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Abstract: Plant growth promoting rhizobacteria (PGPR) shows an important role in the sustainable
agriculture industry. The increasing demand for crop production with a significant reduction of
synthetic chemical fertilizers and pesticides use is a big challenge nowadays. The use of PGPR has
been proven to be an environmentally sound way of increasing crop yields by facilitating plant
growth through either a direct or indirect mechanism. The mechanisms of PGPR include regulating
hormonal and nutritional balance, inducing resistance against plant pathogens, and solubilizing
nutrients for easy uptake by plants. In addition, PGPR show synergistic and antagonistic interactions
with microorganisms within the rhizosphere and beyond in bulk soil, which indirectly boosts plant
growth rate. There are many bacteria species that act as PGPR, described in the literature as successful
for improving plant growth. However, there is a gap between the mode of action (mechanism)
of the PGPR for plant growth and the role of the PGPR as biofertilizer—thus the importance of
nano-encapsulation technology in improving the efficacy of PGPR. Hence, this review bridges the gap
mentioned and summarizes the mechanism of PGPR as a biofertilizer for agricultural sustainability.

Keywords: biofertilizer; plant growth promoting rhizobacteria (PGPR); plant-microbes; plant growth;
nano-encapsulation technology

1. Introduction

Agriculture is one of the human activities that contributes most to the increasing amount of
chemical pollutants via excessive use of synthetic chemical fertilizers and pesticides, which cause
further environmental damage with potential risks to human health. Nitrous oxide (N;O) is an
example of chemical pollutant produced by excessive use of nitrogen fertilizer and is a major source of
greenhouse gases causing global warming. Moreover, 74% of total U.S. N,O emissions in 2013 were
accounted for by agricultural soil management, the largest single source [1]. Apart from that, nitrogen
fertilizers reduce biological nitrogen fixation in the soil. Farmers apply a high concentration of nitrogen
fertilizers in the form of ammonium nitrate to fertilize their soil to grow crops. Due to the influx of
ammonium, plants no longer need the symbiotic microbes to provide ammonium and this leads to the
degree of symbiosis being diminished. Furthermore, nitrifying bacteria also take advantage of this
excess ammonium and utilize it to produce nitrate. This high amount of nitrate is then utilized by
denitrifying bacteria to produce N,O and excess nitrate leaches into the groundwater [2]. As a result,
increased microbial processes of nitrification and denitrification increase the natural production of
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N;O. Denitrification is the step whereby nitrogen oxides are reduced by microorganisms to gaseous
products and released back into the atmosphere and nitrification is a two-step process of ammonium
(NHy4) being converted to nitrate (NO3) by soil bacteria [3].

Towards a sustainable agricultural vision, crops produced need to be equipped with disease
resistance, salt tolerance, drought tolerance, heavy metal stress tolerance, and better nutritional value.
To fulfil the above desired crop properties, one possibility is to use soil microorganisms (bacteria,
fungi, algae, efc.) that increase the nutrient uptake capacity and water use efficiency [4]. Among these
potential soil microorganisms, bacteria known as plant growth promoting rhizobacteria (PGPR) are the
most promising. In this sense, PGPR may be used to enhance plant health and promote plant growth
rate without environmental contamination [5].

For decades, varieties of PGPR have been studied and some of them have been commercialized,
including the species Pseudomonas, Bacillus, Enterobacter, Klebsiella, Azobacter, Variovorax Azosprillum, and
Serratia [6]. However, the utilization of PGPR in the agriculture industry represents only a small fraction
of agricultural practice worldwide [7]. This is due to the inconsistent properties of the inoculated PGPR,
which could influence crop production. The successful utilization of PGPR is dependent on its survival
in soil, the compatibility with the crop on which it is inoculated, the interaction ability with indigenous
microflora in soil, and environmental factors [8]. Another challenge is that the modes of action of
PGPR are diverse and not all rhizobacteria possess the same mechanisms [9,10]. These disadvantages
limit the application of PGPR. Therefore, the competition between synthetic chemical fertilizers and
PGPR as a biofertilizer is deemed redundant in the face of the global agricultural productivity needed
to feed the booming world’s population, which is predicted to escalate to 8 billion people by 2025 and
9 billion by 2050.

