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Abstract: Nucleoside 2'-deoxyribosyltransferase (NDT) from the psychrophilic bacterium 

Bacillus psychrosaccharolyticus CECT 4074 has been cloned and produced for the first 

time. A preliminary characterization of the recombinant protein indicates that the enzyme 

is an NDT type II since it catalyzes the transfer of 2'-deoxyribose between purines and 

pyrimidines. The enzyme (BpNDT) displays a high activity and stability in a broad range 

of pH and temperature. In addition, different approaches for the immobilization of BpNDT 

onto several supports have been studied in order to prepare a suitable biocatalyst for the 

one-step industrial enzymatic synthesis of different therapeutic nucleosides. Best results 

were obtained by adsorbing the enzyme on PEI-functionalized agarose and subsequent 

cross-linking with aldehyde-dextran (20 kDa and 70% oxidation degree). The immobilized 
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enzyme could be recycled for at least 30 consecutive cycles in the synthesis of  

2'-deoxyadenosine from 2'-deoxyuridine and adenine at 37 °C and pH 8.0, with a 25% loss 

of activity. High conversion yield of trifluridine (64.4%) was achieved in 2 h when 20 mM 

of 2'-deoxyuridine and 10 mM 5-trifluorothymine were employed in the transglycosylation 

reaction catalyzed by immobilized BpNDT at 37 °C and pH 7.5. 

Keywords: nucleoside 2'-deoxyribosyltransferase; Bacillus psychrosaccharolyticus; 

enzyme immobilization; nucleoside synthesis; trifluridine 

 

1. Introduction 

Nucleoside analogs can be recognized as physiological molecules and be incorporated into DNA 

and RNA, consequently inhibiting cellular division and viral replication [1]. In this sense, some 

nucleoside analogs are actually used as therapeutic agents in inhibition of cancer cell growth, 

inhibition of viral replication or immunosuppression [1]. Non-natural nucleosides can be synthesized 

by conventional chemical methods which include many protection and deprotection steps [2], and the 

use of contaminant organic solvents. On the contrary, enzymatic synthesis of these compounds has 

arisen as a friendly environmental approach, reducing time-consuming steps and increasing stereo- and 

regioselectivity compared to chemical synthesis. Nucleoside phosphorylases (NPs), as well as 

nucleoside 2'-deoxyribosyltransferases (NDTs), are multimeric enzymes, which can be employed in the 

enzymatic synthesis of nucleosides by mediating the transfer of glycosyl residues to acceptor bases [3,4]. 

Nevertheless, NDTs (EC 2.4.2.6) offer many advantages in nucleoside analogs synthesis compared to 

NPs, since the former ones catalyze the one-step transfer of the deoxyribosyl moiety between  

2'-deoxyribonucleosides independently of the type of base (both purines and pyrimidines) [5]. As a 

matter of fact, the strict substrate specificity of NPs narrows the number of their possible applications [6]. 

The main microbial source of NDTs for nucleoside enzymatic synthesis comes from different 

species of Lactobacillus, such as L. helveticus [7], L. leichmannii, L. fermentum [8], and L. reuteri [9]. 

In addition, extremophiles have also shown the presence of NDTs with applicability in nucleoside 

synthesis [10,11]. In this sense, cold-adapted microbial enzymes are described to be more productive 

at low temperatures than their mesophilic or thermophilic counterparts [12]. The psychrophilic 

microorganism Bacillus psychrosaccharolyticus (CECT 4074, ATCC 23296, DSM 6) has been 

reported to display nucleoside 2'-deoxyribosyltransferase activity [10], demonstrating that this 

facultative anaerobic Gram-positive bacterium could be a NDT source. In this sense, the genome of  

B. psychrosaccharolyticus has been recently published and the ndt gene that codifies a putative NDT 

has been identified in its genome [13]. 

It should be remarked that the use of immobilized enzymes could be one of the most important 

steps that should be pursued in order to move from a new enzyme towards an efficient biocatalyst. 

This aspect should be particularly considered in the case of multimeric enzymes that show a very poor 

stability in some of the conditions required for the development of efficient preparative processes. 

Immobilization on glyoxyl-agarose might accomplish highly stabilized biocatalysts due to multipoint 

covalent attachment of the enzyme (via imino-bonds formation) to the support [14]. This strategy has also 
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been successfully used for immobilization and stabilization of multimeric enzymes [14–17]. However, this 

interaction could be often responsible of a remarkable loss of activity as a consequence of a strong 

distortion of the 3D structure of the enzyme. 

PEI-functionalized supports have been also recently employed for the immobilization of multimeric 

enzymes followed by cross-linking with aldehyde-dextran in order to prevent subunit dissociation that 

leads to enzyme deactivation and even product contamination [18,19]. In this case, the use of PEI-coated 

carriers ensures a strong ionic interaction with the enzyme avoiding distortion of its 3D structure and other 

limitations typical of covalent immobilization [20]. Similarly, the use of aldehyde macromolecules (such 

as properly oxidized dextrane) allows the stabilization of the enzyme-carrier interaction by  

cross-linking, preventing enzyme subunit dissociation. 

In this work, cloning, production, purification and functional characterization of a novel NDT from 

psychrophilic Bacillus psychrosaccharolyticus (hereafter abbreviated as BpNDT) in E. coli BL21 (DE3) 

are reported. In addition, different approaches for the immobilization of BpNDT onto several carriers 

have been studied in order to prepare an improved biocatalyst for the one-step enzymatic synthesis of 

the therapeutic valuable trifluridine. 

