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Abstract: Saccharides are polyhydroxy compounds, and their synthesis requires complex 
protecting group manipulations. Protecting groups are usually used to temporarily mask a 
functional group which may interfere with a certain reaction, but protecting groups in 
carbohydrate chemistry do more than protecting groups usually do. Particularly, protecting 
groups can participate in reactions directly or indirectly, thus affecting the stereochemical 
outcomes, which is important for synthesis of oligosaccharides. Herein we present an 
overview of recent advances in protecting groups influencing stereoselectivity in 
glycosylation reactions, including participating protecting groups, and conformation-
constraining protecting groups in general. 
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Abbreviations 

Ac acetyl 
ADMB 4-acetoxy-2,2-dimethylbutanoyl 
Bac bacillosamine 
Bn benzyl 
BSP 1-benzenesulfinylpiperidine 
Boc tert-butoxycarbonyl 
Bz benzoyl 
DCM dichloromethane 
DDQ 2,3-dichloro-5,6-dicyano-1,4-benzoquinone 
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DMBPP 3-(2-hydroxyphenyl)-3,3-dimethylpropanoate 
DMTM 2,2-dimethyltrimethylene 
DTBMP 2,6-di-tert-butyl-4-methylpyridine 
DTBS di-tert-butylsilylene 
FPsc fluorous propylsulfonylethoxycarbonyl 
Hex hexyl 
MP p-methoxyphenyl 
Msc methylsulfonylethoxycarbonyl 
NAP 2-napthylmethyl 
NIS N-iodosuccinimide 
Pent n-pentenol 
Phth phthalimido 
Pic 2-Pyridylmethyl 
PMB p-methoxybenzyl 
STaz S-thiazolyl 
TIPDS 3,5-O-tetraisopropyldisiloxanylidene 
TBDMS tert-butyldimethylsilyl 
TCP N-tetrachlorophthalimido 
TMBPP 3-(2-hydroxy-4,6-dimethylphenyl)-3,3-dimethylpropanoate 
Tf trifluoromethanesulfonyl 
TMS trimethylsilyl 
Tol toluene 
Troc 2,2,2-trichloroethoxycarbonyl 
TTBP 2,4,6-tri-tert-butylpyrimidine 

1. Introduction  

In recent years, it has been widely recognized that oligosaccharides and glycoconjugates play 
important roles in diverse biological processes, including viral and bacterial infections, cell growth and 
proliferation, cell–cell communication, as well as immune response [1-5]. Studies on carbohydrates 
draw unprecedented attention, but still fall behind that on proteins and nucleic acids. A major obstacle 
is related to the fact that it is difficult to get enough and structurally well-defined carbohydrates and 
glycoconjugates, which often exist in nature at low-concentrations and in micro-heterogeneous forms. 
Chemical synthesis of oligosaccharides is one of the approaches to solve this problem. 

Although great progress has been made in the construction of complex oligosaccharides [6-12], 
synthesis of oligosaccharides is still a difficult task and has not been realized in the routine automatic 
pattern. On the one hand, carbohydrates contain large numbers of the same functional groups, and they 
must be differentiated to achieve chemoselectivity and regioselectivity. On the other hand, glycosyl 
donors and acceptors can be connected by either α or β linkages. The anomeric mixtures cannot be 
directly used for biological research, and of course, this will aggravate the complications of synthesis  
and purification. 

The stereoselective formation of glycosyl linkages is desired, but it is influenced by many factors 
such as leaving groups, solvents, activation systems, additives, and more importantly, protecting 
groups of donor and acceptor. Usually a protecting group is introduced into a molecule to temporarily 
mask a functional group which cannot survive the required reagents or chemical environment. 
Protecting groups in carbohydrates not only differentiate the same sort of functional groups to expose 
the one needed to be reacted, but also confer other effects to the molecules in glycosylation reactions. 
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They can increase or decrease the reactivity and particularly, they can participate in the reactions, thus 
affecting the stereochemical outcomes of glycosylations. 

The stereoselectivity of glycosylations is profoundly influenced by protecting groups, which has 
been recognized and utilized. For instance, a 2-O-acyl group is usually chosen for the introduction of 
1,2-trans-glycosides whereas a 2-O-ether protecting group is used for the formation of 1,2-cis-
glycosides, though often leading to glycosides with poor anomeric selectivity. Herein, we present an 
overview of protecting groups influencing stereoselectivity in glycosylation reactions, including 
participating protecting groups and conformation-constraining protecting groups in general. As there 
have been excellent reviews involving oligosaccharide synthesis [13,14], especially about mannosides 
[15], 2-amino-2-deoxysugars [16] and sialic acid-containing sugars [17-20], this review will mainly 
summarize the latest advances in stereoselective glycosylations from the protecting group point  
of view. 