According to Nakkeeran et al. [11], an ideal PGPR should possess high rhizosphere competence,
enhance plant growth capabilities, have a broad spectrum of action, be safe for the environment,
be compatible with other rhizobacteria, and be tolerant to heat, UV radiation, and oxidizing agent.
Considering the factors discussed above, the need for a better PGPR biofertilizer to complement
skyrocketing agricultural food production as one of the crucial drivers of the economy has been
highlighted. The inclusion of nano-encapsulation technology has been vital to the revolution of today’s
PGPR biofertilizers” formulation.

This review will therefore attempt to shed more light on the modes of action of PGPR, the role
of PGPR as biofertilizer, and the advantages of nano-encapsulation technology towards PGPR as a
biofertilizer. The information generated from this review could be very beneficial to those who are
concerned about environmental protection and agricultural sustainability.

2. Plant Growth Promoting Rhizobacteria

Plant growth promoting rhizobacteria (PGPR) is a group of bacteria that can be found in the
rhizosphere [12]. The term “plant growth promoting bacteria” refers to bacteria that colonize the roots
of plants (rhizosphere) that enhance plant growth. Rhizosphere is the soil environment where the
plant root is available and is a zone of maximum microbial activity resulting in a confined nutrient
pool in which essential macro- and micronutrients are extracted. The microbial population present in
the rhizosphere is relatively different from that of its surroundings due to the presence of root exudates
that function as a source of nutrients for microbial growth [13]. Weller and Thomashow [14] prove
that the narrow rhizosphere zone is rich in nutrients for microbes compared to the bulk soil; this is
shown by the quantity of bacteria that are present surrounding the roots of the plants, generally 10 to
100 times higher than in the bulk soil.

The microbial colonizing rhizosphere includes bacteria, fungi, acticomycetes, protozoa, and algae.
However, bacteria are the most abundant microbial present in the rhizosphere [15]. The enhancement
of plant growth by the application of these microbial populations is well known and proven [16,17].
The term “plant growth promoting rhizobacteria (PGPR)” for these beneficial microbes was introduced
by Kloepper and Schroth [18], paving the way for greater discoveries on PGPR. PGPR are not only
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associated with the root to exert beneficial effects on plant development but also have positive effects
on controlling phytopathogenic microorganisms [19,20]. Therefore, PGPR serve as one of the active
ingredients in biofertilizer formulation.

Based on the interactions with plants, PGPR can be separated into symbiotic bacteria, whereby
they live inside plants and exchange metabolites with them directly, and free-living rhizobacteria,
which live outside plant cells [21]. The working mechanisms of PGPR can also be separated into
direct and indirect ones. The direct mechanisms are biofertilization, stimulation of root growth,
rhizoremediation, and plant stress control. On the other hand, the mechanism of biological control by
which rhizobacteria are involved as plant growth promotion indirectly is by reducing the impact of
diseases, which include antibiosis, induction of systemic resistance, and competition for nutrients and
niches [22].

Symbiotic bacteria mostly reside in the intercellular spaces of the host plant, but there are certain
bacteria that are able to form mutualistic interactions with their hosts and penetrate plant cells.
In addition to that, a few are capable of integrating their physiology with the plant, causing the
formation of specialized structures. Rhizobia, the famous mutualistic symbiotic bacteria, could
establish symbiotic associations with leguminous crop plants, fixing atmospheric nitrogen for the plant
in specific root structures known as nodules. Table 1 summarizes some of the bacteria that have been
previously reported as being used as PGPR.

3. Role of Plant Growth Promoting Rhizobacteria for Plant Growth Enhancement

PGPR plays an important role in enhancing plant growth through a wide variety of mechanisms.
The mode of action of PGPR that promotes plant growth includes (i) abiotic stress tolerance in plants;
(i) nutrient fixation for easy uptake by plant; (iii) plant growth regulators; (iv) the production of
siderophores; (v) the production of volatile organic compounds; and (vi) the production of protection
enzyme such as chitinase, glucanase, and ACC-deaminase for the prevention of plant diseases [10,23].
However, the mode of action of different PGPR varies depending on the type of host plants [9].

Plant growth is influenced by a variety of stresses due to the soil environment, which is a major
constraint for sustainable agricultural production. These stresses can be classified into two groups,
biotic and abiotic. Biotic refers to the stresses due to plant pathogens and pests such as viruses, fungi,
bacteria, nematodes, insects, efc., while abiotic is stresses due to the content of heavy metal in soils,
drought, nutrient deficiency, salinity, temperature, and so on.