2. Results and Discussion 

2.1. Cloning, Expression and Purification of Nucleoside 2'-Deoxyribosyltransferase from  

Bacillus psychrosaccharolyticus 

The ndt gene encoding BpNDT was amplified by PCR, cloned, and overexpressed in  

Escherichia coli BL21 (DE3). The recombinant BpNDT was purified from the cell extract by three 

chromatographic steps consisting of an anionic-exchange chromatography, a molecular size exclusion 

chromatography, and finally an isofocusing chromatography, as described in the Experimental Section. 

As result of the purification process, a total of 9.8 mg of pure BpNDT per L of broth was obtained. A 

single protein band with an apparent molecular mass of 16 kDa was detected by SDS-PAGE (Figure 1).  

Size exclusion chromatography of pure BpNDT on Sepharose 12 10/300 GL column (GE 

Healthcare) indicated that the native enzyme could be a homohexameric protein of 91.4 kDa, the same 

oligomerization state as most described NDTs [7,21–25], with the exception of the tetrameric L. lactis 

subsp. lactis NDT [26]. 

2.2. Functional Characterization of Recombinant BpNDT 

Nucleoside 2'-deoxyribosyltransferases are classified into two classes depending on their substrate 

specificity: NDT type I (PDT) specific for purines (Pur ↔ Pur) and NDT type II (NDT), which 

catalyzes the transfer between purines and/or pyrimidines (Pur ↔ Pur, Pur ↔ Pyr, Pyr ↔ Pyr) [7,22,27]. 

In order to determine which type of 2'-deoxyribosyltransferase activity was displayed by recombinant 

BpNDT, different reactions with ribo- and 2'-deoxyribonucleosides were performed (dUrd + Ade, Ino 

+ Ade, Urd + Ade, dUrd + Thy). As result of experiments, BpNDT should be classified as a NDT type 

II (NDT) since it could catalyze the transfer of 2'-deoxyribonucleosides between both purines and 

pyrimidines, however, it was not able to interchange the deoxyribosyl moiety between ribonucleosides 

(Table 1) and is free of nucleoside phosphorylases traces. 
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Figure 1. SDS-PAGE of different purification steps of BpNDT produced by E. coli BL21 

(DE3). Lane 1, broad range molecular weight standards from BioRad. Lane 2, 30 μg of 

protein after sonication. Lane 3, 30 μg of protein after anionic exchange chromatography 

on Bio-Scale Mini UNOsphere Q cartridge. Lane 4, 10 μg of protein after size-exclusion 

chromatography on Superose 12. Lane 5, 10 μg of protein after chromatofocusing on Mono P.  

 

Table 1. Nucleoside 2'-deoxyribosiltransferase activity of BpNDT. 

dUrd + Ade Ino + Ade Urd + Ade dUrd + Thy 

+ − − + 

Experimental conditions: 0.40 μg of enzyme were incubated at 40 °C for 5 min with 40 μL of 10 mM 

substrates in 50 mM MES buffer, pH 6.5. 

The determination of the optimal conditions for activity of pure BpNDT included studies of the 

influence of pH, ionic strength (I) and temperature on enzyme activity. In order to study the influence of 

pH on enzyme activity, the synthesis of thymidine (Thd) from 2'-deoxyuridine (dUrd) and thymine (Thy) 

was selected as the standard reaction due to pKa values of thymine (9.7) and uracil (9.2), which 

guarantees the correct protonated form of nucleosides and bases in solution at the pH range assayed 

(from 4.0 to 9.0). As shown in Figure 2, the enzyme was stable in a pH range from 6.0 to 9.0, it 

retained more than 85% activity at pH 10 and it showed optimal activity at pH 8.0. 

Ionic strength (I) effect on BpNDT activity was studied by adding different concentrations of NaCl 

in the reaction medium. Highest activity was maintained up to 1.0 M NaCl, whereas activity decreased 

25% in presence of 1.5 M NaCl. As far as temperature is concerned, the BpNDT activity was studied 

in the range from 4 to 80 °C, being most active at 50 °C (Figure 3). Thermal stability was analyzed by 

incubating the enzyme at temperatures ranging from 4 to 90 °C during 15 min, and the results 

indicated that recombinant BpNDT was stable only up to 50 °C. These results are surprising for an 

enzyme from a psychrophilic microorganism. This behavior has also been reported for other enzymes 

from B. psychrosaccharolyticus [28], pointing out that this microorganism should be considered a 

psychrotolerant bacterium. 

2.3. Immobilization of Recombinant BpNDT 

Different immobilization strategies have been attempted to prepare a robust biocatalyst of  

the multimeric NDT from B. psychrosaccharolyticus, including (i) covalent attachment to  
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glyoxyl-agarose, and (ii) ionic adsorption to supports functionalized with polyethyleneimine (PEI) and  

post-immobilization techniques.  

Figure 2. pH dependence of BpNDT activity. Effect of pH on the BpNDT activity () and 

stability () 0.4 µg of enzyme were incubated with 40 µL of 10 mM dUrd and Thy in 10 mM 

citrate-phosphate buffer for 5 min, 40 °C. The ionic strength (I) at each pH was adjusted to 

150 mM by addition of NaCl.  

