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Abstract: Adherence to the Mediterranean Diet (MD) has been associated with a reduced 

incidence of neurodegenerative diseases and better cognitive performance. Virgin olive oil, 

the main source of lipids in the MD, is rich in minor phenolic components, particularly 

hydroxytyrosol (HT). HT potent antioxidant and anti-inflammatory actions have attracted 

researchers’ attention and may contribute to neuroprotective effects credited to MD. In  

this review HT bioavailability and pharmacokinetics are presented prior to discussing 

health beneficial effects. In vitro and in vivo neuroprotective effects together with its 

multiple mechanisms of action are reviewed. Other microconstituents of olive oil are also 
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considered due to their potential neuroprotective effects (oleocanthal, triterpenic acids). 

Finally, we discuss the potential role of HT as a therapeutic tool in the prevention of 

neurodegenerative diseases. 

Keywords: olive oil; phenolic compounds; hydroxytyrosol; tyrosol; neurodegenerative 

diseases; prevention; neuroprotective agents 

 

1. Dietary Phenolic Compounds: Potential Therapeutic Tools in the Prevention of 

Neurodegenerative Diseases 

Polyphenols and simple phenols are secondary metabolites of plants abundant in our diet, including 

fruits, vegetables, olive oil, wine, and tea. Several studies have indicated that the risk of suffering certain 

diseases is reduced or increased depending on the food categories consumed. Although this fact has 

been primarily described in cardiovascular diseases, it has also been related to neurodegenerative 

disorders [1]. Epidemiological data suggest that certain nutrients (such as antioxidants, E and B-vitamins, 

and polyunsaturated fatty acids (PUFA) [2]) and foods (such as wine, fish, vegetables, and fruits [3]) may 

confer protection against cognitive impairment, particularly against Alzheimer’s Disease (AD) [4]. 

Neurodegenerative diseases tend to present an imbalance between reactive oxygen species production 

and the antioxidant defense system. The particular evidence of oxidative stress in AD indicates  

the potential role that antioxidants, such as phenolic compounds from dietary plants, could play in its 

prevention and management. The natural origin of these phenolic compounds, and their reactivity towards 

multiple targets, has converted them into potentially useful tools in order to deal with the multifactorial 

etiology of these diseases [5]. 

Although dietary phenolic compounds are good antioxidants in vitro, in vivo such effects may be 

indirectly mediated through the activation of some pathways (e.g., the Nrf2/Keap1 pathway, discussed 

in this review) and not by their intrinsic antioxidant activity. In relation to this pathway-modulating 

ability, there is a newly emerged concept concerning the biological effects of phenolic compounds 

with respect to their nutrigenomic effects derived from interacting with biological systems [6,7]. 

Another additional aspect to be considered when attempting to explain dietary phenolic compound 

biological activity is its ability to alter brain perfusion via its effects on lipid metabolism, thus lowering 

the risk of stroke [8–10]. 

2. The Mediterranean Diet and Cardiovascular and Neurodegenerative Diseases 

The term Mediterranean Diet (MD) was coined in the 1960s by Ancel Keys when explaining the 

results of an epidemiological study in which Italian and Greek populations had lower mortality rates, 

and a reduced incidence of cancer and cardiovascular disease, compared to other populations [11]. 

Known as the Seven Countries Study it included more than 12,000 subjects from America, Europe, 

and Asia. Since then, a new field of clinical and epidemiological research has emerged, and several 

studies have been carried out aiming at confirming these results, as shown by the exponential increase 

from 1999 of original articles regarding the MD [12]. 
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The MD is characterized by a high intake of cereals, vegetables, legumes, fruit, and unsaturated 

fatty acids (mostly from olive oil); low consumption of red meat, poultry products, and saturated fatty 

acids; and moderate intake of fish, milk and dairy products, as well as a regular but moderate ethanol 

consumption (generally in the form of wine during meals) [13–16]. 

The overall conclusions of several studies concerning the MD confirm that high adherence to this 

diet reduces the risk of suffering from several pathological conditions including cardiovascular and 

cerebrovascular diseases, diabetes mellitus, metabolic syndrome, certain cancers, and neurodegenerative 

diseases [17]. The link between adherence to the MD and a reduction in total mortality has also been 

confirmed [15,16]. In a prospective cohort study of 1410 elderly French people, a significant association 

was found between higher adherence to MD and slower cognitive decline [13]. These results were 

further confirmed in a population of 447 elderly subjects with a high risk of cardiovascular diseases 

where adherence to MD (using questionnaires and urinary olive oil polyphenols as biomarkers of 

intervention compliance) was related to better cognitive performance [4]. Recently, further evidence 

indicates that an intervention with the MD improves cognition [18]. 

Although the majority of these studies have been carried out in Mediterranean populations, research 

on the MD in non-Mediterranean countries suggests that health benefits can be transferred to other 

populations. As an example, a study carried out in more than 2,000 individuals in New York concluded 

that higher adherence to the MD was associated with a reduction in the risk of AD [14]. 

