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Abstract: The dehydrobromination reaction 2-(p-nitrophenyl)ethyl bromide + OH− was 

investigated in several alkanediyl---bis(dodecyldimethylammonium) bromide, 12-s-

12,2Br− (with s = 2, 3, 4, 5, 6, 8, 10, 12) micellar solutions, in the presence of NaOH  

5 × 10−3 M. The kinetic data were quantitatively rationalized within the whole surfactant 

concentration range by using an equation based on the pseudophase ion-exchange model 

and taking the variations in the micellar ionization degree caused by the morphological 

transitions into account. The agreement between the theoretical and the experimental data 

was good in all the dimeric micellar media studied, except for the 12-2-12,2Br− micellar 

solutions. In this case, the strong tendency to micellar growth shown by the 12-2-12,2Br− 

micelles could be responsible for the lack of accordance. Results showed that the dimeric 

micelles accelerate the reaction more than two orders of magnitude as compared to water. 

Keywords: 2-(p-nitrophenyl)ethyl bromide; basic dehydrobromination; dimeric surfactants; 

morphological transitions; ion-exchange model 

 

1. Introduction 

Micellar solutions contain organized surfactant aggregates that have common structural features: 

hydrocarbon cores composed of surfactant tails; interfacial regions containing head-groups, 

counterions, and water and the surrounding aqueous phase or bulk region [1]. Thus, three regions of 

distinctly different solvation properties, polar aqueous, non polar cores and interfacial regions of 
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intermediate polarity are present in a single homogeneous, thermodynamically stable solution. The 

totality of the hydrocarbon, interfacial, and aqueous regions in micellar solutions can be treated as 

separate reaction regions distributed throughout the solution because the distributions of all the 

components are in dynamic equilibrium [2]. For bimolecular reactions between lipophilic and 

hydrophilic reactants dissolved in micellar solutions, the hydrophilic reactant partitions primarily 

between the aqueous and interfacial regions and the lipophilic reactant partitions primarily between the 

interfacial and hydrophobic regions. For surfactants with opposite charge to that of the water-soluble 

reactant, an increase in the reaction rate is found [3-6]. Conversely, if the ionic reactant is of like 

charge to the surfactant, rate inhibition is observed [7]. 

Dimeric surfactants represent a new class of surfactants. They are formed by two amphiphilic 

moieties connected at the level of the head groups by a spacer [8,9]. The interest in such surfactants arises 

from their physicochemical properties that are more favorable than those of conventional surfactants, such 

as much lower critical micelle concentrations (cmc), better wetting, greater surface tension lowering, and 

unusual morphologies. These properties could make them potentially useful in many fields of application, 

for example, in soil remediation, enhanced oil recovery, drug entrapment and release, etc. [10]. At 

concentrations above the cmc dimeric surfactants tend to self-associate in water to form micelles 

whose characteristics depend on surfactant nature as well as on temperature [8,9]. Several dimeric 

surfactants undergo morphological transitions when surfactant concentration increases [8,9], the 

dimeric micelles changing shape from spherical aggregates into elongated ones. The surfactant 

concentration at which this morphological transition occurs is often referred to as “second cmc” (C*). 

The sphere-to-rod transition is followed by variations in the characteristics of the micellar aggregates 

which can affect the rate of reactions. In a previous work [11], the reaction methyl naphthalene-2-

sulfonate + Br− was investigated in several alkanediyl---bis(dodecyldimethylammonium) bromide, 