 

Figure 3. Stability in presence of 20% DMF of free BpNDT (), immobilized BpNDT on 

PEI-agarose (), immobilized BpNDT on PEI-agarose followed by cross-linking (1 h) 

with 50% oxidized aldehyde-dextran (), and immobilized BpNDT on PEI-agarose 

followed by cross-linking (1 h) with 70% oxidized aldehyde-dextran (). 
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2.3.1. Covalent Immobilization of BpNDT on Glyoxyl-Agarose 

Covalent attachment of BpNDT to glyoxyl-agarose was carried out at two different temperatures 

(25 °C or 4 °C) and pH 10. Likewise, 2'-deoxyuridine (dUrd) was optionally incorporated as a 

protective additive during the immobilization process in order to avoid possible distortions of the 

enzyme active site structure upon interaction with the activated carrier (see Experimental Section). In 

alkaline conditions (pH 10), immobilization takes place between aldehyde groups of the support and  

ε-amino groups of lysines, mostly located on the enzyme surface. The formed imino bonds are weak 

Schiff bases, which are finally reduced into stable single C-N bonds by the addition of NaBH4. 

As shown in Table 2, BpNDT could be bound to glyoxyl-agarose in all cases, achieving best results 

when immobilization was conducted at 25 °C in absence of dUrd as additive (55.9% of immobilization 

yield). However, most of the immobilized biocatalysts were void of activity, with the exception of the 

derivative that was obtained at 4 °C, but its activity was negligible after NaBH4 reduction (2.6% 

recovered activity). High immobilization yields, but analogous enzyme inactivation, were also 

obtained after binding of uridine phosphorylase (EC 2.4.2.3) from Bacillus subtilis (BsPyNP), (0% 

recovery) [15] and thymidine phosphorylase (EC 2.4.2.4) from E. coli (EcTP) (6% recovery) [29] on 

the same support. Such drastic enzymatic loss may be ascribed to the distortion of the protein structure, 

or even subunit dissociation of these enzymes, caused by their multipoint attachment to highly 

activated glyoxyl-agarose. In the case of tetrameric purine nucleoside phosphorylase (EC 2.4.2.1) from 

Bacillus subtilis (BsPNP), inosine was added in order to stabilize this multimeric enzyme during 

covalent attachment to glyoxyl-agarose, but enzyme binding was not achieved [15]. 

Table 2. Immobilization of BpNDT on glyoxyl (covalent) and PEI (ionic adsorption) 

activated carriers. 

Carrier 
Immobilization 

Conditions 
Immobilized 

Enzyme a (%) 
Offered 

Activity (IU) b 
Final 

Activity b 
Recovered 

Activity (%) c 

Glyoxyl-agarose 25 °C 55.9 8.6 0 0 
Glyoxyl-agarose 4 °C 44.7 8.6 0.22 2.6 
Glyoxyl-agarose 25 °C + dUrd d 33.8 8.6 0 0 
Glyoxyl-agarose 4 °C + dUrd d 27.0 8.6 0 0 

PEI-agarose 25 °C 100 11.3 11.3 100 

PEI: polyethylenimine (MM 600 Da); Covalent immobilization on glyoxyl-agarose was performed at pH 10, 

while adsorption on PEI-carriers was performed at pH 7.5; a Relative amount of bound enzyme to the support 

with respect to the initial amount of enzyme prior to the immobilization process; b IU/g wet carrier;  
c (Activity of immobilized NDT/loaded activity) × 100; (Activity assay: synthesis of 2'-deoxyadenosine from 

2'-deoxyuridine and adenine; see Experimental Section); d Addition of 2'-deoxyuridine as a protective 

additive during immobilization. 

2.3.2. Immobilization of BpNDT on PEI-functionalized Supports 

A different immobilization approach was chosen in order to keep the BpNDT quaternary structure 

unaltered, in attempt to maintain the correct assembly of the oligomeric form, and thus preserving the 

enzyme activity as much as possible. In this sense, ion exchange of enzymes on PEI-coated supports 

was chosen as a simple non-distorting immobilization method that allows the full coverage of 
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multimeric enzymes by the flexible branches of polyethylenimine. In fact, PEI is a polycationic 

polymer whose high density of ionized amino groups allows a strong ionic exchange with anionic 

groups (carboxylic groups of both aspartate and glutamate residues) of enzyme surface located in 

different subunits [30]. In our case, hydrophilic agarose functionalized with branched PEI (MM 600 Da) 

were used for BpNDT immobilization at 25 °C and pH 7.5, taking into account that pI of the enzyme is 

4.6. As shown in Table 2, a complete enzyme adsorption was quickly achieved (after 1 h), and enzyme 

activity was barely affected by the immobilization process. Our results indicate that immobilization of 

BpNDT on PEI-coated agarose was efficiently performed without negatively affecting the oligomeric 

structure of the enzyme and, therefore, preserving its catalytic activity. Similar immobilization yields 

were obtained with trimeric BsUP [15], dimeric EcTP [29], and hexameric purine nucleoside 

phosphorylase from Aeromonas hydrophila (AhPNPII) [17] immobilized on PEI-coated carriers, 

activity recovery of all these biocatalysts was higher than 85%.  