3. Olive Oil Phenolic Compounds and MD 

The main source of fat in the MD is olive oil. In Mediterranean populations it is estimated that 

individuals consume between 25 and 50 mL of olive oil per day (raw olive oil and that used for 

cooking). Recent cohort studies and randomized clinical trials have provided first level evidence showing 

that intake of virgin olive oil, rich in phenolic compounds, provides benefits on secondary [19] and 

primary end points for cardiovascular disease [20]. The health benefits promoted by olive oil cannot 

only be attributed to its high content in monounsaturated fatty acids (MUFA), mainly oleic acid, but 

also to its microconstituents, in particular the phenolic compounds [19,21,22]. There are approximately 

230 chemical compounds in olive oil including aliphatic and triterpenic alcohols, sterols, hydrocarbons, 

volatile and phenolic compounds. The main antioxidants of virgin olive oil are carotenes and phenolic 

compounds including lipophilic and hydrophilic phenols [23]. The polar phenolic compounds that are 

present in olive oil can be classified as: phenolic alcohols, phenolic acids, flavonoids, lignans, and 

secoiridoids [24–26]. The chemical structures of representative examples of each class are depicted in 

Figure 1. 

The principal phenolic compounds in olive oil are the secoiridoids, the glycosylated forms of the 

aglycones oleuropein, and ligstroside [23]. In the gastrointestinal tract, they are mainly hydrolyzed to 

give rise to hydroxytyrosol (HT) and tyrosol, respectively [27] (Figure 2A). In addition, free HT and 

tyrosol at very low concentrations in fresh olive oil may increase with olive oil aging. Median 

concentrations in olive oils may range from 1.9 mg/kg for HT to 163.6 mg/kg for oleuropein [23]. 

Globally, the amount of polyphenols in olive oil ranges from 200 to 1000 mg/kg depending on the 

cultivar and agricultural practices. Therefore, the daily dose for HT (combining the volume of olive oil 

and amount of polyphenol) may not exceed 7 mg/day. 
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Figure 1. The different classes of polar phenolic compounds present in olive oil with 

molecular structures of representative examples. 

The European Food Safety Authority (EFSA) recently released a health claim concerning phenolic 

compounds in olive oil and their ability to protect low-density lipoprotein (LDL) from oxidative 

damage. The minimum daily requirement of HT in the diet was set at 5 mg for these beneficial effects 

to occur [28]. Since the concentrations of HT in some olive oils may be too low, the EFSA claim could 

encourage the preparation of HT-enriched olive oils, nutraceuticals, and other food preparations at 

concentrations much higher than those encountered in its natural form [28].  

In relation with this issue, there is currently no official method to quantify all the forms of HT and 

tyrosol present in olive oil. When comparing different olive oils or nutraceuticals it is important to use 

appropriate analytical methods that provide an accurate estimation of the olive oil polyphenol content, 

as considerable variations have been described when employing different methods [29]. Such 

analytical issues are relevant considering de threshold concentration defined by EFSA. Currently, a 

number of analytical methods to analyze total levels of HT and tyrosol in olive oil have been 

developed [30–32] and the International Olive Council (IOC) is evaluating them in order to propose an 

official one to standardize the quantification of olive oil phenols [33]. 
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Figure 2. Comparison between exogenous and endogenous sources of hydroytyrosol (HT). 

(A) Origin of HT from oleuropein. Oleuropein hydrolysis results in oleuropein aglycone, 

whose subsequent hydrolysis originates elenolic acid and HT. (B) Endogenous formation 

of HT via dopamine oxidative metabolism. Abbreviations: ALR: Aldehyde/aldose reductase; 

ADH: Alcohol dehydrogenase; MAO: Monoamine oxidase; ALDH: Aldehyde dehydrogenase; 

DOPET: 3,4-dihydroxyphenylethanol; DOPAL: 3,4-dihydroxyphenylacetaldehyde; DOPAC: 

3,4-dihydroxyphenylacetic acid; L-DOPA: L-3,4-dihydroxyphenylalanine; Glc: Glucose. 

4. Hydroxytyrosol 

4.1. Exogenous and Endogenous Sources of HT 

HT high antioxidant activity has sparked research in several fields, the most noteworthy being the 

prevention of cardiovascular diseases [34]. Several health promoting properties have been attributed to 

HT including: antioxidant, cardioprotective, antitumoral, antimicrobial, antidiabetic, and neuroprotective 

activities [35]. Recent studies have also provided evidence HT-related beneficial effects on the liver, 

where olive oil phenols inhibit the synthesis of lipids, cholesterol and triglycerides [36,37]. 
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There are two known sources of HT: (i) an exogenous one, which follows the ingestion of natural 

products that contain HT or its precursors, and (ii) an endogenous one, derived from dopamine 

oxidative metabolism. 

HT is the main phenolic compound found in olives and olive products. A double hydrolysis of 

oleuropein takes place firstly during olive maturation and storage, and later in the gastrointestinal tract, 

which gives rise to HT [27,38] (Figure 2A). Although the major dietary source of HT is olive oil, its 

presence in lower amounts has also been described after red wine ingestion [39]. 

Additionally, HT can be a byproduct of dopamine oxidative metabolism [39,40]. Indeed, this  

ortho-diphenolic compound can be produced endogenously as it is also a product of dopamine 

oxidative metabolism known as DOPET (3,4-dihydroxyphenylethanol) [41]. 

Monoaminooxidase (MAO) catalyzes the oxidative-deamination of dopamine giving rise to the 

aldehyde metabolite DOPAL (3,4-dihydroxyphenylacetaldehyde), which can then be subsequently 

oxidized by aldehyde dehydrogenase to the corresponding carboxylic acid (3,4-dihydroxyphenylacetic 

acid, DOPAC). Although DOPAC is the major metabolite of dopamine in biological matrices, a small 

portion of DOPAL is reduced to DOPET by aldehyde or aldose reductase [42,43] (Figure 2B). After 

alcohol intake DOPET may become more relevant quantitatively due to the interaction of ethanol with 

the dopamine oxidative metabolism [44]. 