3.1. Abiotic Stress Tolerance in Plants

Abiotic stresses are considered to be the main sources of agricultural yield reduction. However,
the intensity of abiotic stress varies depending on the type of soils (deficiency of hormonal and
nutritional imbalances) and plant factors (physiological disorders such as being susceptible to diseases,
abscission, etc.) [24]. The PGPR mechanisms in plant towards abiotic stress were previously studied
extensively. Pishchik et al. [25] reported that PGPR could be attenuated by the toxic effect of cadmium
pollution on barley plants due to the ability of the bacteria to cadmium ions from the soil by binding
mechanisms, thereby decreasing the availability of cadmium in the soil.

Moreover, Nautiyal et al. [26] demonstrated that the Bacillus lentimorbus strain increased the
antioxidant capacity of the edible parts of spinach, carrots, and lettuce, as well as increasing growth.
The results produced are important, especially to improve the nutrient content of these crops.
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Table 1. List of plant growth promotion rhizobacteria.
PGPR PGPR Mechanisms Crops Application Mode Observation/Findings Ref.
Plants were grown gnotobiotically with a The presence of Azoarcus in the stele, especially in thg
. L . ) . stelar tissue of culms, suggests that these bacteria might
Azoarcus Nitrogen fixation rice mutant of strain BH72 expressing the . J . . [27]
. o spread systemically in situ, and underline their
b-glucuronidase gene constitutively. -
endophytic life style.
Azobacter Cytokinin synthesis Cucumber - - [28]
2 mL of rhizobial culture were added four Five weeks after inoculation with A. caulinodans IRBG314,
Azorhizobium Nitrogen fixation Wheat ’nmes. to each wheat plant, once during the there were approx1mate}y five times more short lateral [29]
planting of the seeds, and subsequently roots, each up to 3 mm in length, present on
three times at one-week intervals. inoculated wheat.
Azospirillum Nitrogen fixation sugar cane - - [30-33]
Wheat, barley, oats, rice,
. . sunflowers, maize, line,
Azotobacter Nitrogen fixation beetroot, tobacco, tea, [34]
coffee and coconuts
Both the strains enhanced the auxin content of inoculated
Bacillus Auxin synthesis Potato Seed-dipping (108 mL ™! cfu) plants up to 71.4% and 433%, respectively, as compared to [35]
non-inoculated plants.
Bacillus Cytokinin synthesis Cucumber Seed-dipping 106 cells/mL (106 CFU/mL) Cucumber seedlings subjected to bacterization had well [36]
developed lateral roots.
Bacillus Gibberelin synthesis Pepper - - [37]
. . . The results showed that there was a relatively higher
. . e Seedling was inoculated with 1 mL of S L .
Bacillus Potassium solubilization ~ pepper, cucumber - - availability of P and K in soils planted with pepper than [38,39]
inoculum containing around 108 cells. .
with cucumber.
Increasing salt concentrations, biological N fixation may
be competitive, becoming a more economic and
. . . sustainable alternative to chemical fertilization.
Bacillus In@uctlon of plant stress Peanuts Maize Plants were.moculateq Wl.t h1mL of a‘108 The bacterial inoculants increased the total N, P, and K [40,41]
resistance cfu suspension Seed-dipping for 30 min . . .
contents of the shoot and root of maize in calcisol soil
from 16% to 85% significantly as compared to the
control counterpart.
Filtrates of cultures suppressed alfalfa disease caused by
Bacillus Antibiotic production Alfalfa Seedling was inoculated P. medicaginis and inhibited the growth of the pathogen in [42]
an agar plate assay.
Bacillus Siderophore production Maize, pepper - - [43]
Beijerinckia Nitrogen fixation Sugar cane - - [30,44]
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Table 1. Cont.

PGPR PGPR Mechanisms Crops Application Mode Observation/Findings Ref.
Burkholderia Nitrogen fixation Rice - - [45,46]
Chryseobacterium  Siderophore production Tomato Soil drenched Slderophore production increased as bacterial biomass [47]