2. Participating-Type Protecting Groups 

Classical participating groups usually means neighboring-group participation, namely participation 
of acyl groups at the C2 position. During glycosylation processes, as shown in Scheme 1, the 
neighboring acyl group of donor 1 assists the departure of an activated leaving group, and 
subsequently leads to the formation of a more stable dioxolenium ion 2. Consequently, the glycosyl 
acceptor can only attack from the backside to form 1,2-trans glycoside 3. In this case, glucosyl-type 
donors give β-glycosides, while manno-type donors give α-glycosides. Many ester-type groups such as 
acetate, chloroacetate, benzoate, and pivaloate have been widely adopted to construct 1,2-trans 
glycosidic linkages. However, sometimes the formation of an orthoester prevents the conversion into 
1,2-trans glycosides [21-23], or the removal conditions are too harsh. Moreover, classical neighboring-
group participation can only be used to stereoselectively synthesize 1,2-trans glycosides. Recently, 
new participating protecting groups have been developed. The scope of participating protecting groups 
has gone beyond simple acyl groups. These protecting groups can be used not only to construct 1,2-
trans glycosides, but also to construct 1,2-cis glycosides. Anyway, these protecting groups follow the 
similar mechanism--all is through “participating” with the intermediate oxocarbenium-ion, and thereby 
making acceptors attack only from one side. 

Scheme 1. The stereoselective formation of glycosidic bond by neighboring-group participation. 

 

2.1. Improved ester groups 

The 4-acetoxy-2,2-dimethylbutanoyl (ADMB) ester was reported by Ensley [24]. It showed similar 
selectivity to the pivaloate ester in carbohydrate acylations. When placed at the C2 position, such as in 



Molecules 2010, 15                            
 

 

7238

the case of compound 5, it implemented anchimeric assistance and sterically prevented the formation 
of orthoesters as the pivaloate ester did. But the glycosyl donor with it showed higher β-selectivity 
(Scheme 2a). Moreover, the removal conditions were much milder than those required for removal of 
the pivaloyl group. When it was cleaved, hydrolysis of the 4-acetoxy group by base initiated an 
intramolecular lactonization, leading to the release of stable dimethylbutyrolactone. 

Scheme 2. The formation of 1,2-trans glycosides directed by improved ester groups. 

 
 
3-(2-Hydroxyphenyl)-3,3-dimethylpropanoate (DMBPP) and 3-(2-hydroxy-4,6-dimethylphenyl)-

3,3-dimethylpropanoate groups (TMBPP) are two protecting groups that also function as described 
above [25]. They enable the synthesis in excellent yield of a range of β-glucosides and α-mannosides 
through neighboring participation. Their removal is carried out by hydrogenolysis through initiation of 
an intramolecular lactonization. Because these groups can be removed along with cleavage of benzyl 
ethers in a single reaction step and in the absence of acid or base, they are tolerant of other esters. They 
are particularly well suited to the stereocontrolled synthesis of glycosyl esters such as 10, an unusual 
element in the fungal cell wall Pir protein from Saccharomyces cerevisiae (Scheme 2b). 
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Methylsulfonylethoxycarbonyl (Msc) was designed as a base-labile participating protecting group 
(Scheme 2c) [26]. When situated at the O2 position of glycosyl donor 11, the carbonate provided 
anchimeric assistance and was completely stable to Lewis acid-promoted glycosylations. It was 
cleaved by elimination using mild basic conditions under which common ester protecting groups are 
stable. The fluorous Msc group, fluorous propylsulfonylethoxycarbonyl (FPsc) has a similar character 
and can be used in a “light fluorous” trisaccharide synthesis. 

All these improved ester groups mentioned above preserve the nature of esters, and lead to 1,2-trans 
glycosides when placed at a C2 position. Their improved features will make them more useful in some 
special cases. 