Nevertheless, immobilized biocatalysts obtained by ionic exchange of enzymes to charged supports 

could be characterized by a non-optimal stability and may frequently suffer from protein leakage from 

the carrier, causing loss of activity of the enzyme derivative and product contamination. The last fact is 

actually an important drawback related to the industrial application of immobilized enzymes in the 

production of nucleoside analogs [31,32]. In this sense, post-immobilization techniques, such as 

aldehyde-dextran cross-linking of adsorbed enzymes to charged supports, have been addressed as an 

efficient approach to overcome such problems [33]. In our case, immobilized BpNDT on PEI-coated 

supports was further cross-linked with aldehyde-dextran in order to prevent enzyme desorption. This 

approach has been successfully used in the case of BsPyNP [15] and EcTP [29], allowing the 

preparation of stable biocatalysts active in enzymatic transglycosylations [34]. Aldehyde-dextran is a 

polyaldehyde macromolecule, which can react with both free amino groups from the enzyme and the 

PEI-coated support, affording a covalent multipoint cross-linking between the protein subunits and the 

carrier. Again, the formed covalent imino bonds are weak Schiff bases, which can be reduced with 

NaBH4 to yield single bonds [33,34]. As shown in Table 3, the influence of the oxidation degree (20%, 

50% or 70%) of aldehyde-dextran (20 kDa) on the activity of the immobilized BpNDT has been 

evaluated. Likewise, the cross-linking time of the post-immobilization process were also studied. 

Firstly, the overall post-immobilization process generally decreased the activity of all immobilized 

biocatalysts, compared to the enzyme solely adsorbed to PEI-coated supports. This effect was higher 

when the cross-linking time and the oxidation degree of the dextran were increased. In such 

conditions, the activity of these immobilized biocatalysts was low (≤0.5 IU and less than 6% 

recovery), as a consequence of the high number of multiple bonds between the oxidized dextran and 

the immobilized enzyme. In fact, a higher degree of oxidation is correlated with a higher density of 

aldehyde groups, which are more likely to react at a longer cross-linking time, and the result would 

presumably be a distorting effect on enzyme conformation. As expected, activity of immobilized 

enzyme on PEI-agarose was increased at a shorter cross-linking time (1 h) employing aldehyde-dextran 

with the lowest oxidation degree (20%). 
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Table 3. Immobilization of BpNDT on PEI-functionalized agarose and cross-linking with 

aldehyde-dextran (MM 20 kDa). 

Entry 
Offered Activity Per 

Gram of Support (IU) 

Dextran 

Oxidation (%) 

Cross-Linking Time with 

Dextran (Protective Additive) 

Final 

Activity a 

Recovered 

Actsivity (%) b 

1 6.1 20 1 h 2.3 37.7 

2 6.1 50 1 h 2.2 36.1 

3 6.1 50 2 h 2.0 32.8 

4 6.1 50 4 h 0.3 4.9 

5 8.7 70 1 h 1.8 20.7 

6 8.7 70 2 h 0.5 5.7 

7 8.7 70 4 h 0.3 3.4 
a IU/g wet carrier; activity assay: synthesis of 2'-deoxyadenosine from 2'-deoxyuridine and adenine (see Experimental 

Section); b (Activity of immobilized NDT/loaded activity) × 100.  

2.3.3. Stability of Immobilized BpNDT 

The optimization of an enzyme-catalyzed synthesis of nucleoside analogs usually includes the 

evaluation of enzyme stability in non-physiological condition. In particular, the presence of  

water-miscible organic co-solvents has been evaluated, since solubility of halogenated bases and their  

2'-deoxyribonucleosides counterparts can be improved in such conditions [35]. Therefore, stability of 

free and immobilized BpNDT was studied in the presence of dimethylformamide (DMF), which is one 

of the most commonly used solvents for nucleoside synthesis. As depicted in Figure 3, residual activity 

of the free enzyme was maintained for at least 48 h in presence of 20% DMF, whereas the derivative 

obtained by adsorption on PEI coated carrier was completely unstable, losing almost all the activity 

after only 2 h. This detrimental effect, which may be related to a change in enzyme microenvironment 

exerted by the PEI, is progressively attenuated by increasing the oxidation degree of the aldehyde-dextran 

used in the post immobilization cross-linking process. In particular, the best stability was obtained 

using dextrane oxidized at 70% as probable consequence of a stabilization of the 3D structure of the 

enzyme. This immobilized biocatalyst, hereafter abbreviated as PA9BpNDT, was selected for further 

characterization and application in the synthesis of trifluridine. 

2.3.4. Effect of Temperature on the Activity of Immobilized BpNDT 

Enzymatic activity of the best immobilized BpNDT biocatalyst (PA9BpNDT) was increased from 

20 to 60 °C at pH 8.0, and then decreased very quickly as a result of the protein denaturation (Figure 4). 

Optimal temperature for the free soluble enzyme in the same conditions is 10 °C lower than its 

immobilized counterpart. This result could be another consequence of an enzyme rigidification 

induced by the covalent crosslinking performed with oxidized-dextran. Comparing with other 

immobilized NDTs, highest activity of NDT from L. reuteri (LrNDT) covalently immobilized on 

epoxy-activated Sepabeads was displayed at 40 °C and pH 6.5 [36], whereas the same enzyme 

covalently attached to magnetic chitosan beads showed best performance at 60 °C and pH 6.5 [37]. In 

addition, these results indicate that soluble BpNDT preserves 45% of its maximal activity at 20 °C 

whereas mesophilic LrNDT only maintains 20% at the same temperature [9], confirming that BpNDT 

is a more suitable enzyme for synthesizing nucleosides at low temperatures than that from a 
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mesophilic microorganism. The experimental results of the effect of temperature were also used to 

estimate the activation energies (see Experimental Section). In this sense, although optimal 

temperature for the immobilized enzyme was 10 °C higher than that of free BpNDT, the energy of 

activation of the immobilized BpNDT (Ea = 23.2 kJ/mol) and free enzyme (Ea = 23.6 kJ/mol) were 

almost identical. This result indicates that the immobilization process does not affect enzyme catalysis. 