12-s-12,2Br− (with s = 2, 3, 4, 5, 6, 8, 10, 12), micellar solutions. The kinetic data within the whole 

surfactant concentration range were quantitatively explained by using a modified pseudophase model 

which took into account the micellar kinetic effects caused by morphological transitions. To the 

authors’ knowledge, it was the first time that kinetic micellar effects on a micelle-modified reaction 

were quantitatively explained in a micellar reaction media where a morphological transition occurs. As 

an extension of this research, the dehydrobromination reaction between 2-(p-nitrophenyl)ethyl 

bromide, PEB, and OH- ions was investigated in the aqueous 12-s-12,2Br− (with s = 2, 3, 4, 5, 6, 8, 10, 12) 

dimeric micellar solutions. The rate of this process in the micellar reaction media depends on the  

ion-exchange equilibrium constant, KOH/Br, for the competition between the bromide and the hydroxide 

ions for the positively charged surface of the dimeric micelles and this study could show if changes in 

this magnitude with micellar growth have to be considered in order to rationalize the micellar kinetic 

effects. Besides, this process has the advantage that the equilibrium binding constants of the organic 

substrate to the dimeric micelles is experimentally accessible. 
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2. Results and Discussion 

2.1. Characteristics of the Dimeric Micellar Reaction Media 

Table 1 summarizes the critical micelle concentration, cmc, micellar ionization degree, α, and 

second cmc, C*, of the dimeric surfactant solutions in pure water at 303 K. Conductivity 

measurements could not be carried out in the presence of NaOH 5 × 10−3 M in order to determine the 

cmc and α values in the presence of NaOH 5 × 10−3 M. Since the sodium hydroxide concentration was 

low, the authors assumed that the micellar ionization degree was the same as that in pure water. In 

regard to the cmc, this magnitude was obtained in the presence of sodium hydroxide by employing a 

fluorescent method based on the variations of the pyrene intensity ratio II/IIII following the 

micellization. All II/IIII plots show a decrease as the total surfactant concentration increases, associated 

with the formation of micelles (Figure 1). The estimation of the cmc was done by using the procedure 

proposed by Zana [12]. The authors also assumed that the second cmc, C*, was similar in the absence 

as in the presence of NaOH. 

Table 1. Critical micelle concentration, cmc, in the absence and in the presence of NaOH  

5 × 10−3 M, micellar ionization degrees, α, and second micelle concentrations, C*, for the 

aqueous dimeric surfactant solutions used as reaction media. T = 303 K. 

Surfactant 103 × cmc/M a α a C*/M a 103 × cmc/M b (NaOH 5 × 10−3 M)
12-2-12,2Br- 0.95 0.17 0.016 0.39 
12-3-12,2Br- 0.99 0.22 0.036 0.37 
12-4-12,2Br- 1.1 0.25 0.025 0.44 
12-5-12,2Br- 1.1 0.28 0.029 0.37 
12-6-12,2Br- 0.99 0.31 0.028 0.39 
12-8-12,2Br- 0.88 0.40 0.031 0.26 
12-10-12,2Br- 0.59 0.45 0.028 0.20 
12-12-12,2Br- 0.36 0.45 0.023 0.17 

a Data taken from reference [11]; b This work. 

Figure 1. Dependence of the pyrene II/IIII ratio on surfactant concentration in  

12-10-12,2Br− aqueous solutions in the presence of NaOH 5 × 10−3 M. T = 303 K.  
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2.1. Kinetic Results 

The dependence of the observed rate constant for the reaction between 2-(p-nitrophenyl)ethyl 

bromide, PEB, and OH− (Scheme 1) on surfactant concentration in the different dimeric micellar 

solutions is shown in Figure 2. The hydroxide surfactant concentration was kept constant and equal to 

5 × 10−3 M in all micellar solutions investigated. 

Scheme 1. Reaction between 2-(p-nitrophenyl)ethyl bromide, PEB, and OH− ions. 

NO2- -CH2-CH2-Br +  OH- NO2- -CH=CH2 +  Br-

 

Figure 2. Dependence of the observed rate constant for the reaction 2-(p-nitrophenyl)ethyl 

bromide, PEB, + OH− on surfactant concentration. [NaOH] = 5 × 10−3 M and T = 303 K. 