2.2. Dialkyl phosphates 

The use of dialkyl phosphates as stereodirecting groups for the synthesis of 1,2-trans-glycosides 
was reported by Yamago et al. [27]. As shown in Scheme 3, the glycosylation of thioglycoside 15, 
having a 2,2-dimethyltrimethylene (DMTM) phosphate group at the C2 position, provided 1,2-trans-
glycoside 17 as the sole product under a set of glycosyl coupling conditions. Importantly, the 
corresponding orthophosphorate product was not detected. The DMTM phosphate group was removed 
in 95% yield by sodium hydroxide in a mixed solvent of ethanol/water. The coupling reactions of 
different glycosyl donors such as thioglycosides 18 and 21 with acceptors were examined and 
excellent results were obtained (Scheme 3). Although the α-glycosyl triflate 25 was detected by NMR 
at low temperature [28], by analysis and comparison, the authors pointed out that the neighboring 
participation mechanism involving intermediate 26 was more plausible and it was a good participating 
protecting group for the formation of 1,2-trans glycosides (Scheme 4). 

Scheme 3. Dialkyl phosphates as stereodirecting groups. 
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Scheme 4. Plausible mechanism of alkyl phosphates as 1,2-trans stereodirecting groups. 

 
2.3. 2-Pyridylmethyl group 

The Fraser–Reid armed–disarmed strategy, based on the chemoselectivity principle, offers an 
efficient tool for the synthesis of oligosaccharides with a cis, trans- or cis, cis-glycosylation pattern 
[29,30]. But generally speaking it cannot be applied to the synthesis of trans, cis- or trans, trans-linked 
oligosaccharide fragments. The 2-pyridylmethyl group was designed as “arming participating group” 
to extend the scope of armed–disarmed strategy and allowed stereoselective introduction of a 1,2-trans 
linkage prior to another 1,2-trans or 1,2-cis linkage (Scheme 5a) [31]. This protecting group is capable 
of efficient participation through a six-membered intermediate 36 (Scheme 5b) as acyl participating 
group to show complete 1,2-trans selectivity, but it belongs to the ether protecting groups that are 
capable of activation to retain the glycosyl donor in the armed state as opposed to conventional acyl 
participating moieties. The β intermediate 35 remained completely inert and could be isolated from the 
reaction mixture, so the corresponding 1,2-cis glycosides were not produced. With this expansion, the 
armed–disarmed approach would theoretically allow convergent chemoselective synthesis of any 
oligosaccharide sequence. 

Scheme 5. Arming participating group for stereoselective glycosylation: a) synthesis of a 
trans, trans-linked trisaccharide 32; b) proposed reaction mechanism. 
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2.4. Chiral auxiliary groups 

In 2005, Boons and coworkers reported a novel strategy for stereoselective glycosylations in which 
a chiral auxiliary at the C2 position of a glycosyl donor was used (Scheme 6) [32]. The auxiliary is a 
substituted ethyl moiety that contains a nucleophilic group. Upon formation of an oxocarbenium ion, 
participation of the nucleophilic moiety of the auxiliary should lead to the formation of either a cis- or 
a trans-decalin system (40, 45 or 41, 46), determined by the configuration of chiral auxiliary at the C2 
position. Because of steric repulsion between the phenyl group and the proton, the auxiliary with S 
stereochemistry would lead to the formation of 1,2-cis glycosides via the trans-decalin intermediate 
41, whereas the auxiliary with R stereochemisty would lead to the formation of 1,2-trans glycosides 
via the cis-decalin intermediate 45. 

Ethyl mandelate was explored as the first-generation chiral auxiliary, because of its ready 
availability, appropriate participating ester functionality, and ready removal under mild reductive 
conditions like the benzyl group. Glucosyl donors 50R and 50S, containing a (R) or (S)-ethoxy-
carbonylbenzyl moiety, were prepared from epoxide 48 and ethyl (R) or (S)-mandelate (Scheme 7). 
Glycosylations of 50S with glycosyl acceptors that have either a primary hydroxyl group or a 
secondary hydroxyl group exposed yielded disaccharides with high α-anomeric selectivity (Scheme 8). 
Correspondingly, the use of glycosyl donor 50R led to a reversal of anomeric selectivity and mainly 
afforded β-linked disaccharides. This methodology was also applied to galactosyl donors 55S and 55R 
[33]. It was observed that the α-anomeric selectivity was high for the donor with S chiral auxiliary, 
however, the β-anomeric selectivity was low for the donor with R chiral auxiliary. 

Scheme 6. The mechanism of chiral auxiliary group participating. 
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Scheme 7. Preparation of donors having auxiliary ethyl mandelate. 