With respect to dopamine metabolism, Parkinson’s disease is associated with an intra-neuronal 

autotoxic mechanism. It has been postulated that dopamine can act as an endogenous neurotoxin whose 

toxicity could explain the selective loss of dopaminergic neurons in substantia nigra that characterizes 

Parkinson’s disease [45]. The highly reactive metabolite DOPAL is even more toxic to dopaminergic 

cells than dopamine itself, suggesting that DOPAL is the toxic dopamine metabolite in vivo [42,46]. 

Lipid peroxidation processes have been described as generating highly reactive aldehydes as 

byproducts (including 4-hydroxynonenal and malondialdehyde) which are biomarkers of oxidative 

stress, as well as inhibitors of aldehyde dehydrogenase 2 (ALDH2). As a consequence of this inhibition, 

these aldehydes prevent the oxidation of DOPAL to DOPAC, blocking this major metabolic pathway 

and yielding an accumulation of the neurotoxin DOPAL [47,48]. Taking the previous observations into 

account, DOPET formation could be used as an endogenous defense mechanism to reduce the levels of 

DOPAL in dopaminergic neurons by employing a normally minor dopamine metabolic pathway.  

This link between oxidative stress and the generation of endogenous neurotoxins opens up a research 

field focused on the mechanisms involved in neurotoxicity and neurodegeneration which are particularly 

relevant in the study of Parkinson’s disease pathogenesis. 

4.2. Pharmacokinetics and Metabolic Disposition of HT 

A key requisite to be considered when studying the biological effects that a chemical compound 

may exert in vivo are its pharmacokinetic properties. In this sense, both the bioavailability and the 

metabolism of HT have been widely researched [49–51]. 

HT is absorbed in a dose-dependent manner from olive oil in humans [52]. After the intake of doses 

of virgin olive oil that are close to that consumed daily in the MD (25–50 mL/day), HT (and also 

tyrosol) have been detected and quantified in biological fluids [22,50,53]. The human absorption of 

high amounts (2.5 mg/kg) of pure HT administered as an aqueous solution was very low and produced 
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a great variety of metabolites, leading to a poor bioavailability (<10%) [54]. This and previous  

studies [55] evidence the important role that the vehicle of administration plays on HT bioavailability. 

The tissue distribution of HT has been studied administrating 14C-labelled HT to rats. Notably, 

according to its potential role as a neuroprotective agent, it is able to cross the blood-brain barrier, 

although it presents a low brain uptake [56]. 

Despite its good absorption, HT bioavailability is poor due to an extensive first pass metabolism. 

Before entering the portal blood stream, it appears to undergo phase I/II metabolism in the enterocytes, 

and after having reached the liver through portal circulation, it is subject of additional phase II 

metabolism. The enzymes implicated in HT phase II metabolism are uridine 5'-diphosphoglucuronosyl 

transferases (UGTs), catecholmethyltransferase (COMT) [57], and sulfotransferases (SULT) (Figure 3). 

 

Figure 3. Biotransformation pathways of hydroxytyrosol (HT). Abbreviations: COMT: 

Catechol-O-methyltransferase; UGT: UDP-glucuronosyltransferase; SULT: Sulfotransferase; 

ACT: O-Acetyltransferase; GlcA: Glucuronic acid; HVAlc: Homovanillyl alcohol. 

The remaining amount of unaltered HT in the bloodstream is extremely low, to such an extent that 

the free form has been considered undetectable in plasma [39]. Indeed, around 98% of HT and tyrosol 

in urine and plasma appear to be conjugated as glucuronides and sulfates after olive oil intake [49]. 

The major metabolic products of HT described in humans are the 3- and 4-O-glucuronide conjugates, 

as well as the corresponding sulfates. COMT catalyzes the conversion of HT into homovanillyl alcohol 

(HValc) which constitutes a minor metabolic pathway. The free phenolic hydroxyl group of HValc can 

be also further O-glucuronoconjugated [49]. Recently, HT acetate sulfate has also been reported as  

a biological metabolite of HT [58]. Studies in rats have shown that there are changes in the metabolic 

disposition of HT in a dose-dependent manner, including the formation of adducts with glutathione 

(GSH) as measured through the detection of HT mercapturates in urine. Essentially, glucuronoconjugation, 

the main metabolic pathway at low doses, shifts to sulfation at higher doses. This observation could be 
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of relevance in the context of nutraceuticals prepared at doses higher than those obtained through 

dietary sources [59]. 

4.3. Antioxidant Properties of HT: From Scavenging Activity to Nrf2 Induction 

Two mechanisms have been proposed with respect to HT antioxidant activity: (i) by directly scavenging 

reactive oxygen species generated during oxidative stress [60], and (ii) by activating different cellular 

signaling pathways that would increase the organism defenses against an oxidative stress [61]. Also, 

the interaction of HT with miRNAs, although not yet described, should be considered as a potential 

molecular target for eliciting its biological effects as described for other polyphenols [62].  

Initially, the wide variety of HT biological activities was associated with its strong antioxidant and 

radical-scavenging activities [60,63]. Phenols have the capacity to donate the hydrogen atom of the 

phenolic hydroxyl group to free radicals. The presence of a second hydroxyl group at the ortho-position 

enhances antioxidant capacity by generating a catechol ring, which increases the rate at which the 

hydrogen atom is transferred to peroxyl radicals [64]. Catechols exert a direct antioxidant activity by 

transforming the catechol moiety into an ortho-benzoquinone. Despite containing this catechol moiety 

and the in vitro demonstration of this direct antioxidant capacity, the poor bioavailability of HT in 

humans practically precludes a direct action of HT on such antioxidant activities, indicating that other 

mechanisms are involved. 