(a) 12-2-12,2Br−; (b)12-3-12,2Br−; (c)12-4-12,2Br−; (d)12-5-12,2Br−; (e)12-6-12,2Br−; 

(f)12-8-12,2Br−; (g)12-10-12,2Br− and (h)12-12-12,2Br−. 
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Figure 2. Cont. 
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Figure 2 shows that, in all micellar media investigated, an increase in [12-s-12,2Br−], at low 

surfactant concentration, results in a steep increase in the observed rate constant. At a well-defined 

[12-s-12,2Br−] kobs reaches a maximum and a subsequent increase in surfactant concentration causes a 

decrease in the observed rate constant. The same behavior was found in micellar solutions of 

conventional cationic surfactants [12-14]. The existence of this maximum can be explained by 

considering that the reaction takes place in the aqueous as well as in the micellar pseudophases. The 

increment in [12-s-12,2Br−] at low surfactant concentration results in an acceleration because the 

organic substrate incorporates into the micelles and the contribution of the process occurring in the small 

volume of the micellar pseudophase increases (concentration effects). However, as [12-s-12,2Br−] 

increases, a diminution in the hydroxide ion concentration in the micellar pseudophase is caused by the 

increment of micellar aggregates present in the reaction media. 

In order to rationalize the experimental kinetic data, the following expression for the observed rate 

constant, based on the model proposed by Quina et al. [15], was considered [16]: 
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Here w and m denote the aqueous and micellar pseudophases. k2
w and k2

m are the second-order rate 

constants for the reaction in the aqueous and micellar pseudophases, respectively. Vm is the effective 

volume, per mole of micellized surfactant, of the region surrounding the micelle within which the ions 

are bound. Km is the equilibrium binding constant of the organic substrate to the cationic dimeric 

micelles and mOH− is the concentration of hydroxide ions in the micellar pseudophase per mole  

of micellized surfactant, mOH− = [OHm
−]/[Surfactantm]. [Surfactantm] is the micellized surfactant 

concentration, equal to the total surfactant concentration minus the cmc. [OHT
−] is the total hydroxide 

ion concentration. (km
2/Vm) = k2m (s−1) is the second-order rate constant in the micellar pseudophase 

written with the concentrations expressed as molar ratios. 

Km could not be experimentally determined in the presence of NaOH and, therefore, it has to be 

considered as an adjustable parameter in Equation (1). However, since the sodium hydroxide 

concentration in the reaction media is low, no large changes for this magnitude would be expected as 

compared to its value in pure water. Besides, the estimation of the experimental Km values will allow 

one to check the reliability of the Km adjustable parameters obtained from the fittings of the kinetic 

data by using Equation (1). With this in mind, Km was estimated in the aqueous dimeric micellar 

solutions, in the absence of NaOH, by using a spectroscopic method [17]. Km can be written as: 

 
  mw

m
m tSurfacPEB

PEB
K

tan
  (2) 

where the subscripts w and m denote the aqueous and micellar pseudophases, respectively, and [Surfactantm] 

has the same meaning as ion Equation (1). Assuming that Beer’s law is obeyed, one can write [17]: 

 mm
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  (3) 

where A is the observed absorbance and Aw and Am are the absorbances in water and of the fully 

micellar-bound organic substrate. In the case of 2-(p-nitrophenyl)ethyl bromide a high surfactant 

concentration would be necessary in order to measure Am directly. The same result was found by  

Wilk et al. in conventional cationic micellar solutions [18-20]. To estimate Km without the 

measurement of Am the following equation was considered [21]: 

 mm
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(4) 

The experimentally accessible terms of Equation (4) are A, Aw, and [Surfactantm]. Figure 3 shows 

the fit of Equation (4) to the experimental absorbance data obtained in aqueous 12-2-12,2Br− and  

12-6-12,2Br− micellar solutions. These data were registered at 310 nm, the wavelength at which the 

largest change in absorbance (by changing the surfactant concentration present in the aqueous micellar 

solution) was found. Nonetheless, it was verified that the value of the equilibrium binding constant 

obtained was independent of the wavelength chosen. The Km values are listed in Table 2 in parenthesis. 