increased after 16 h of culture
Frankia Nitrogen fixation Alnus - - [48]
The endophytic establishment of G. diazotrophicus within
Gluconacetobacter ~ Nitrogen fixation Sugar cane Root-dipping of seedlings for 1 h stems of sugarcane was confirmed by the scanning [49]
electron microscopy.
GFP-tagged cells of Herbaspirillum sp. strain B501gfp1
Herbaspirillum Nitrogen fixation rice Seed was inoculated were apparently localized in intercellular spaces of shoot [50]
tissues of 7-day-old seedlings of O. officinalis W0012.
Mycobacterium In@uctlon of plant stress Maize - - [40]
resistance
o Indole acetic acid .
Paenibacillus synthesis Lodgepole pine - - [51]
Paenibacillus Potassium solubilization Black pepper - - [52]
. e . The strawberry seedlings were inoculated Strain PEPV15 was able to solubilize moderate amounts
Phyllobacterium Phosphate solubilization  Strawberries with 1 mL of 108 CFU/mL suspensions. of phosphate (5mm radius around the colonies). (531
The strain grew on the CAS indicator medium where the
. . . . The strawberry seedlings were inoculated colonies were surrounded by a yellow-orange halo
Phyllobacterium Siderophore production Strawberries with 1 mL of 108 CFU/mL suspensions. (3.5 mm radius around colonies) indicative of the (53]
siderophore production.
Pseudomonas Chitinase and . Several crops - - [54]
-glucanases production
Pseudomonas ACC deaminase synthesis Mung beans, wheat - - [55,56]
Pseudomonas Ind.uctlon of plant stress Cotton, Maize - - [40,57]
resistance
Pseudomonas Antibiotic production Wheat - - [58]
P. fluorescens LPK2 and S. fredii KCC5 showed chitinase
Pseudomonas Chitinase and Piceon pea The method of Weller and Cook (1983) was  activity on chitinase minimal medium. b-1,3-glucanase [59]
-glucanases production geonp adopted for seed bacterization activity was more pronounced in the fluorescent
pseudomonads strains.
Pseudomonas Siderophore production Potato, maize - - [43]




Molecules 2016, 21, 573 60f 17
Table 1. Cont.

PGPR PGPR Mechanisms Crops Application Mode Observation/Findings Ref.
Rhizobia Nitrogen fixation Legumes - - [60]
Rhizobia Inc!uctlon of plant stress Peanuts ) ) [41]

resistance
Ay Hydrogen Cyanide )
Rhizobia Production Legumes [61]
Rhizobium Nitrogen fixation Rice - - [62]
Seed Inoculation The dry weight of the inoculated seedlings (shoots and
Seedlings were inoculated with 250 wL roots) was more than twice with respect to the
o Indole acetic acid Pepper, tomato, lettuce, _1g . . i un-inoculated seedlings.
Rhizobium . plant™" of a bacterial suspension with a . C . [63,64]
synthesis carrot turbidity of 5 in McFarland standards Concentrations of N, P, and Ca were significantly higher
(15 x 1(})/9 CFUmL-1) in inoculated plants, indicating that they had higher
’ ’ otential for nutrient uptake than control plants.
p p p
Rhizobium ACC deaminase synthesis Pepper, tomato mung - - [55,63]
beans,
Seed Inoculation
Tomato, pepper, Carrot Seedlings were inoculated with The colonies of strain TPV08 were surrounded by a
Rhizobium Siderophore production 1 (; + O pepper . 250 IL plant~! of a bacterial suspension with  yellow-orange halo (3.5 mm radium around colonies) [63,64]
ettuce, a turbidity of 5 in McFarland standards indicative of siderophore production.
(1.5 x 109 CFU/mL™1).
) - Chitinase and .
Sinorhizobium B-glucanases production Pigeon pea - - [59]
Sphingomonas Gibberelin synthesis Tomato - - [65]
Indole acetic acid N
Streptomyces synthesis Indian lilac - - [66]
Streptomyces Siderophore production Indian lilac - - [66]
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Another major effect of PGPR on plants under abiotic stress conditions is the improvement of leaf
water status, especially under salinity and drought stress [55,67]. Sarma and Saikia [68] reported that
Pseudomonas aeruginosa strain has improved the growth of Vigna radiata (mung beans) plants under
drought conditions. The ability of plants in utilizing water for growth depends on their stomatal
apertures. The stomatal on the plant leaf functions to balance the water content in leaf and water
uptake by the roots. Ahmad et al. [55] and Naveed et al. [67] reported that the stomatal conductance
(water vapor exiting through the stomata leaf) of plant leaf was higher in PGPR inoculated plants
than non-PGPR inoculated ones under drought conditions. The finding from both studies proves that
PGPR-inoculated plants tend to improve the water-use efficiency of plants. This finding could be
beneficial to the environment in terms of reducing excessive usage of water.