Figure 4. Effect of temperature on enzyme activity of free () and immobilized () 

BpNDT (PA9BpNDT biocatalyst). Enzyme activity was assayed in 50 mM HEPES buffer 

pH 8, as described in the Experimental Section. 

 

2.3.5. Recycling of Immobilized BpNDT 

Unlike free enzymes, recycling of their immobilized counterparts offers technical and economical 

advantages in industrial bioreactors. Therefore, the best immobilized BpNDT biocatalyst 

(PA9BpNDT) was evaluated by measuring its activity in consecutive standard assay cycles. Our 

immobilized biocatalyst could be recycled for at least 30 consecutive cycles in the synthesis of  

2'-deoxyadenosine from 2'-deoxyuridine and adenine at 37 °C and pH 8.0, with only 25% loss of 

activity (results not shown). 

2.4. Synthesis of Trifluridine Catalyzed by Immobilized BpNDT 

5-Trifluorothymidine (5-tFThd, trifluridine) is a nucleoside analog primarily used in ophthalmic 

solutions for topical treatment of epithelial keratitis caused by herpes simplex virus (HSV) [38]. This 

compound also exhibits potent antitumor activity since it induces double-stranded DNA breaks and 

inhibits thymidylate synthase [39]. As a matter of fact, administration of the oral agent TAS-102 

consisting of trifluridine in combination with a potent inhibitor of thymidine phosphorylase (which is 

the enzyme that degrades trifluridine), is currently undergoing a Phase III clinical trial with patients 

with refractory metastatic colorectal cancer (RECOURSE; NCT01607957) [40].  

As depicted in Figure 5, synthesis of trifluridine from 2'-deoxyuridine (dUrd) and trifluorothymine 

(5-tFThy) was carried out by using the best immobilized BpNDT biocatalyst (PA9BpNDT) in 10 mM 



Molecules 2014, 19 11240 

 

 

potassium phosphate buffer pH 7.5 at 37 °C. We analyzed the effect of substrate molar ratio, as well as 

substrate concentration, on conversion at 2 h reaction time and productivity (Table 4). 

Figure 5. Synthesis of 5-trifluorothymidine (trifluridine) from 2'-deoxyuridine and  

5-trifluorothymine by immobilized nucleoside 2'-deoxyribosyltransferase from Bacillus 

psychrosaccharolyticus (BpNDT). 
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As observed, best conversion to trifluridine (64.4%) was achieved when 20 mM of dUrd and 10 mM 

5-tFThy (2:1 ratio) were employed in the transglycosylation reaction. Although conversion was 

slightly decreased, productivity was higher (5.56 mM/h) when molar ratio was 1:1 at 20 mM substrate 

concentration compared to 2:1 molar ratio (2.92 mM/h). Similar conversions have been recently 

reported for the enzymatic synthesis of trifluridine catalyzed by immobilized pyrimidine nucleoside 

phosphorylase from Bacillus subtilis (57%) or thymidine phosphorylase from Escherichia coli (51%) 

requiring considerably longer reaction times [35], or by immobilized NDT from L. reuteri (LrNDT) on 

magnetic chitosan beads (40%) at the same reaction time [37]. It is worth mentioning that immobilized 

BpNDT showed a specific activity of 11.3 IU/g in trifluridine synthesis at 37 °C and pH 7.5 when 

molar ratio was 1:1 at 1 mM concentration of both sugar donor (dUrd) and acceptor (5tFThy). Such 

specific activity is approximately 140-fold higher than the one displayed by immobilized LrNDT on 

Sepabeads in the same conditions but at 40 °C and pH 6.5 [36].  

Table 4. Effect of substrate molar ratio and concentration on the enzymatic synthesis of 

trifluridine (5-tFThd) catalyzed by immobilized BpNDT. 

dUrd (mM) 5-tFThy (mM) Conversion (%) 5-tFThd (mM) Productivity (mM/h) 

2 2 49.2 0.98 0.49 
20 10 64.4 6.44 3.22 
10 10 58.3 5.83 2.92 
20 20 55.6 11.12 5.56 

Experimental conditions: reactions were carried out by incubating the immobilized biocatalyst with 5 mL of 

dUrd and 5-tFThy at different concentrations in 10 mM potassium phosphate buffer pH 7.5 at 37 °C for 2 h. 

3. Experimental Section 

3.1. Chemicals 

2'-Deoxyuridine (dUrd) was a gift from Pro.Bio.Sint (Varese, Italy) whereas adenine (Ade) and  

2'-deoxycytidine (dCyd) were purchased from Sigma. 5-trifluorothymine (5-tFThy) and  
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5-trifluorothymidine (5-tFdThd) was from Carbosynth Ltd. (Berkshire, UK). Cross-linked 6% agarose 

beads (Sepharose 6BCL) were from Amersham Biosciences AB (Uppsala, Sweden). Epoxy-activated 

Sepabeads (EC-EP) was kindly donated by Resindion s.r.l. (Binasco, Milano, Italy). Branched 

polyethylenimine (PEI) with 600 Da molecular mass, and dextran with 20 kDa molecular mass was 

from Sigma-Aldrich (Milano, Italy). All other reagents and solvents (HPLC grade) were purchased 

from Sigma-Aldrich (Milano, Italy). 