 

To consummate the methodology, the second-generation chiral auxiliary with a (S)-(phenylthio-
methyl)benzyl moiety was developed [34]. Donors 59 and 62 were easily prepared following the 
synthetic route shown in Scheme 9. The coupling of donors 59 and 62 with a range of glycosyl 
acceptors all gave only α-anomers with good yields (Scheme 10), which showed the validity and 
generality of the approach. The fact that the glycosylations lead to the formation of exclusively α-
anomers provides support that the reactions proceed through an equatorially substituted anomeric 
sulfonium ion 69, the presence of which was confirmed by low-temperature NMR spectra. It is 
believed that a combination of an equatorially oriented (1S)-phenyl substituent and trans-decalin 
formation is important feature for controlling the α-anomeric selectivity (Scheme 11). On the other 
hand, worse than the donor with ethyl (R)-mandelate (50R), glycosylations with the donor having (R)-
(phenylthiomethyl)benzyl at O-2 position resulted in anomeric mixtures with no selectivity. 

Scheme 8. Stereoselective glycosylations with glycosyl donors 50 and 55. 
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Scheme 9. Preparation of donors having auxiliary (S)-(phenylthiomethyl)benzyl group. 

 

Scheme 10. Stereoselective glycosylations with glycosyl donors 59 and 62. 

 
 
To demonstrate the combined use of this method and the classic neighboring-group participation, 

trisaccharide 74, an epitope that can trigger acute rejections in xenotransplantations [35], was 
synthesized from galactosyl donor 71 using a one-pot two-step glycosylation procedure (Scheme 12). 
Recently, this methodology was also successfully used for the solid-supported synthesis of complex 
branched oligosaccharides 75 and 76 [36], a repeating unit of α-glucan pentasaccharide found in A. 
carmichaeli [37] (Figure 1). Multiple 1,2-cis-glycosidic linkages were introduced by using glucose and 
galactose donors having a participating (S)-(phenylthiomethyl)benzyl chiral auxiliary at O2 position, 
with complete anomeric control. These successful examples demonstrate that the methodology is 
compatible well with the solid-phase synthesis. 
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Scheme 11. The mechanism of (S)-(phenylthiomethyl)benzyl moiety participation. 

 

As novel stereodirecting groups, chiral auxiliary groups could be successfully used to construct  
1,2-cis-glycosides by “participating” with the intermediate oxocarbenium-ion. Inefficiency for 
introduction of 1,2-trans-glycosides is their drawback, however, classical neighboring group 
participation using ester protecting groups can deal with that easily. The combination of them will 
make stereoselective oligosaccharide synthesis more efficient.  

Scheme 12. One-pot two-step synthesis of trisaccharide 74. 

 

Figure 1. Branched oligosaccharides 75 and 76. 
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2.5. Remote participation groups 

Some protecting groups can use remote participation to control the configuration of the anomeric 
center in glycosylation reactions [38-42]. Because their roles are sometimes ambiguous and 
controversial, it is hard to say what these groups are, or when they function. Here are some recent 
examples, some of which are specifically designed to check whether or not remote participation plays 
a role in glycosylation reactions. The resolution of these issues is helpful in the development of 
stereocontrolled oligosaccharide synthesis. 

High α-anomeric selectivity could be gained by remote participation in 1,2-cis-galactosylation [43]. 
Ito and co-workers reported the synthesis of N-linked glycan derived from Gram-negative bacterium, 
Campylobacter jejuni, a heptasaccharide composed of Asn-linked bacillosamine (Bac), repeating N-
acetylgalactosamine, and branching glucose [38]. This synthesis started from the Bac-acceptor 78, 
which was consecutively glycosylated with 4-O-pentafluoropropionyl (PFP) protected galactose 
donors such as 77, finally affording the heptasaccharide 80 (Scheme 13). The function of 4-O-
pentafluoropropionyl group was considered as not only temporary protection but also remote 
participation from β face, which made the galactosylation proceed in a highly α-selective manner. In 
addition, this protecting group could be removed under extremely mild conditions, even with O-Ac 
groups completely intact [44]. 

 
Scheme 13. Synthesis of a heptasaccharide from Gram-negative bacterium. 
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Scheme 14. Synthesis of 2-deoxyglycosides using donors with different protecting groups 
at O6 position. 