Molecules 2011, 16 9473 

 

 

Figure 3. Dependence of the absorbance of 2-(p-nitrophenyl)ethyl bromide micellar 

solutions on surfactant concentration in: (a)12-2-12,2Br− and (b)12-6-12,2Br−. The fittings 

were done by using Equation (4). T = 303 K.  
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Table 2. Values of the adjustable parameters obtained from the fittings of the experimental 

kinetic data corresponding to the reaction 2-(p-nitrophenyl)ethyl bromide, PEB, + Br− in 

several dimeric micellar solutions by using Equation (1). T = 303 K. 

Surfactant 102 × k2m = (k2
m/Vm)/s−1 Km/M−1 

12-2-12,2Br− 1.3 ± 0.3 240 ± 70 (190 ± 20) 
12-3-12,2Br− 1.3 ± 0.1 280 ± 40 (250 ± 30) 
12-4-12,2Br− 1.9 ± 0.1 380 ± 50 (330 ± 30) 
12-5-12,2Br− 2.2 ± 0.2 310 ± 50 (270 ± 30) 
12-6-12,2Br− 1.7 ± 0.1 350 ± 50 (310 ± 30) 
12-8-12,2Br− 1.7 ± 0.1 320 ± 40 (300 ± 40) 
12-10-12,2Br− 1.9 ± 0.1 270 ± 50 (280 ± 30) 
12-12-12,2Br− 2.2 ± 0.1 300 ± 50 (340 ± 30) 

Values in parenthesis are the equilibrium binding constants obtained by using a spectroscopic method. 

With the scope of calculating mOH− for the different surfactant concentrations in the micellar 

reaction media, the following equations were taken into account: 

       mwT OHOHOH  (5) 

       mwT BrBrBr  (6) 

       mmw OHtSurfaccmcBr tan  (7) 

         mmm OHtSurfacBr tan1   (8) 

  
  




mw

wm
BrOH BrOH

BrOH
K /  

(9) 

where KOH/Br is the ion-exchange constant between hydroxide and bromide ions,  is the micellar 

ionization degree, and cmc is the critical micelle concentration. Concentrations were referred to the 
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total solution volume. The experimental cmc values were taken from Table 1. In regard to the micellar 

ionization degree, it is necessary to take into account that  remains constant within the surfactant 

concentration range cmc < [surfactant] < C* (these α values are listed in Table 1). However, micellar 

growth is accompanied by a decrease in the micellar ionization degree and, consequently,  varies 

upon changing surfactant concentration within the range [surfactant] > C* [22,23]. The dependence of 

 on surfactant concentration was experimentally estimated for all the dimeric micellar media, as in 

previous works [11,24], by using Kuwamoto’s method [23]. Values of KOH/Br for the dimeric micellar 

solutions were not found in the literature. The authors assumed that KOH/Br for the dimeric micellar 

solutions investigated was similar to that corresponding to conventional alkyltrimethylammonium 

bromide surfactants. With this in mind, a value of 0.098 for the ion-exchange equilibrium constant was taken 

into account [25]. k2
w was experimentally obtained, its value being equal to 9.8 × 10−3 M−1 s−1 at 303 K. 

Solid lines in Figure 1 show the result of fitting the kinetic data by using Equation 1. One can see 

that the agreement between the theoretical and the experimental data was reasonably good, with the 

exception of the 12-2-12,2Br− micellar solutions. The lack of agreement found for the 12-2-12,2Br− 

micellar solutions could be caused by changes in KOH/Br upon changing surfactant concentration within 

the range [surfactant] > C* due to the strong micellar growth. All the dimeric micellar solutions 

investigated undergo a morphological transition upon increasing surfactant concentration [11]. 

However, the tendency to micellar growth depends on the spacer length [26]. The strong tendency to 

micellar growth shown by the dimeric surfactant with s = 2 was examined by using rheology 

measurements [27,28]. The viscoelastic behaviour found for 12-2-12,2Br− micellar solutions was 

attributed to the entanglement of long and flexible aggregates. The fact that for s > 2 no viscoelastic 

behaviour is found in pure water points out that for s = 2 the tendency to micellar growth is stronger 

than for s > 2. This conclusion is also in agreement with cryogenic electronic transmission microscopy, 

CryoTEM, measurements carried out in 12-s-12,2Br− micellar solutions by increasing surfactant 

concentration [26,29]. Micellar growth could also affect reactivity through changes in Km and in k2m. 