Marulanda et al. [69] reported that Bacillus megatertum strain inoculated into maize roots increased
the ability of the root to absorb water under the salinity conditions. Gond et al. [70] also found similar
behavior when Pantoea agglomerans was inoculated into the maize roots. They found that the ability
of the maize root to absorb water in saline conditions has improved. Here, bacteria that can grow
under hypersaline conditions will be better able to colonize the root rhizospheres and external spaces
of roots that are themselves exposed to high salinity conditions. Thus, the strategy was to first screen
the bacterial isolates for their ability to grow under hypersaline conditions.

Gonzalez et al. [71] used Azospirillum brasilense to improve the salt tolerance of the jojoba plant
during in vitro rooting. Based on the findings obtained, A. brasilense can reduce the undesirable effects
of saline conditions on the jojoba rooting. The bacteria attenuated salinity’s effect on the rooting ability
of the jojoba plant. This indicates that A. brasilense has higher plant tolerance to salt stress.

Gabriela et al. [72] also used Azospirillum to study lettuce growth under salt stress. They found
that inoculation with Azospirillum sp. not only improves lettuce quality but also extends the storage
life of a lettuce grown under salt stress, which further improves the yield.

3.2. Nutrient Availability for Plant Uptake

PGPR has the ability to increase the availability of nutrient concentration in the rhizosphere [10] by
fixing nutrients, thus preventing them from leaching out. As an example, nitrogen, which is needed for
the synthesis of amino acids and proteins, is the most limiting nutrient for plants. The mechanisms by
which atmospheric nitrogen is added into organic forms that can be assimilated by plants are exclusive
to prokaryotes [73,74]. A rare example of a free-living nitrogen-fixing organism is Azospirillum, often
associated with cereals in temperate zones and also reported to be able to improve rice crop yields [31].

Some PGPR have the ability to solubilize phosphate [75], resulting in an increased availability of
phosphate ions in the soil, which can be easily taken up by the plants. Kocuria turfanensis strain 2M4
isolated from rhizospheric soil was discovered to be a phosphate solubilizer, an IAA producer, and a
siderophore producer [76].

Lavakush et al. [77] studied the effect of PGPR on nutrient uptake by rice. They used PGPR strains
such as Pseudomonas fluorescens, Pseudomonas putida, and Pseudomonas fluorescens.

3.3. Plant Growth Regulators

These plant growth regulators, also termed plant exogenous hormones, are synthetic substances
that are similar to natural plant hormones. They are used to regulate the growth of plants and
are important measures for boosting agricultural production. One of the terms for the prominent
modes of action for growth promotion by PGPR is phytostimulator, or plant growth regulator. This is
defined as microorganisms that have the ability to produce or alter the concentration of growth
regulators such as IAA, GA, cytokinins, and ethylene. The mechanism that is being projected is
the production of phytohormones (plant hormones) such as auxins, cytokinins, and GA [78,79].
Phytohormones are organic substances found in extremely low amounts that exert influence on
the biochemical, physiological, and morphological processes in plants; their synthesis is smoothly
regulated. Phytohormones that are not naturally synthesized by the plants but are synthesized
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exogenously by natural and synthetic means are known as plant growth regulators. The following
examples are phytohormones that are synthesized directly and indirectly by PGPR, which act as plant
growth regulators.

Auxin is one of the crucial molecules, regulating most plant processes directly or indirectly [80]
as was further proven when Ahmed and Hasnain [35] reported that auxin-producing Bacillus spp.
inflicts a positive effect on Solanun tuberosum’s growth. The most active and famous auxins in plants is
indole-3-acetic acid (IAA) [81]. According to Spaepen and Vacheron [82,83], a wide range of processes
in plant development and plant growth are controlled by exogenous IAA in which a low amount of
IAA can stimulate primary root elongation, whereas high IAA levels decrease primary root length,
increase root hair formation, and stimulate the formation of lateral roots. Thus, plants have greater
access to soil nutrients as bacterial IAA increases both the root surface area and length. The processes
of seed germination and emergence, floral induction, flower and fruit development, and steam and
leaf growth include the involvement of gibberellin (GA), which is one of the phytohormones [84].
However, the most dominant physiological effect of GA is shoot elongation [85]. Khan [65] showed
that tomato plants inoculated with the gibberellin-producing Sphingomonas sp. LK11 strain have a
significant increase in various growth characteristics. Cytokinins stimulate a plant’s cell division,
vascular cambium sensitivity, and vascular differentiation and induce the proliferation of root hairs,
but inhibit lateral root formation and primary root elongation [28,86]. Liu [87] reported that the oriental
Thuja seedlings inoculated with cytokinin-producing Bacillus subtilis strains were more resistant to
stress due to draught.