 

α-Linked 2-deoxyglycosides were exclusively prepared by employing glycosyl donor 82 having a 
participating (S)-(phenylthiomethyl)benzyl moiety at O6 position (Scheme 14) [45]. Similar 
glycosylations employing glycosyl donors 84 and 86, having a benzyl ether or acetyl ester at the C6 
position, provided the disaccharides 85 and 87, respectively, as mixtures of anomers. The use of (R)-
(phenylthiomethyl)benzyl ether at C6 position of the glycosyl donor also led to excellent anomeric 
selectivity, indicating that the chirality of the auxiliary does not influence the anomeric outcome of 
glycosylations. Although the intermediate sulfonium ion was not identified by NMR, it was thought 
that the remote participation of (phenylthiomethyl)benzyl moiety is a key factor. 

In stereocontrolled synthesis of β-rhamnosides from mannosyl glycosyl donors [46], although the 
4,6-O-benzylidene acetal and 3-O-ether group are strong control elements permitting introduction of 
the β-mannopyranosides [47-49] such as in the synthesis of 90, the 3-O-chloroacetate of donor 91 was 
found to be strongly α-directing and to overcome the β-directing influence of the 4,6-O-benzylidene 
acetal group (Scheme 15). 3-O-Benzoyl group had the similar function [50]. A similar situation 
happened in the synthesis of 3-amino-3-deoxy-β-mannopyranosides (Scheme 16) [51]. Obviously, 3-
O-acyl groups in 4,6-O-benzylidene-protected manno-type donors resulted in α-selectivity. It is likely 
that remote participation of acyl groups could account for the reversion of stereochemical outcomes. 

Scheme 15. Comparison of influence of different groups at C3 on stereoselectivity. 
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Scheme 16. Comparison of influence of different groups at C3 on stereoselectivity in the 
synthesis of 3-amino-3-deoxy-mannopyranosides. 

 

 

Scheme 17. Remote participation by non-vicinal esters. 

 

To check whether the remote participation by non-vicinal esters plays a role in glycosylation 
reactions, donors 98 and 99 with 3-O-Boc esters were designed to trap anomeric oxocarbenium ion 
intermediates (Scheme 17) [52]. Although only α product was obtained, formation of a cyclic 
carbonate spanning positions 1 and 3 of the pyranose ring was not detected. However, in another case, 
the axial 3-O-ester in allose donor 101 was able to trap anomeric oxocarbenium ion intermediate to 
form cyclic carbonate 102, showing that the remote participation was unambiguous in the course of 
glycosylation reactions. 

Kim reported α-directing effect by remote participation of 3-O-acyl and 6-O-acetyl groups of 
donors in mannopyranosylations [53]. As shown in Scheme 18, donors 103 and 106 showed α-
selectivity, but donor 108 did not. To confirm whether or not remote participation functions, they also 
designed experiments to trap anomeric oxocarbenium ion intermediates by the intramolecular 
nucleophilic attack of the tert-butoxycarbonyl or the trichloroacetimidoyl group at the O3, O4, or O6 
positions of mannosyl donors. They obtained stable bicyclic product 111, having a six-membered 
trichlorooxazine ring, in 85% yield.  

1H-NMR spectral data clearly indicated that the 3-trichloroacetimidate 110 was in the 4C1 
conformation, while the sugar ring of the bicyclic product 111 was in the 1C4 conformation. Bicyclic 
products with a seven-membered trichlorooxazepine ring corresponding to the trichloroacetimidoyl 
group at the O4 or O6 positions of mannosyl donors were not isolated. Nevertheless, a small amount of 
a bicyclic product corresponding to the trichloroacetimidoyl group at the O6 position was detected in 
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the product mixture by mass spectrometry. This demonstrated the remote participation by 3-O-acyl and 
6-O-acetyl groups may function, but no participation by 4-O-acyl group worked. This could be 
explained by comparing the relative stabilities of dioxocarbenium ion intermediates (112>113>>114) 
(Figure 2). The more stable the bicyclic dioxocarbenium was, the stronger the participation of acyl 
groups was, which led to higher α-directing effect. 

Scheme 18. The comparison of α-directing effect with O-acyl group at different positions 
in mannopyranosylations and trapping of the intermediate. 

 

Figure 2. Dioxocarbenium ion intermediates by remote participation. 

 

3. Conformation-Constraining Protecting Groups 

Conformation-constraining protecting groups here mainly refer to cyclic bifunctional protecting 
groups [54], including benzylidene, carbonate, oxazolidinone, cyclic silyl groups, and others. It was 
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thought that they can restrict the flexibility of sugar rings, favor a certain conformation of the 
intermediate, and thus making the glycosyl intermediate to be accessed more easily from one side. The 
adoption of these groups has gained great achievements in stereoselective glycosylation reactions. 