There are data supporting the fact that polyphenols modulate gene expression and that the benefits 

associated with polyphenol-rich olive oil consumption could be mediated through an in vivo 

nutrigenomic effect in humans [6,7,65]. Additionally, current studies support the concept that HT may 

confer additional antioxidant protection by increasing the endogenous defense systems. One of the 

proposed mechanisms recently studied involves the HT-mediated induction of phase II detoxifying 

enzymes via nuclear factor E2-related factor 2 (Nrf2) activation [61,66–71]. 

The activity of Nrf2 is primarily regulated via its interaction with Kelch-like ECH-associated protein 

1 (Keap1) which directs the transcription factor for proteasomal degradation [72,73]. It is generally 

accepted that modification (e.g., chemical adduction, oxidation, nitrosylation or glutathionylation) of 

one or more critical cysteine residues in Keap1 represents a likely chemico-biological trigger for the 

activation of Nrf2 [74]. When Nrf2 escapes Keap1 inhibition it translocates to the nucleus where it 

interacts with the protein small Maf (sMaf), forming Nrf2–sMaf heterodimers that bind the antioxidant 

responsive elements (ARE) to regulate the gene expression of several phase II detoxifying enzymes. 

Nevertheless, there are alternative mechanisms of Nrf2 regulation to be considered, including 

phosphorylation of Nrf2 by various protein kinases (PKC, PI3K/Akt, GSK-3β, JNK), interaction with 

other protein partners (p21, caveolin-1), and epigenetic factors (micro-RNAs -144, -28 and -200a, and 

promoter methylation) activity [75–79]. 

The first research involving the effects of HT towards the Keap1/Nrf2 pathway was performed by 

Liu et al. who demonstrated that HT could protect mitochondria against acrolein-induced oxidative 

damage in retinal pigment epithelial cells. In this study, the significant decrease in nuclear Nrf2 

expression caused by acrolein could be prevented by HT pre-treatment of the cells [66]. The same 

group later reported that HT activated Nrf2 to promote the expression of phase II enzymes (including 
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GCL, NQO1, HO-1), and stimulated mitochondrial biogenesis via activation of peroxisome 

proliferator-activated receptor gamma, co-activator 1 alpha (PPARGC1α) [67]. 

A further step in the research of the underlying mechanism by which HT induces Nrf2 nuclear 

translocation has been carried out using specific kinase inhibitors [61,68,69]. HT attenuated tert-butyl 

hydroperoxide-induced damage in HepG2 cells by increasing the activity of three GSH-related 

enzymes (GSH peroxidase, GSH reductase, and GSH S-transferase). HT also induced Nrf2 nuclear 

translocation and increased Akt and ERK1/2 phosphorylation. The use of LY294002 and PD98059 

(specific inhibitors for the PI3K and ERKs, respectively) decreased Nrf2 nuclear levels, and 

suppressed the increased mRNA expression, protein expression and activities of the GSH-related 

enzymes. These results confirmed that PI3K/Akt and ERK1/2 pathways are involved in HT-dependent 

induction of antioxidant enzymes [68]. Similar results were obtained by Zrelli et al., using vascular 

endothelial cells. In this study, HT increased cell-proliferation and conferred protection against H2O2 

oxidative stress-induced damage by the induction of heme oxygenase-1 (HO-1) [69].  

Zou et al. found that HT induced phase II enzymes (HO-1, NQO-1, GCL) and GSH activated the 

PI3K/Akt pathway in human retinal pigment epithelial cells. However, differing from the two 

previously mentioned studies, HT effects were not repressed by the PI3K inhibitor LY294002. The 

authors suggested that c-Jun N-terminal Kinase (JNK) activation was involved in HT-mediated Nrf2 

activation [61]. A recent contribution to the better understanding of the HT mechanism of action has 

been reported by Sgarbossa et al. whose research with human keratinocyte cells concluded that HT 

increases nuclear factor levels of Nrf2 and decreases nuclear levels of Bach1 (a transcription factor that 

under normal circumstances represses the ARE sequences) [70]. 

The Nrf2/ARE is emerging as a key neuroprotective pathway in neurodegenerative diseases and its 

pharmacological activation may represent a neuroprotective therapy [80]. These previously mentioned 

studies whilst of interest have the limitation of being in vitro. However, to evidence the practical 

relevance of the mechanism, in vivo studies aiming to demonstrate that Nrf2 is activated and confers 

protection are needed.  

The senescence-accelerated mouse P8 (SAMP8) is a model of early learning and memory decline. 

The brains of the SAMP8 overproduce amyloid precursor protein (APP) amyloid-beta peptides and 

have an increased phosphorylation of tau [81,82]. In fact, this model has been proposed in the 

development of therapies for AD [83]. Recently, the olive oil-mediated induction of Nrf2 has been 

demonstrated in 9-week-old SAMP8 mice. In this experiment, two groups of 11 female mice were fed 

during 4.5 months with semisynthetic diets containing either high or low amounts of olive oil phenolic 

compounds. Mice fed with the high amount of phenolic compounds presented lower concentrations of 

oxidative stress markers in the heart tissue, higher levels of Nrf2 mRNA, and higher expression of the 

antioxidant enzymes GST, GCL, NQO-1, and PON. Additional cell culture studies demonstrated that 

HT was the only olive oil phenol able to increase Nrf2 transactivation which suggested that this 

polyphenol may be responsible for the induction of Nrf2-dependent gene expression [71]. Although 

cognitive effects in this animal model were not investigated, results provide potential for further 

research into the interaction of HT, Nfr2, and cognitive decline. 