3.2. Cloning and Expression of the ndt Gene Encoding Nucleoside 2'-Deoxyribosyltransferase from 

Bacillus psychrosaccharolyticus CECT 4074 

The ndt gene encoding nucleoside 2'-deoxyribosyltransferase from B. psychrosaccharolyticus was 

amplified by PCR using chromosomal DNA from B. psychrosaccharolyticus CECT 4074 as a 

template, obtained as described by Kieser [41]. Two synthetic primers were designed according to the 

sequence of B. psychrosaccharolyticus genome [13], 5'-CCCATGGCGAAAATTTACCTAGCTTCA 

CCAT-3' and 5'-GGAATTCTTATTTAACTGCTTTTAAGTACGGTTTAATAGG-3', containing the 

restriction sites of NcoI and EcoRI (underlined). DNA amplification was performed under standard 

conditions in a Mastercycler thermocycler (Eppendorf) using Pfu DNA polymerase. The amplified 

0.43-kb product was inserted into a pET28a(+) vector, purified with the High Pure Plasmid Isolation 

Kit (Roche) and sequenced to confirm the absence of mutations by SECUGEN S.L. (Spain) according 

to dideoxy chain termination method [42] with an automated sequencer, 3730 DNA Analyzer (Applied 

Biosystems). This recombinant plasmid was used to transform competent E. coli BL21 (DE3) cells.  

3.3. Overproduction and Purification of Recombinant BpNDT 

E. coli BL21 (DE3) cells harboring pET28Bpndt were grown on LB medium at 37 °C with 

kanamycin 50 μg/mL. When the culture reached 0.6 OD600 nm, it was induced with 0.5 mM IPTG for 

2.5 h. After that, cells were harvested by centrifugation at 3500× g for 10 min, resuspended in 10 mM 

potassium phosphate buffer, pH 7.0 (buffer A) and disrupted by sonication at 4 °C by a Branson digital 

sonifier. The cell extract was applied onto a 5 mL Bio-Scale Mini UNOsphere Q Cartridge (BioRad) 

equilibrated with buffer A at a flow rate of 0.5 mL/min using a BioLogic LP chromatographic system 

(Bio-Rad). The retained proteins were eluted with a linear gradient from 0 to 1.0 M NaCl in the same 

buffer. The protein fractions containing BpNDT were pooled and concentrated with polyethylene 

glycol 35,000 (Sigma) and loaded onto a 24 mL Superose 12 10/300 GL column (GE Healthcare) 

equilibrated in 50 mM potassium phosphate, pH 7.0 (buffer B) at a flow rate of 0.5 mL/min using a 

FPLC system (LKB-Pharmacia). The BpNDT enzyme fractions were pooled and dialyzed against 

0.025 M imidazol, pH 7.4 (buffer C) and loaded onto a 4 mL Mono P 5/200 GL column (GE 

Healthcare) equilibrated with buffer C at a flow rate of 1 mL/min. Proteins were eluted with polybuffer 74, 

pH 4.0 (buffer D) using a BioLogic LP chromatographic system (Bio-Rad). The protein fractions 

containing BpNDT were detected by SDS-PAGE analysis. Electrophoresis was carried out on 15% 

polyacrylamide slab gel with 25 mM Tris-HCl buffer, pH 8.6, 0.1% SDS [43]. Protein concentration 

was determined by the Bradford method [44].  
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3.4. N-Deoxyribosyltransferase Assay for Soluble BpNDT 

The standard activity assay was performed by incubating 5 μL of cell extract or 0.40 μg of pure 

enzyme with 10 mM deoxyuridine and 10 mM adenine in 50 mM HEPES buffer, pH 8.0 in a final 

volume of 40 μL. The reaction mixture was incubating at 40 °C, 30 r.p.m., for 5 min. Then, activity 

was stopped by addition of 40 μL of cold methanol in ice-bath and heating for 5 min at 95 °C as 

described for others NDTs [9]. After centrifugation at 9000 ×g for 2 min, samples were half-diluted 

with water and the nucleoside production was measured at 254 nm by HPLC (Agilent 1100 series) 

with an ACE 5 μm C18-PFP column 250 mm × 46 mm (Advanced Chromatography Technologies) 

equilibrated with 100% trimethyl ammonium acetate at a flow rate of 1 mL/min. Elution was carried 

out by a discontinuous gradient: 0–10 min, 100% to 90% trimethyl ammonium acetate and 0% to 10% 

acetonitrile, and 10–20 min, 90% to 100% trimethyl ammonium acetate and 10% to 0% acetonitrile. 

Enzymatic synthesis of natural nucleosides was carried out at standard conditions described above 

using 10 mM of different 2'-deoxyribonucleosides and bases. Retention times for the reference natural 

compounds were as follows: uracil (Ura): 5.41 min; 2'-deoxyuridine (dUrd): 9.16 min; adenine (Ade): 

10.14 min; 2'-deoxyadenosine (dAdo): 15.50 min; hypoxanthine (Hyp): 7.34 min; 2'-deoxyinosine 

(dIno): 10.95 min; thymine (Thy): 9.13 min; thymidine (Thd): 13.25; uric acid (UAc): 3.50 min. All 

determinations were carried out by triplicate and the maximum error was below 5%. In such 

conditions, one international activity unit (IU) was defined as the amount of enzyme producing  

1 μmol/min of 2'-deoxyadenosine under the assay conditions. 