3.1. Benzylidene group 

Crich et al. developed an attractive approach to construct the β-mannosidic linkage by the in situ 
formation of α-triflate or the transient contact ion pair derived from it [28,48,49,55,71]. In this 
methodology, a benzylidene group was proven to be crucial for the high β selectivity. The proposed 
mechanism was shown in Figure 3.  

Figure 3. Proposed mechanism for 4,6-O-benzylidene-directed β-mannosylation. 

 

It was proposed that the benzylidene protecting group opposes the oxacarbenium formation, which 
leads to SN 1 replacement and anomeric mixtures, due to the torsional strain engendered by the half 
chair or boat conformation of the intermediate, but favors the formation of an α-triflate intermediate. 
Speaking of electronic effects, the benzylidene group locks the C5-C6 bond in the trans-gauche (tg) 
conformation in which the C6-O6 bond is held antiperiplanar to the C5-O5 bond, thereby maximizing 
its electron-withdrawing effect of oxacarbenium ion and favoring its transformation to the α-triflate 
intermediate [56]. The α-triflate intermediate 115 was quite stable at low temperature and acted as a 
reservoir for a transient contact ion pair 116. The transient contact ion pair 116 was the actual 
glycosylating species in the β-mannosylation reaction and was determined by α-deuterium kinetic 
isotope effects [55]. Because of the dynamic equilibrium between the α-covalent triflate and the 
contact ion pair, the closely associated triflate counterion shielded the α-face and the SN2-like 
substitution occurred, leading to the formation of β-mannosides. In order to form the intermediate α-
triflate to control stereoselectivity, donors usually should be preactivated [57] by activator before 
acceptors were added. If donors and acceptors were added together at the same time, β-selectivity 
would not be observed. A more detailed mechanism was also reviewed recently by Crich [58]. 

Recently, 4,6-O-benzylidenated mannosyl donors with different leaving groups and protecting 
groups were checked in β-mannosylation reactions [51,59-64]. It was suggested that protecting groups 
at the C2 and C3 positions are also be of critical importance. Usually O-benzyl ethers at C2 and C3 
such as donor 119 can assure good β-selectivity (Scheme 19a), but sometimes in target-orientated 
convergent oligosaccharide synthesis orthogonal protection of the two hydroxyl groups is needed. In 
this situation, non-participating protecting groups that have the approximate steric bulk of benzyl 
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ethers on both at C2 and C3 are required [60,65,67]. Presumably the O2-C2-C3-O3 torsional 
interaction is the key factor for β-selectivity in this system. Only a proper O2-C2-C3-O3 torsion angle 
leads to good β-selectivity. Larger or smaller steric bulk than benzyl ethers on both at C2 and C3 
would make torsional interaction deviate from the optimal value and have an influence on the 
equilibrium in Figure 3, thus reducing selectivity. As a result, protecting groups here must be 
compromised as viewed from steric bulk for good β-selectivity. When bulky silyl groups or glycosidic 
linkages were located at O3 position, such as in the case of donors 122 and 124, poor selectivity was 
observed, even with 2-O-benzyl ether (Scheme 19b and 19c), but sterically minimal propargyl ether or 
4-trifluoromethylbenzenepropargyl ether are good choice (Scheme 19d) [60,66,67]. When benzyl ether 
was placed at C2, the corresponding 3-O-propargyl donor showed poor β-selectivity but the 
corresponding 3-O-1-naphthylpropargyl donor 130 showed good β-selectivity (Scheme 19e) [59]. In 
addition, it was confirmed that ester groups at O3 could overcome the β-directing influence of the 4,6-
O-benzylidene acetal and were strongly α-directing, as mentioned above. 

Scheme 19. β-Mannosylation reactions with 4,6-O-benzylidenated mannosyl donors. 
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As stereochemical analogs of β-mannopyranosides, β-rhamnosides can be synthesized from 
mannosyl glycosyl donors such as 133 (Scheme 20). By using functionalized benzylidene group, β-
mannopyranosides can be constructed stereoselectively, which can be converted to β-rhamnosides by 
deoxygenation at C6 position after glycosylation [68,69]. 

Except for 4,6-O-benzylidenated mannosyl donors, 4,6-O-benzylidenated glucopyranosyl donors 
[70,71] and galactosyl donors [72] were also checked, but α- rather than β-anomeric selectivity  
was achieved. 

Scheme 20. β-Rhamnosides prepared from 4,6-O-benzylidenated mannosyl donors. 