Globally, the previously mentioned studies indicate that HT activates Nfr2 in different tissues, and 

preliminary results in vivo suggest that through this activation beneficial effects in neurodegenerative 

diseases may be elicited. 
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4.4. HT Neuroprotective Properties: In Vitro Evidence  

4.4.1. Direct Antioxidant Actions  

The neuroprotective effects of HT have been principally studied using two different strategies; the 

first employs chemically induced neurotoxicity (via oxidative or nitrosative stress) whereas the second 

is based on the biochemical alterations that take place during the process of hypoxia-reoxygenation.  

In Table 1, there is a summary of the main in vitro and ex vivo studies related to HT neuroprotective 

effects in which this compound acts through a direct antioxidant action.  

Hashimoto et al. exposed dopaminergic neurons (differentiated PC12 cells) to H2O2 in the presence 

or absence of Fe2+ in order to study the role of HT in oxidative stress-induced cell damage. As a 

consequence of this induced oxidative-stress, there was a dose-dependent leakage of lactate 

dehydrogenase and a decrease in cell viability. The pre-treatment of these cells with HT exerted a 

protective effect that was attributed to the augmented activity of catalase while GSH levels and GSH 

peroxidase activity did not change. The molecular mechanisms underlying this increase in catalase 

activity were not, however, elucidated [84]. Studies with primary cell cultures provided more insight. 

Koo et al. demonstrated that HT significantly protected primary cultures of rat cortical cells from 

glutamate-induced toxicity. HT was able to attenuate a great variety of toxicological effects caused by 

high (100 µM) amounts of this excitatory neurotransmitter including excessive Ca2+ influx, nitric oxide 

overproduction, reactive oxygen species formation, decrease of mitochondrial membrane potential, and 

cellular peroxide formation. 

Moreover, HT enhanced the antioxidant defense system by preserving GSH levels and the activities 

of superoxide dismutase, GSH reductase, and GSH peroxidase [85]. HT alone, or in combination with 

PUFA (docosahexaenoic and eicosapentaenoic acids), also provided cytoprotection to blood monocyte 

and neuroblastoma cell lines in a situation of H2O2-induced oxidative stress. In this case, the 

cytoprotective effect was evidenced as an increased resistance of cellular DNA damage [86].  

An olive mill wastewater extract (whose main constituent is HT, 45.5%) was used to study HT 

cytoprotective effects in an in vitro and ex vivo model using dissociated brain cells from mice. 

Oxidative and nitrosative stress were induced using ferrous iron (a hydroxyl radical generator) and 

sodium nitroprusside (an NO releaser), respectively. After measuring the mitochondrial membrane 

potential, the ATP levels, and lipid peroxidation it was concluded that sub-chronic (12 days) 

administration of HT enhanced the resistance of brain cells to oxidative stress. It is of interest that 

these findings did not occur with acute HT administration [87]. In a similar, subsequent experiment, 

the same research group studied the effects of the extract and HT itself in an in vitro model of 

neuronal-like PC12 cells. The results supported their previous observations towards the role of HT as a 

cytoprotective agent in neuronal-like cells [88]. 
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Table 1. In vitro and ex vivo studies related to hydroxytyrosol (HT) neuroprotective effects via direct antioxidant actions. 

Authors and 

Reference 
Experiment Model Treatment 

Nature of 

the Study 
Damaging Agents Exposure Time Evaluations Outcome 

Hashimoto et al.,  

2004 [84] 
PC12 cells HT In vitro 

Xantine  

H2O2  

Fe2+ 

6 and 18 h 

- LDH  

- Catalase  

- GPx  

- MTT assay 

HT protected the cells 

against oxidant stimuli via 

catalase activity 

Koo et al.,  

2006 [85] 

Primary cultures of rat 

cortical cells 

HT  

Caffeic acid  

Acteoside 

Ex vivo 
Glutamate  

(100 µM) 

1 h  

(+24 h) 

- MTT test  

- Nitrite and Ca2+  

- Cellular peroxide  

- Enzymatic activities  

- GSH  

- Lipid peroxidation  

- MMP assay 

Attenuation of  

glutamate-induced 

neurotoxicity 

Young et al.,  

2008 [86] 

IMR-32  

U937 and limphoblastoid 

cell lines 

HT with or  

without PUFA 
In vitro H2O2 30 min and 6 h (and 24 h) - Comet assay 

Decrease in the level of 

H2O2-induced DNA damage 

Schaffer et al.,  

2007 [87] 

Dissociated brain cells 

from NMRI mice 

HT-rich olive mill 

wastewater extract 

(45.5% of HT) 

In vitro and  

ex vivo 

Ferrous iron  

Sodium nitroprusside 

12 days (subchronic)  

100 mg/kg 

- MMP assay  

- ATP assay  

- Lipid peroxidation 

Enhanced cell-resistance to 

oxidative stress 

González-Correa et al., 

2008 [89] 

Hypoxia-reoxygenation 

model in rat brain slices 
HT and HT acetate 

In vitro and  

ex vivo 

Oxygen and  

glucose deprivation 

7 days  

5–10 mg/kg/day p.o. 
- LDH assay Reduction in brain cell death 

Schaffer et al.,  

2010 [88] 
PC12 cells 

HT-rich olive mill 

wastewater extract 

and HT 

In vitro 
Ferrous iron  

Sodium nitroprusside 
18 h 

- MTT assay  

- ATP assay  

- MMP assay 

Brain cell cytoprotection 

Muñoz-Marín et al., 

2012 [90] 

Hypoxia-reoxygenation 

model in rat brain slices 

HT and HT alkyl 

ether derivatives 

(C2-C12) 

In vitro and  

ex vivo 

Oxygen and glucose 

deprivation 
7 days 

- LDH assay  

- Lipid peroxidation  

- GSH  

- Nitrite and nitrate  

- 3-nitrotyrosine  

- Interleukins  

- MTT assay 

Reduction in oxidative and 

nitrosative stress.  