Ethylene is another plant hormone known to regulate many processes such as the ripening of
fruits, the abscission of leaves, or the ripening of fruits (Figure 1) [88]. Moreover, at high concentrations,
ethylene induces the defoliation and cellular processes that lead to the inhibition of root and stem
growth together with premature senescence, all of which lead to poorer crop performance [89].
The plants synthesized 1-aminocyclopropane-1-carboxylate (ACC), which is the precursor for ethylene,
in response to exposure to various types of environmental stress, such as cold, drought, flooding,
infections with pathogens, and the presence of heavy metals [90]. High levels of ethylene, produced
under stress conditions, can halt certain processes such as root elongation or nitrogen fixation in
legumes [91], and cause premature senescence [55].

Rhizobla nodule
- - formation
germination .

leaf | /
senescence [0l
Response to stress
Fruit ripening /
/ Flowering and Root initiation, elongation
flower wilting and branching
Inhibition of root and stem growth together wit
premature senescence at high concentration.

Figure 1. The phytohormone ethylene affects a large number of different processes in the growth and

development of a plant.

Here, PGPR with the action to degrade ACC in the rhizosphere could shorten the deteriorating
cycle and reconstruct a healthy root system that would withstand environmental stress. Furthermore,
Glick [92] has illustrated how plant growth-promoting bacteria that produce ACC deaminase and
synthesize IAA may facilitate plant growth. Enzyme ACC deaminase involved in the primary
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mechanism rhizobacteria is utilized to degrade ethylene [92]. Ahmad [55] proved that Rhizobium
and Pseudomonas ACC-deaminase-producing strains can improve the growth, physiology, and quality
of mung beans under salt-affected environments.

3.4. Production of Hormones

Plant hormones are chemical messengers that influence the plant’s ability to react to its
environment. These are naturally organic compounds that are effective at very low concentration
and are mostly synthesized in certain parts of the plant and transported to another location. Plant
hormones, also referred to as phytohormones, influence physiological processes at low concentrations.
The influenced processes include growth, differentiation, and development; other processes, such as
stomatal movement, could also be affected [93]. It is also important to note that every plant response is
often the result of two or more hormones acting together. Thus, since hormones stimulate or inhibit
plant growth, they are also referred to as plant growth regulators that are produced from PGPR [94].
A few notable plant hormones such as auxins, ethylene, gibberellins, (+)-abscisic acid (ABA), and
cytokinins may well regulate plant growth and development [95,96].

3.5. Production of Siderophores

Iron is among the bulk minerals present on the surface of the earth, yet it is unavailable in the soil
for plants. Iron is commonly present in nature in the form of Fe3*, which is highly insoluble; to solve
this problem, PGPR secrete siderophores. Siderophores are low molecular weight iron binding protein
compounds involved in the process of chelating ferric iron (Fe (iii)) from the environment. When Fe
is limited, microbial siderophores provide plants with Fe, enhancing their growth. Flores-Felix [53]
showed that a siderophore-producing Phyllobacterium strain promotes the growth and quality of
strawberries. Here, plants sequester iron by utilizing siderophores secreted by the mentioned PGPR.
The predicted flow of this mode of action is shown in Figure 2.

Lateral root

Nitrogen fixation, < '
phosphorus solubiisation, — O % H
siderophore production ( A\

A nutrition

/4

Lignin/cellulose ratio

§ 7 Production of
PGPR phytohormones, lytic
enzymes and
secondary metabolites

Primary root

Figure 2. The possible mode of action used by plant growth promoting rhizobacteria (PGPR) towards
growth promotion in plants. The flow and location of nitrogen fixation, phosphorus solubilization, and
siderophore production are shown [83].

3.6. Production of Volatile Organic Compound

Volatile organic compounds (VOCs) produced by plant growth promoting rhizobacteria (PGPR)
are heavily involved in improving plant growth and induce systemic resistance (ISR) towards
pathogens [1e3]. Several bacterial species, from diverse genera including Bacillus, Pseudomonas,
Serratia, Arthrobacter, and Stenotrophomonas, produce VOCs that influence plant growth. Acetoin
and 2,3-butanediol synthesized by Bacillus are the best known of these compounds and are responsible
for significant improvements in plant growth [97]. Some other PGPR strains emit VOCs that can
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directly and/or indirectly mediate increases in plant biomass, disease resistance, and abiotic stress
tolerance. VOC emission is indeed a common property of a wide variety of soil microorganisms,
although the identity and quantity of volatile compounds emitted vary among species [98,99].