However, with the exception of 12-2-12,2Br− micellar solutions, the variations caused by micellar 

growth on these two magnitudes are small or they operate on reactivity in opposing ways since 

Equation 1 was adequate for fitting the kinetic data. 

The values of the k2m and Km adjustable parameters obtained for the different dimeric micellar 

solutions are listed in Table 2. It is interesting to note that, within experimental errors, the Km values 

estimated from the spectroscopic method (in parenthesis) and those obtained from the fittings are in 

reasonably good agreement. Km(spectroscopic) is always somewhat smaller than Km(theoretical). 

However, an increase in the equilibrium binding constant upon increasing the ionic strength of the 

medium is expected, in agreement with the results found by Wilk for PEB molecules in 

cetyltrimethylammonium bromide micellar solutions in the absence and in the presence of NaBr [18]. 

The agreement between Km(spectroscopic) and Km(theoretical) gives reliability to the fittings and 

seems to support the assumptions made by the authors. Besides, the reasonably good fittings shown in 

Figure 2 can be taken as indicative that that the ion-exchange constant does not vary substantially with 

micellar growth. 

Table 2 shows that the equilibrium binding constant is similar for the different dimeric micellar 

solutions, with the exception of 12-2-12,2Br− solutions for which Km is smaller. The Km values are 

similar to those found for conventional alkyltrimethylammonium bromide surfactants [13,14,24]. With 
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regard to the k2m values, this second-order rate constant does not show any dependence on the spacer 

length (Table 2). In order to get some information about the capacity of the dimeric micelles as 

catalysts for the reaction PEB + OH− with respect to water, km
2 = k2m·Vm has to be estimated for the 

different micellar reaction media. Vm values for s = 2,3,4,5,6,8,10, and 12 were 0.56, 0.58, 0.59, 0.60, 

0.63, 0.66, 0.70, and 0.73 dm3 mol in pre water, respectively [30]. The km
2 values calculated are within the 

range 7.3 × 10−3 mol−1 dm3 s−1 < km
2 < 16 × 10−3 mol−1 dm3 s−1, to be compared to 4.9 × 10−5 mol−1 dm3 

s−1. That is, the reaction is much faster in dimeric micelles than in water. This acceleration can be 

explained considering that micelles accelerate reactions in which charge is delocalized in the transition 

state, as in the E2 process investigated in this work. Another factor affecting reactivity would be the 

disruption of the hydration shell of hydroxide ions in cationic micellar solutions, which would 

accelerate the process. An increase in the second order rate constant in conventional 

alkyltrimethylammonium bromide micellar solutions in respect to that in water was previously found 

by other authors [11,22,23]. 

3. Experimental 

3.1. Materials 

2-(p-Nitrophenyl)ethyl bromide was purchased from Fluka. Aqueous solutions of sodium hydroxide 

(Merck) were prepared, and hydroxide ion concentrations were determined by titration. Pyrene was 

from Aldrich and it was purified before use by methods reported in the literature [31]. The dimeric 

surfactants (Scheme 2) were synthesized [32] and characterized by 1H-NMR, 13C-NMR and elemental 

analysis (CITIUS, University of Seville), the results being in agreement with those previously 

reported. Water was obtained from a Millipore Milli-Q water system. 

Figure 4. Dimeric surfactants. 

Br- C12H25
+N(CH2)sN+C12H25 Br-

CH3 CH3

CH3CH3

 
s = 2,5,6,8,10,12. 

3.2. Steady-State Fluorescence Measurements 

Fluorescence measurements were done by using a Hitachi F-2500 fluorescence spectrophotometer. 

The temperature was kept at 303 K by a water flow cryostat connected to the cell compartment. In 

order to determine the cmc of the dimeric surfactant micellar solutions, 1 × 10−6 M pyrene surfactants 

solutions were prepared in twice distilled water in the presence of 5 × 10−3 M of NaOH and several 

concentrations of the dimeric surfactants, below and above the cmc. The excitation wavelength was 

335 nm and the fluorescence intensities were measured at 373 nm (band 1) and 384 nm (band 3). 