 

3.2. Carbonate and oxazolidinone groups 

Inspired by 4,6-O-benzylidene-directed mannosylation, Crich reported the synthesis of β-glucosides 
using carbonates as conformation-constraining protecting groups [73]. Its mechanism of the influence 
on stereoselectivity can be explained as the same as that of benzylidene.  

Scheme 21. Glycosylation reactions of carbonate-protected donors. 

 
 
In donor 135, the 2,3-O-carbonate group is trans-fused, and it opposes the formation of 

oxocarbenium ion, but favors the formation of an α-triflate intermediate, no matter whether we 
consider conformation or electronic factors. So donors with 2,3-O-carbonate groups provide a means 
for the formation of 1,2-trans-equatorial glycosidic bonds without recourse to neighboring group 
participation and the associated orthoester formation. In contrast, the 3,4-O-carbonated donor 137 
shows week β-selectivity because it is more far away and has less influence on the anomeric center. 
Recently, our group reported an efficient method for the highly α-stereoselective glycosylation of 2-
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deoxysugars and 2,6-dideoxysugars using 3,4-O-carbonated donors (Scheme 21c) [74]. Compared with 
the corresponding peracetyl-protected donors [75], 3,4-O-carbonated donors showed better α-directing 
effects. Aside from the electronic effect, the conformation-constrained by carbonate may be another 
key factor, which could lead to SN2-like displacement, possibly through the more active β-triflate 
intermediates. Although carbonate-directing selectivity as described above may result from α- or β-
triflate intermediates, it has not yet been proven by experiments. 

Much attention has been paid to the oxazolidinone group because it is very useful in the synthesis of 
α-2-amino-2-deoxyglucopyranosides and α-sialosides. The standard conditions employed for the 
introduction of the oxazolidinone group are the use of 4-nitrophenyl chloroformate (Scheme 22a) [76], 
or the improved protocol with triphosgene [77]. Usually,an oxazolidinone group as non-participating 
group at C2 can facilitate the simultaneous differentiation of the 2-amino and 3-hydroxyl from other 
hydroxyl groups, and plays a role via a conformation-constraining mechanism. Initially, 2,3-
oxazolidinone-protected thioglycoside donors, such as 144, were explored [76,78]. Although excellent 
α-selectivity was achieved, the obvious drawbacks included difficult activation and N-glycosylation—
the nitro atom reacted as a nucleophile. To overcome these shortcomings, N-protected donors were 
developed. N-Acetyl protected glucosamine donors 148, 149, and 150 (Figure 4) showed convertible 
selectivity by tuning the reaction conditions [77,79-82]. N-Acetyl protected galactosamine donor 151 
was used to synthesize repeating α-(1→4)-linked N-acetyl-galactosamine units and showed good α-
selectivity [83]. N-Benzyl 2,3-trans-oxazolidinone-protected donor 145 showed high α-selectivity for 
secondary alcohol, while for primary alcohol, high α-selectivity was also obtained but by virtue of 
solvent effects [84]. Concerning the mechanism involved, Oscarson made an investigation on N-acetyl 
protected glucosamine donor 150 using NMR-monitored glycosylation and anomerization experiments. 
It was suggested that a β-linkage was exclusive formed initially, but in the presence of the 
oxazolidinone group, β-glycosides anomerized to the α-glycosides through an intramolecular 
mechanism involving an endocyclic C-O bond cleavage [82]. Other oxazolidinone-protected donors 
maybe follow the same mechanism. 

Scheme 22. The preparation and glycosylation reactions of oxazolidinone-protecting donors. 
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Figure 4. N-Acetyl 2,3-trans-oxazolidinone-protected donors 148-151. 

 

The oxazolidinone group was also successfully used in α-sialylation reactions. Takahashi and co-
workers reported sialylation reactions using 5-N,4-O-carbonyl-protected sialyl donor 152 [85]. This 
donor with 4,5-oxazolidinone and 7,8-O-dichloroacetyl groups showed not only high reactivity but 
also high α-selectivity. The α-sialylation product could be obtained quantitatively using donor 152 and 
acceptor 153 without assistance of nitrile solvent. Biologically important α(2,8) and α(2,9) polysialic 
acids such as 157 could also be prepared using this methodology (Scheme 23) [85,86]. However, the 
mechanism for this unique α-sialylation was not examined in their work.  