3.5. Effect of Temperature on Soluble and Immobilized Recombinant BpNDT 

The effect of temperature on the activity of free and immobilized recombinant BpNDT was studied 

at different temperatures ranging from 20 to 80 °C in 50 mM HEPES buffer pH 8. The enzymatic 

activity was determined using the standard assay conditions described above but using the appropriate 

temperature. The experimental results of the effect of temperature on enzyme activity were used to 

estimate the activation energy by means of the equation: 

)ln(
1

)ln( A
TR

E
v a +⋅







−=  (1)

where v is the specific activity of immobilized enzyme, Ea is the activation energy, T is the absolute 

temperature in Kelvin degrees (K), R is the ideal gas constant (8.314 J·K−1·mol−1) and A is the 

exponential factor. Activation energies were obtained from the section of negative slope of the plot of 

ln(v) versus 1/T.  

Thermal stability of free enzyme was determined by incubating pure BpNDT (0.08 mg/mL) at 

different temperatures (from 10 to 90 °C) for 15 min. 5 μL of the enzyme were incubated on ice and 

the synthesis of 2'-deoxyadenosine was measured at 40 °C as described above.  

3.6. Effect of pH and Ionic Strength on Recombinant BpNDT Activity 

Optimal pH of free enzyme was determined by measuring the activity of 0.4 μg of BpNDT in  

10 mM potassium citrate-phosphate buffer at different pH values (from 4.0 to 9.0) using 10 mM 
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thymine and 10 mM 2'-deoxyuridine for the synthesis of thymidine under standard conditions. The 

stability at different pH values was determined by incubating pure enzyme at different pH values 

ranging from 4.0 to 12.0 for 15 min at 4 °C in 10 mM potassium citrate-phosphate buffer at a constant 

ionic strength (I) of 150 mM. After that, enzyme samples were adjusted to pH 8 by addition of 50 mM 

HEPES buffer pH 8 and BpNDT activity was measured at 40 °C, as described above. The ionic strength (I) 

at each pH was adjusted to 150 mM by addition of NaCl in amounts calculated using a Visual Basic 

program developed in our laboratory, which allows analysis of buffer systems with up to four 

tetraprotic species. In addition, effect of ionic strength on NDT activity was studied by incubating  

0.40 μg of enzyme with different concentrations of NaCl (0 to 1.5 M) in 50 mM HEPES buffer, pH 8.0 

at 40 °C under standard conditions described for enzymatic assay. 

3.7. Preparation of Polyethyleneimine-Functionalized Supports and Aldehyde-Dextran 

Functionalization of epoxy-activated Sepabeads with PEI was performed as previously reported [15], 

whereas functionalization of glyoxyl-agarose [45] with PEI was carried out as previously described [18]. 

On other hand, aldehyde-dextran was prepared as follows: 1.67 g of dextran (MM 20 kDa) was 

suspended in 50 mL of distilled water and different amounts of NaIO4 were added to the suspension 

depending on the desired percentage of oxidation [46]. The solution was stirred at 25 °C for 2 h and 

finally dialyzed for 20 h. 

3.8. Covalent Immobilization of BpNDT on Glyoxyl-Agarose 

Five hundred milligrams of glyoxyl-agarose was added to 7.1 mL of 100 mM potassium carbonate 

buffer (pH 10) solution containing 0.25 mg of BpNDT (4.7 IU) and incubated at room temperature or  

4 °C for 3 h under mechanical stirring. In order to protect the active site, 2'-deoxyuridine (5 mM) was 

optionally added during the immobilization process. Once the immobilization time was finished, Schiff 

base-double bonds were reduced by NaBH4 (7.1 mg) for 30 min. Finally, immobilized BpNDT was 

washed twice with 50 mM potassium phosphate buffer, pH 4.5, and deionized water [45]. 

Immobilization yield was calculated as the relative amount of bound enzyme to the support with 

respect to the initial amount of enzyme prior to the immobilization process, and it was calculated as the 

difference between offered protein and residual protein found in the filtrate and washing solutions 

obtained after the immobilization process. The amount of protein in these enzyme solutions was 

routinely determined by the Coomassie Blue method [44]. 

3.9. BpNDT Immobilization on PEI-Coated Sepabeads and PEI-Coated Agarose 

BpNDT immobilization was carried out by ionic adsorption of the enzyme onto PEI-functionalized 

supports. 500 mg of PEI-functionalized support were added to 7.1 mL of 5 mM potassium phosphate 

buffer (pH 7.5) solution containing 0.25 mg of BpNDT (4.7 IU), and agitated by mechanical stirring 

for 1 h at room temperature and stored at 4 °C prior to use. Immobilization yield was calculated as the 

difference between offered activity and residual activity found in the filtrate and washing solutions 

obtained after the immobilization process. 
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3.10. Cross-Linking of Immobilized BpNDT with Aldehyde-Dextran 

An amount of 0.71 mL of aldehyde-dextran (10% v/v) was added to the immobilization suspension 

described above. After stirring for 1 h, pH was adjusted to 10 and NaBH4 (1 mg/mL suspension) was 

added. After 30 min, immobilized BpNDT was washed twice with 50 mM potassium phosphate buffer 

pH 4.5 and deionized water. Finally, immobilized biocatalyst was stored at 4 °C prior to use. 

3.11. N-Deoxyribosiltransferase Assay for Immobilized BpNDT 

Enzymatic activity of immobilized enzyme was measured using 25 mg of immobilized biocatalyst 

which was added to a 1.0 mL solution containing 10 mM 2'-deoxyuridine and 10 mM adenine in  

50 mM HEPES buffer pH 8.0. Reaction mixture was incubated at 37 °C for 20 min at orbital shaking. 