3.7. Production of Enzymes

In terms of PGPR producing protection enzymes, the mode of action could be labeled that of
biopesticides: PGPR promote plant growth through the control of phytopathogenic agents, primarily
for the production of metabolites contributing to the antibiosis and antifungal properties used as
defense systems. The mechanism would involve the production of hydrolytic enzymes, of which two
examples are chitinase and glucanase. Major fungal cell wall components are made up of chitin and
beta-glucan, thus chitinases and beta-glucanases producing bacteria would inhibit fungal growth.
The Sinorhizobium fredii KCC5 and Pseudomonas fluorescens LPK2 produce chitinase and beta-glucanases
and dictate the fusarium wilt produced by Fusariumudum [59]. Apart from exhibiting the production
of chitinase and beta-glucanases, Pseudomonas spp. inhibits Rhizoctonia solani and Phytophthoracapsici,
two of the most destructive crop pathogens in the world [54].

4. Beneficial and Harmful Aspects of Plant Growth Promoting Rhizobacteria

It is undisputed that rhizobacteria play a crucial role in maintaining soil fertility and upgrading
plant growth and development. This growth betterment takes place with the help of several
mechanisms as mentioned in previous chapters, although the reverse is true in some other studies [16].
For example, the production of cyanide is known to be a characteristic of certain Pseudomonas
species. Here, cyanide production by the bacteria is considered as a growth promotion as well
as a growth inhibition characteristic. Moreover, cyanide acts as a biocontrol agent against certain
plant pathogens [8]; on the other hand, it can also cause adverse effects on plant growth [100].
Vacheron et al. [83] stated that auxin production by PGPR can also cause positive as well as negative
effects on plant growth. It is important to note that the effectiveness of auxin relies upon its
concentration. For instance, at low concentrations, it enhances plant growth, whereas at a high
level it inhibits root growth [101].

Furthermore, rhizobitoxine produced by Bradyrhizobium elkanii also has a dual effect. Since it
is an inhibitor of ethylene synthesis, it can alleviate the negative effect of stress-induced ethylene
production on nodulation [102]. On the other hand, rhizobitoxine is also considered a plant toxin
because it induces foliar chlorosis in soybeans [103].

So far, the above discussion has proven that although PGPR are very effective at promoting plant
growth and development, a select few bacterial species may inhibit growth. However, this negative
impact may only occur under certain specific conditions and also by some particular traits. Thus, the
selection of a particular strain is of the utmost importance in obtaining maximum benefits in terms of
improved plant growth and development.

5. Role of Plant Growth Promoting Rhizobacteria as a Biofertilizer

Biofertilizer is becoming a crucial aspect of organic farming and a major player for the economy
and for general agricultural production on a global scale. Biofertilizers can be defined as products
that contain living microorganisms; when applied to seeds, plant surfaces, or soil, they colonize the
rhizosphere or interior of the plant, and promote plant growth by increasing the supply or availability
of primary nutrients to the host plant [104]. According to Mishra [105], biofertilizer is a mixture of live
or latent cells encouraging nitrogen fixing, phosphate solubilizing, or cellulolytic microorganisms used
for applications to soil, seed, roots, or composting areas with the purpose of increasing the quantity
of those mutualistic beneficial microorganisms and accelerating those microbial processes, which
augment the availability of nutrients that can then be easily assimilated and absorbed by the plants.
Malusd and Vassilev [106] proposed that a biofertilizer is the formulated product containing one or
more microorganisms that enhance the nutrient status (the growth and yield) of the plants by either
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replacing soil nutrients and/or by making nutrients more available to plants and/or by increasing
plant access to nutrients.

Biofertilizer products are usually based on the plant growth-promoting microorganisms
(PGPM). The PGPM can be classified into three dominant groups of microorganisms: arbuscular
mycorrhizal fungi (AMF) [107], plant growth promoting rhizobacteria (PGPR) [108], and nitrogen
fixing rhizobia [109], which are deemed to be beneficial to plant growth and nutrition. However, it has
been reported that PGPR have been used worldwide as biofertilizers, contributing to increased crop
yields and soil fertility. Hence, with the potential contribution of the PGPR, this leads to sustained
agriculture and forestry [110].

