

8. Conclusions

This review article has discussed the potential application of colloidal delivery systems for the
encapsulation, protection, and controlled release of BPPs, including hormones, digestive enzymes,
vaccines, antimicrobials, and ACE inhibitors. Oral administration of many of these BPPs is currently
difficult due to the fact that they may be denatured, hydrolyzed, or aggregated during passage through
the human gut. Moreover, many of them may not be efficiently absorbed from the gut into the systemic
circulation. In principle, a wide variety of different colloidal delivery systems may be utilized to
overcome these challenges, such as microemulsions, emulsions, solid lipid particles, liposomes, and
microgels. There is some supporting evidence from pre-clinical studies that these CDSs may be able to
protect BPPs under gastrointestinal conditions and enhance their absorption, but there are only a limited
number of commercial products that have actually successfully passed clinical trials. For instance, the
cyclosporine-loaded SEDDS (Novartis’ Neoral) mentioned earlier are now commercially available,
whereas an octreotide-loaded colloidal system consisting of hydrophilic polymer particles in an oily
medium has just completed a Phase III trial (Chiasma) [187]. There are considerable differences in the
efficacy, cost, ingredient composition, manufacturing requirements, stability, and quality attributes of
these delivery systems. Currently, researchers are working to identify the most efficacious delivery
systems for specific applications. There are, however, few studies where different kinds of colloidal
delivery systems are compared with each other for specific applications. Clearly, further work is
required in this area to establish the relative merits and limitations of each technology for specific
proteins and peptides, and then to actually test them in clinical trials. If this research is successful, then
well formulated colloidal delivery systems may enable bioactive proteins and peptides to be used in a
wider range of applications than is currently possible. It should also be noted that a new generation
of low molecular weight peptide drugs is currently being developed in the pharmaceutical industry
(“macrocycles”), which may circumnavigate some of the problems associated with the delivery of
traditional protein or peptide-based therapeutic [188]. Finally, it should be noted that most of the
previous work has been done in the pharmaceutical area, but that the food industry may benefit from
this knowledge when developing functional and medical foods that contain BPPs.
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