After this reaction time, 300 μL aliquot of the supernatant was withdrawn using a pipette filter device. 

Then, the supernatant was analyzed by HPLC to quantitatively measure the production of nucleosides 

employing a Merck-Hitachi L-7100 system equipped with a UV detector L-7400 and a column oven 

L-7300. Reactions were analyzed with a LiChroCART RP18 (5 μm) 250 × 4.6 mm (Merck), using as 

mobile phase 10 mM potassium phosphate, methanol, water (90:9:1). The flow rate was fixed at  

1 mL/min, and the UV detector was set at 260 nm. Retention times for the reference natural 

compounds were as follows: uracil (Ura): 3.5 min; 2'-deoxyuridine (dUrd): 5.5 min; adenine (Ade):  

6.5 min; 2'-deoxyadenosine (dAdo): 16.5 min. All determinations were carried out by triplicate and the 

maximum error was below 5%. In such conditions, one international activity unit (IU) was defined as 

the amount of enzyme producing 1 μmol/min of 2'-deoxyadenosine under the assay conditions. In 

order to compare with its soluble counterpart, the free enzyme was assayed in the same standard 

conditions described above for the immobilized enzyme. 

3.12. Stability of BpNDT in Organic Cosolvent Mixtures 

Three hundred mg of immobilized BpNDT were incubated with 2 mL of 50 mM HEPES pH 8.0 

containing 20% DMF for 48 h at 37 °C; 200 µL of suspension were withdrawn at different incubation 

times, and activity was measured by the standard assay. For the soluble enzyme, 160 µg of BpNDT 

were added to 2 mL of 50 mM HEPES pH 8.0 containing 20% DMF and incubated for 48 h at 37 °C. 

At different incubation times, 0.40 μg of enzyme were withdrawn and activity was measured by the 

standard assay.  

3.13. Recycling of Immobilized BpNDT 

Immobilized enzyme (200 mg) was evaluated for nucleoside 2'-deoxyribosyltransferase activity 

after repeated performance of the same biocatalyst in the synthesis of 2'-deoxyadenosine from  

2'-deoxyuridine and adenine. Immobilized BpNDT was added to a 8 mL solution containing 10 mM  

2'-deoxyuridine and 10 mM adenine in 50 mM HEPES buffer pH 8.0. After enzymatic reaction for  

5 min at 37 °C and 250 rpm shaking, reaction mixture was filtered and an aliquot of the supernatant 

was withdrawn and half-diluted with water to be analyzed by HPLC to quantitatively measure the 

reaction products as described below in the analytical methods. Then, the recovered immobilized 
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enzyme was washed three times with freshly prepared 50 mM HEPES buffer pH 8.0, and then used for 

another conversion cycle. 

3.14. Enzymatic Synthesis of Trifluridine Catalyzed by Immobilized BpNDT 

Trifluorothymidine (trifluridine) synthesis was performed using different concentrations of 

trifluorothymine and 2'-deoxyuridine (from 1 to 20 mM), which were dissolved in 5 mL of 10 mM 

potassium phosphate buffer pH 7.5. The enzymatic assay was started by adding 20 mg of immobilized 

biocatalyst when substrate concentration was 2 mM for both donor and acceptor, whereas 100 mg 

(displaying 1.8 IU with the standard assay) of immobilized enzyme was used at higher substrate 

concentrations. Reaction was performed at 37 °C for 2 h. At different reaction times, samples were 

withdrawn and filtered off using a pipette filter device. Then, the supernatant was analyzed by HPLC 

to quantitatively measure the reaction products employing a Merck-Hitachi L-7100 system equipped 

with a UV detector L-7400, and a column oven L-7300. Reactions were analyzed with a 

LiChroCART RP18 (5μm) 250 mm × 4.6 mm (Merck), using as mobile phase 10 mM potassium 

phosphate, methanol, water (80:18:2). The flow rate was fixed at 1 mL/min, and the UV detector was 

set at 260 nm. Retention times were: uracil (Ura): 3.1 min; 2'-deoxyuridine (dUrd): 4.2 min;  

5-trifluorothymine (5-tFThy): 8.0 min; 5-trifluorothymidine (5-tFThd): 13.5 min. The produced 

nucleoside was identified by comparison of its HPLC Rt with that of authentic samples [36]. 

4. Conclusions 

Here, we report, for the first time, the cloning, expression, purification and immobilization of the 

nucleoside 2'-deoxyribosyltransferase Bacillus psychrosaccharolyticus (BpNDT). Best immobilized 

biocatalyst was obtained by adsorbing the enzyme on PEI-functionalized agarose and subsequent 

cross-linking with aldehyde-dextran (20 kDa and 70% oxidation degree). This novel biocatalyst could 

be recycled for at least 30 consecutive cycles in the synthesis of 2'-deoxyadenosine from  

2'-deoxyuridine and adenine at 37 °C and pH 8.0, with a 25% loss of activity. Furthermore, the same 

immobilized enzyme gave high conversion yields of trifluridine at 2 h (64.4%), starting from  

2'-deoxyuridine as sugar donor, and 5-trifluorothymine as base acceptor. A further detailed study on 

scale up would be necessary to check the applicability of this novel immobilized biocatalyst in the 

industrial production of these high-valuable drugs. 
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