Previous studies show that a biofertilizer prepared by combining PGPR with composts
could enhance growth-promoting effects and bio-control of plants [111]. Bacillus spp. [112] and
Pseodomonas spp. [113] are two PGPR that have been reported to be effective bio-control agents. Among
these bacteria species, Bacillus subtilis, Basillus amyloliquefacients, and Bacillus cereus are the most
effective species at controlling plant diseases through various mechanisms [114]. The ability to form
endospores allows PGPR, especially Bacillus spp. and Pseodomonas spp., to survive in a wide range of
environmental conditions, thus facilitating the effective formulation of biofertilizer [115].

Sufficient densities of PGPR in biofertilizer provide a beneficial role in creating a proper
rhizosphere for plant growth and converting nutritionally important elements through biological
process, for example increasing the availability of N, P, K, as well as inhibiting pathogen
growth [104,116]. The high availability of N, P, and K could enhance soil fertility, improve antagonistic
isolates’ bio-control effects, and extend microorganisms’ survival rates in soil [117].

PGPR can be classified as biofertilizers when they act as a plant nourishment and enrichment
source that would replenish or reconstruct the nutrient cycle between the soil, plant roots, and
microorganisms present. The catch here is whether the “living” biofertilizers used could be
self-sustaining or would need to be re-applied to soil on a continual basis, and also whether excessive
usage would destabilize the microorganism interaction in the soil.

6. Role of Nanotechnology for Agricultural Sustainability

The application of modern technologies such as nanotechnology has tremendous potential to
revolutionize the agricultural industry. Nanoagriculture, which currently focuses on target farming
that involves the use of nanosized particles such as nanofertilizer, offers exclusive tools for improving
the productivity of the crop plants through efficient nutrients uptake by the plants [118]. The unique
properties of nanosized particles with respect to their physical, chemical, and biological properties
compared to those at a larger scale provide the potential to protect plants, detect plant diseases, monitor
plant growth, enhance food quality, increase food production, and reduce waste.

The vast efficiency of nanofertilizers compared to ordinary fertilizers has been proven
as they reduce nitrogen loss due to leeching, emissions, and long-term incorporation by soil
microorganisms [119]. Furthermore, Suman [120] has proven the advantage of using nanofertilizers by
showing that controlled release fertilizers may also improve the soil by decreasing the toxic effects
associated with the over-application of traditional chemical fertilizers [120].

PGPR usage as fertilizer by conventional methods is not effective as 90% are lost to the air during
application, they are intolerant to the environment (heat, UV radiation, etc.), and, as run-off, they affect
application costs to the farmer. Nanoencapsulation technology could be used as a versatile tool to
protect PGPR, enhancing their service life and dispersion in fertilizer formulation and allowing the
controlled release of the PGPR.

7. Conclusions

As long as the human population continues to increase, the world will have to withstand
the escalating demand for food. Seven decades ago, the Green Revolution increased agricultural
production globally, saving about one billion people from starvation and undernourishment;
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it triggered the development of chemical fertilizers, along with other advances. Since the dawn
of civilization, we human beings have been involved in various actions that directly or indirectly
impacted on our ecosystem, whether for good or bad. Demand, soon, is catalyzed by greed to increase
the crop yield, which has resulted in the overexploitation of the soil ecosystem. This has to be put
to rest; the conventional crop approach cannot be practiced anymore since anthropogenic activities
such as intensive agriculture, crop monocultures, and the use of agrochemicals are grave concerns and
disturb the ecosystem.

Considering the good impact of PGPR in terms of biofertilization, biocontrol, and bioremediation,
all of which exert a positive influence on crop productivity and ecosystem functioning, encouragement
should be given to its implementation in agriculture. Hoping for the betterment of technology in
developing successful research and development, PGPR use will surely become a reality and will be
instrumental to crucial processes that ensure the stability and productivity of agro-ecosystems, thus
leading us towards an ideal agricultural system.

Nanotechnology inclusion in the agricultural sector should be intensified to reduce the damages to
the ecosystem and meet global crop demand. Over the past decades, promising results and applications
have already been developed in the area of delivery of fertilizers, pesticides, and genetic material for
plant transformation. Based on that, gigantic effort is needed to develop the aspect of nanotechnology
with plant growth promoting bacteria. Finding the unique nanomaterials used to incorporate these
mutualistic bacteria might prove to be a hard task but it is not impossible. Thus, nanotechnology
has all the tools needed to improve the current biofertilizers used to support and uplift agricultural
sustainability globally.
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