Decrease in production of 

pro-inflammatory 

interleukins 

Abbreviations: GSH: Glutathione; GPx: Glutathione peroxidase; HT: Hydroxytyrosol; LDH: Lactate dehydrogenase; MMP: mitochondrial membrane potential;  

MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; p.o., oral administration; PUFA: polyunsaturated fatty acids. 
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Additional evidence of the HT neuroprotective role was found studying the effects of HT and  

HT-acetate using an in vitro experimental model of hypoxia-reoxygenation in rat brain slices. Neuronal 

damage was evaluated measuring lactate dehydrogenase efflux. Both HT and HT-acetate inhibited the 

efflux in a concentration-dependent manner. This finding, however, did not occur with other common 

antioxidants such as vitamin E or N-acetylcysteine (lipid peroxidation inhibitors) which suggested that 

another mechanism, besides the antioxidant, was behind the effects. This HT-mediated neuroprotective 

effect was confirmed in rats that had been administered with HT and HT-acetate [89]. Recently, the 

hypoxia-reoxygenation model has been used in rat brain slices to demonstrate that the HT cytoprotective 

mechanism is mediated by a reduction of oxidative and nitrosative stress, as well as a reduction in the 

pro-inflammatory interleukin levels [90]. 

4.4.2. Reversing Specific Damage Present in Neurodegenerative Diseases 

In vitro studies with olive leaf extract have shown that its main component, oleuropein (Figure 1), 

has antioxidant protective effects against 6-hydroxydopamine-induced PC12 cell apoptosis. These results 

suggest that oleuropein may have neuroprotective and neurorestorative properties which could be of 

interest as a potential treatment of Parkinson’s disease [91]. 

The potential role of HT, and its precursor oleuropein, as neuroprotective compounds has also been 

studied in vitro in AD models. Neuropathological hallmarks of AD include the accumulation of 

extracellular neuritic (also named senile or amyloid) plaques (which are formed of amyloid-β peptides) 

and intracellular neurofibrillary tangles (whose major component is hyperphosphorylated tau  

protein) [92,93]. In the case of amyloid plaques, their major component, the amyloid-β peptide (Aβ), is 

between 38 to 42 amino acids in length. Aβ peptides tend to aggregate and form neurotoxic oligomers 

that trigger pathological cascades of events that lead to cell death [94].  

It is noteworthy that HT, oleuropein, and oleuropein aglycone have the ability to prevent tau 

fibrillization in vitro [95]. Oleuropein aglycone also hinders amyloid aggregation of Aβ1–42 and its 

cytotoxicity by preventing the formation of toxic oligomers [96]. The same research group had previously 

described that, in a similar way, oleuropein aglycone interfered with the aggregation of amylin  

(a peptide that regulates glycaemia) avoiding the formation of toxic aggregates [97]. In a different 

study, oleuropein aglycone injected into the rat brain was able to circumvent Aβ toxicity and 

inflammation [98]. HT and tyrosol were able to protect neuronal cells against Aβ induced toxicity and 

prevented the nuclear translocation of transcription factor NF-κB [99].  

NF-κB is a central regulator of inflammatory activity which activates many genes encoding for  

pro-inflammatory cytokines and immunoregulatory mediators. Consequently, it has been linked to 

several major chronic diseases including AD [100]. Additional studies in endothelial cells [101] and in 

a human monocytic cell line [102] provided more evidence regarding HT ability to reduce NF-κB 

activation and its translocation to the nucleus [100].  

Future in vitro studies concerning HT beneficial effects should employ physiological concentrations 

of this compound. This fact is especially important in the field of neuroprotection, where the concentrations 

used in the experiments should be realistic and similar to those that could be reached in the brain.  
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4.5. HT Neuroprotective Properties: In Vivo Evidence in Animal Models 

Despite the in vitro evidence of the potential role of HT as a neuroprotective agent, there is, 

unfortunately, little in vivo research focused on HT itself as a therapeutic target in neurodegenerative 

diseases (Table 2). In order to be a good candidate as a potential treatment in neurodegenerative 

diseases, HT should be able to cross the blood-brain barrier and reach the brain. As previously 

mentioned, the ability of HT to cross this barrier was first described by D’Angelo et al. [56]. In these 

experiments, 14C-labelled HT was injected (1.5 mg/kg, i.v.) into rats and later detected in reduced 

amounts in the brain [56]. Subsequently, another research group detected and quantified free HT in 

brain microdialysates of anesthetized rats treated with high doses of HT (100 mg/kg, i.v.) [103]. It is 

worth mentioning that in order to obtain accurate measurements of brain polyphenols exposure, 

exsanguination and perfusion are required and, if not possible, the values need to be corrected for 

residual blood in the brain. This is of importance since some phenols found in the brain come from 

animal experiments that were performed without perfusion [104].  