Excitation and emission slits were 2.5 nm and a scan speed of 60 nm/min was used. The intensity ratio 

of the vibronic bands (1:3) is called the pyrene 1:3 ratio. Introduction of pyrene in the surfactant 

solutions was done as in reference [33]. 
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3.3. Kinetics 

Rates of dehydrobromination of 2-(p-nitrophenyl)ethyl bromide in the presence of hydroxide ions 

were determined spectrophotometrically at 318 nm. The rate measurements were performed using a 

Shimadzu UV-1800 and a Hitachi UV-3900 spectrophotometers. In all cases the organic substrate 

concentration in the reaction medium was 4 × 10−5 mol dm−3. The low solubility of 2-(p-nitrophenyl)- 

ethyl bromide in water made it necessary to prepare its solutions in acetonitrile. The percentage of 

acetonitrile in the reaction mixture was always 0.5 vol%. This low acetonitrile content is not expected 

to affect the characteristics of the aqueous solutions of the dimeric surfactants. The temperature for the 

kinetic runs was maintained at 303 ± 0.1 K by using a water-jacketed cell compartment. 

The observed rate constant was obtained from the slopes of the ln(A∞ − At) against time plots, with 

At and A being the absorbance at time t and at the end of the reaction, respectively. The A value was 

experimentally obtained by letting the reaction go to completion. Each experiment was repeated at 

least twice, and the observed rate constants were reproducible within a precision better than 5%. 

Kinetics in 12-2-12,2Br− and 12-3-12,2Br− could not be done for surfactant concentrations higher than 

0.04 M and 0.08 M, respectively, because of solubility problems. 

To test our data the observed rate constant value obtained in water at 298.2 K, kw = 6.4 × 210−3 s−1 in 

the presence of 0.025 M of NaOH was compared to that obtained by Wilk [19], the agreement being good. 

4. Conclusions 

The dehydrobromination reaction 2-(p-nitrophenyl)ethyl bromide + OH− was investigated in several 

alkanediyl---bis(dodecyldimethylammonium) bromide, 12-s-12,2Br− (with s = 2, 3, 4, 5, 6, 8, 10, 12) 

micellar solutions in the presence of NaOH 5 × 10−3 M at 303 K. In all the dimeric micellar solutions a 

sphere-to-rod transition takes place upon increasing surfactant concentration. The kinetic data within 

the whole surfactant concentration range have been quantitatively explained by considering an 

equation derived from the pseudophase ion-exchange model and taking the experimental decrease in 

the micellar ionization degree accompanying micellar growth into account. The equilibrium binding 

constants of the organic substrate to the dimeric micelles and the second order rate constant for the 

process investigated in the micellar pseudophase were obtained from the fittings. Some conclusions 

can be drawn for the dimeric 12-s-12,2Br− micellar solutions, with s = 3,4,6,8,10,12: 

1.- The equilibrium ion-exchange constant KOH/Br for the competition between the bromide and the 

hydroxide ions for the positively charged surface of the dimeric micelles is similar to those for 

conventional alkyltrimethylammonium bromide micelles. 

2.- KOH/Br does not substantially change when the morphological transition from spherical to 

elongated micelles happens. 

3.- The equilibrium binding constant of 2-(p-nitrophenyl)ethyl bromide molecules to the dimeric 

micelles is similar for all the dimeric micellar solutions. They are also similar to those found for 

conventional alkyltrimethylammonium bromide surfactants. 

4.- Dimeric micelles accelerate the reaction more than two orders of magnitude as compared to pure 

water. 
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The disagreement between the theoretical and the experimental data in 12-2-12,2Br− micellar 

solutions could be related to the strong tendency of the 12-2-12,2Br− aggregates to grow. This rapid 

growth could cause substantial changes in the ion-exchange constant as well as in Km and k2m. 
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