Although the studies evaluating HT neuroprotective effects in animal models are scarce, they provide 

very useful information in order to evaluate the potential action of this compound in the treatment of 

neurodegenerative diseases.  

In the case of olive oil, extra virgin olive oil (EVOO) was administered to SAMP8 mice for 6 weeks 

and resulted in beneficial effects towards the learning and memory deficits that characterize this strain 

of mice. The increase in GSH levels, higher superoxide dismutase and GSH reductase activities, and 

decreased levels of 4-hydroxynonenal and 3-nitrotyrosine suggested that the effects were mediated by 

reversing oxidative damage in the brain [105]. 

The effect of oral administration of EVOO and HT on brain oxidative stress has also been studied in 

a Huntington disease-like model on Wistar rats. The results show that EVOO and HT reduce lipid 

peroxidation and increase cellular GSH as a natural mechanism for enhancing protection against oxidative 

damage by acting as brain antioxidants [106]. 

In another study, the effects of an eight-week dietary supplementation of oleuropein aglycone  

(50 mg/kg) were examined in young (1.5 month-old) and middle-aged (4 month-old) transgenic TgCRND8 

mice (a model of Aβ deposition). The treatment strongly improved their cognitive performance, reduced 

brain Aβ levels and plaque deposits, and suggested that the oleuropein aglycone mechanism of action 

involved the mTOR pathway [107]. The same study and model was extended to aged mice (10 month-old). 

The results evidenced that the age-dependent deposition of toxic Aβ was reduced in the group whose 

diet was supplemented with oleuropein aglycone. This reduction was parallel to a reduction in glutaminyl 

cyclase expression (the enzyme that catalyzes the formation of Aβ peptides), an activation of neuronal 

autophagy, and an improvement of synaptic plasticity [108].  

In a recent study, C57BL/6 mice were injected with oligomeric Aβ1–42 plus ibotenic acid to induce 

neuro-behavioral dysfunction. After treatment, a severe impairment in the visuospatial and working 

memories took place. However, an HT treatment of 10 mg/kg for 14 days significantly improved 

spatio-cognitive performances. Further research regarding the neuroprotective mechanisms showed 

that, in hippocampal neurons, HT treatment was able to reverse the dysregulation of the signaling 

mechanisms. These include ERK-MAPK/RSK2, PI3K/Akt1, and JAK2/STAT3 survival signaling 

pathways. Interestingly, the authors also found that HT down-regulated NF-κB [109]. 
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Table 2. In vivo studies related to hydroxytyrosol (HT) neuroprotective effects. 

Authors and Reference Animal Model Treatment Results Conclusions 

Farr et al., 2012 [105] 
SAMP8 mice  

11 month old 

EVOO containing 210 mg/Kg phenolic 

compounds p.o., 75 µL, 6 weeks 

↓ T-Maze retention  

↑ Memory in object recognition  

↑ GSH levels  

↑ GSH reductase activity  

↑ SOD activity  

↓ 4-HNE and 3-NT 

Reversion of learning and  

memory impairments 

Tasset et al., 2011 [106] 

Wistar rats  

(only ♂)  

3 months old 

(i) Induction of oxidative stress  

with 3-NP, i.p. 20 mg/kg, 4 days  

(ii) EVOO and HT (2.5 mg/kg/day, 

p.o., 14 days 

↓ Lipid peroxidation  

↑ GSH levels  

↑ Succinate dehydrogenase activity 

Reversion of oxidative damage 

induced by 3-NP 

Grossi et al., 2013 [107] 

and Luccarini et al.,  

2014 [108] 

Double transgenic 

TgCRND8 mice  

(♂ and ♀)  

1.5 month old, 4.5 month 

old, and 10 month old 

Oleuropein aglycone  

(50 mg/kg of diet)  

8 weeks 

↑ Cognitive performance  

↓ Brain Aβ levels  

↓ Aβ aggregation  

↓ Plaque deposits  

↑ Neuronal autophagy  

↑ Histone acetylation 

Oleuropein avoids Aβ aggregation 

and improves synaptic function 

Arusundar et al.,  

2014 [109] 

C57BL/6 mice  

(only ♂)  

6–8 weeks old 

(i) Induction of neurobehavioral 

dysfunction with oligomeric Aβ1–42 

plus ibotenic acid, i.c.v., 1 µL  

(ii) HT (10 mg/kg/day, p.o., 14 days) 

↑ Spatial cognition  

Stabilization of the dysregulation 

of survival signaling pathways 

HT attenuates the spatio-cognitive 

deficits induced by oligomeric  

Aβ1–42 plus ibotenic acid 

Zheng et al., 2014 [110] 
Sprague–Dawley rats  

(♂ and ♀) 

(i) HT 10 and 50 mg/kg/day, p.o.,  

2 weeks before mating  

(ii) Exposition to restraint stress  

(days 14–20 of pregnancy) 

↑ Cognitive function of  

male offspring  

Modulation of mitochondrial 

content and phase II enzymes 

HT restores learning capacity and 

memory performance, promoting 

cognitive function 

Abbreviations: EVOO: Extra virgin olive oil; GSH: glutathione; 4-HNE: 4-hydroxynonenal; i.c.v., intracerebroventricular; i.p., intraperitoneal, 3-NP: 3-nitropropionic 

acid; 3-NT: 3-nitrotyrosine; SOD: Superoxide dismutase; p.o., oral administration. 
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Finally, it has been recently described that the maternal administration of HT to rats (10 and  

50 mg/kg/day, gavage) is able to restore the impaired neurogenesis and cognitive function caused by 

prenatal stress. In these experiments, exposure to restraint stress during pregnancy led to impairment in 

learning capacity and memory of the offspring. Analysis of the hippocampus showed that stress induced 

a down regulation of neural proteins (such as BDNF, GAP43, and synaptophysin), a low expression of 

glucocorticoid receptor, and a decrease in the antioxidant defense system (including Nrf2, superoxide 

dismutase, and HO-1). It is of interest that HT treatment could prevent both cognitive impairment and 

biochemical alterations [110]. Additional in vivo studies focused on oleuropein aglycone and its 

potential effectiveness against AD has recently been reviewed by Casamenti et al. [111]. 

5. Clinical Trials 

To the best of our knowledge, up to the present date, no clinical trials have been carried out to 

investigate HT as a therapeutic tool in the secondary prevention of neurodegenerative diseases. We 

have identified three ongoing clinical trials: (i) a Phase I clinical trial on multiple sclerosis, in which 

the benefits of different dietary supplements (including HT) are being researched (NCT01381354), (ii) a 

nutritional intervention study aiming to evaluate HT effects on phase II enzymes in healthy subjects 

(NCT02273622) and (iii) an interventional pilot study evaluating the capacity of HT to prevent breast 

cancer in women at high risk of suffering this pathology (NCT02068092). 

6. Other Olive Oil Minor Components with Important Biological Activities 

6.1. Triterpenic Acids 

Oleanolic acid, maslinic acid, ursolic acid, and betulinic acid (Figure 4) are pentacyclic triterpenes 

that are present in small amounts of olive oil. Several studies have demonstrated that these compounds 

have anti-inflammatory, antioxidant, antihypertensive, antihyperlipidemic, antidiabetic, antiviral, and 

antitumoral properties [112]. Recent research suggests that they also have neuroprotective effects.  

In this sense, maslinic acid neuroprotective effects have been reported in cortical neurons against 

oxygen–glucose deprivation-induced injury and glutamate toxicity [113,114]. Additionally, it has been 

described that oleanolic acid protects the brain during hypoxic injury in rats [115] and that ursolic acid 

protects the brain against ischemic injury in mice via Nrf2 activation [116]. 

6.2. (−)-Oleocanthal 

(−)-Oleocanthal (Figure 1) is a phenolic compound found mainly in freshly pressed EVOO. It is 

responsible for the bitter taste of EVOO and has shown an anti-inflammatory activity via COX inhibition 

similar to that of ibuprofen [117]. In vitro studies have identified this compound as a therapeutic  

tool for the control of metastatic cancers [118]. Oleocanthal has recently been proposed as a potential 

neuroprotective agent against AD due to its ability to reduce the polymerization of tau protein [119–121], 

reduce Aβ aggregation [122], and enhance Aβ clearance from the brain [123].  

Although these results are of interest, there is a lack of information concerning oleocanthal 

pharmacokinetics and metabolism, which is needed in order to appropriately evaluate the biological 

activities that this compound may have in humans. 
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Figure 4. Chemical structures of triterpenic acids present in olive oil. 

7. Concluding Remarks 

Nutrition can contribute to prevent chronic physiopathological conditions including diabetes, cancer, 

atherosclerosis, and cardiovascular and neurodegenerative diseases [124]. The MD has been associated 

with a reduced incidence of neurodegenerative diseases and enhanced cognitive performance [4,13,14]. 

This fact has attracted researchers’ attention and there have been a number of reports trying to identify 

which components and microconstituents of this diet, including phenolic compounds, are responsible 

for these beneficial health effects. In this review we have analyzed the current evidence of HT, one of 

the active compounds present in olive oil that could be, in part, behind the neuroprotective effects 

attributed to the MD. Some other minor components of olive oil (triterpenes and oleocanthal) have also 

been briefly considered. 

Some caution is required before attributing biological activities to a compound. Recently, a prospective 

cohort study of almost 800 adults and 9 years of duration concluded that resveratrol levels achieved 

with diet did not have an influence on health status or mortality risk [125]. This, and other studies  

have shown that, despite displaying biological effects, resveratrol has no proven human activity [126]. 

This fact shows how some interesting results that take place in in vitro studies and animals, do not 

always translate in humans and evidences that in vivo studies in humans are of utmost importance.  

Toxicity studies have shown that HT is a safe compound this is of interest in the context of 

preparing nutraceuticals with doses higher than the ones compatible with the MD [127,128]. The 

thorough analysis of the pharmacokinetic properties and safety profile, as well as the in vitro and  

in vivo neuroprotective actions, make HT a good potential therapeutic candidate for the prevention of 

neurodegenerative diseases. However, several considerations should be taken into account: (i) although 

there is a wide variety of basic research (mainly in vitro and less in vivo) that demonstrates HT 

neuroprotective effects, further applied research in humans is needed to verify that the discoveries 
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generated in research laboratories can be translated into practical clinical recommendations;  

(ii) attributing the beneficial effects of a well-known healthy diet to a single compound is misleading, 

even if interfering variables are eliminated. It is evident that other components present and lifestyle 

factors are likely to contribute to the healthy pattern associated with the MD.  

Bearing the previous considerations in mind, the scientific knowledge available indicates that HT is 

one of the most important antioxidants present in olive oil and presents promising potential in the 

prevention of neurodegenerative disorders. Further research is needed to demonstrate to what extent 

this compound contributes to presumed neuroprotective effects of olive oil and MD, and to the 

management of neurodegenerative diseases. 
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