Scheme 23. α-Sialylation using the oxazolidinone-protected donor. 
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Crich made a comparison study between N-acetyl-5-N,4-O-carbonyl-protected sialyl donor and 
N,N-diacetyl sialyl donor, and showed the former exhibited superior yields and α-selectivity, which 
proved oxazolidinone group had positive influence on α-sialylation in this system [87]. Recently, 
Hanashima reported a comparison study of silylene and oxazolidinone double-locked sialyl donors 
[88]. Donors 158 and 159, which had an additional C5,7-DTBS lock, showed comparable α-selectivity 
with donor 160 when coupled with the C6-OH group of galactose acceptors. When the double-locked 
donors, especially 159, were subjected to sialylation with the C3-OH group of galactosides such as 
161, they showed much better α-selectivity than 160 (Scheme 24). It was proposed that the silylene 
and oxazolidinone double-lock in 158 and 159 would stabilize the conformation of the pyranose ring 
more than the single oxazolidinone-type donor 160 (Figure 5). Such conformational constraints would 
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stabilize plausible intermediates 163/164. For acceptors with high reactivity, such as primary alcohols 
and 161, the hydroxyl group would attack from the α-face of intermediates 163/164 through an SN2-
like pathway to afford the α-anomers.  

Scheme 24. The silylene and oxazolidinone double-locked donors and α-sialylation with them. 

 

Figure 5. Plausible reaction mechanism of the donor 159. 
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In contrast, acceptors with low reactivity would find it difficult to react with relatively stable 
intermediates 163/164. Thus, 163/164 would decompose to give highly reactive oxonium ion 166, 
which could react with acceptors from the β-face to afford the β-anomers. Except these examples 
mentioned above, protecting groups at C5 of sialyl donors usually show a profound influence on the 
selectivity and reactivity of α-sialylation [89,90], which has been well summarized in other reviews 
[17,19]. 

3.3. Cyclic silyl groups 

Di-tert-butylsilylene (DTBS)-directed α-galactosylation was reported by Kiso [91-92]. In these 
works, both galactosaminyl and galactosyl donors were examined extensively. It was suggested that 
this method was compatible with a wide variety of leaving groups and common ether and ester 
protecting groups, even participating groups on C2 oxygen or nitrogen such as benzoyl, Troc, and Phth 
groups, and all gave α-predominant products (Scheme 25), except that it showed reversal selectivity 
when insoluble silver silicate was selected as a promoter for the corresponding glycosyl  
bromide donor.  

Scheme 25. The glycosylation reaction with the donor having di-tert-butylsilylene. 
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The X-ray crystallographic analysis of the donor 171 showed a six-membered ring comprised of a 
4,6-O-DTBS acetal moiety and a C4-C5-C6 bond adopted near half-chair conformation, which 
resulted in the tert-butyl group being positioned closer to the anomeric carbon. This implies that 
maybe the steric effect of the DTBS group leads to the α-selectivity. Further explanation is as follows: 
“through-space electron donation” may account for the enormous α-selectivity resulting from the 
DTBS effect [93,94] (Figure 6). Because of the strong stabilization of the oxocarbenium ion by axially 
oriented C4 electronegative substituent (through-space electron donation), participating groups on C2 
oxygen or nitrogen could not participate with the intermediate oxocarbenium-ion effectively, together 
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with steric effect of the DTBS group, resulting in the high α-selectivity. Recently, the synthesis of 
novel GM2 analogues based on this method was reported [95]. 

Figure 6. Proposed reaction mechanism for the DTBS-directed α-galactosylation. 
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3,5-O-Di-tert-butylsilylene group was used to construct β-arabinofuranosides (Scheme 26) [96], an 
important constituent of microbial and plant polysaccharides. It is difficult to introduce this kind of 
1,2-cis-furanosides due to the weak anomeric effects and flexibilities of furan rings. Only indirect 
protocols had been reported previously [97]. This protecting group could lock the arabinosyl donor in 
the low-energy conformation E3, in which nucleophilic attack from the β face was favored. As a result, 
a range of glycosylations of donor 179 with primary and secondary glycosyl acceptors gave the 
corresponding glycosides with excellent β-selectivity. Next, this methodology was successfully used to 
prepare compound 182, a fragment of arabinogalactans in the primary plant cell wall (Figure 7). In 
order to probe the biosynthesis of arabinan-containing polysaccharides, Lowary also used this 
methodology to synthesize a docosanasaccharide and an octadecasaccharide in a highly convergent 
manner [98]. 

Scheme 26. The β-selective furanosylation with 3,5-O-di-tert-butylsilylene-protected 
arabinosyl donor 178. 
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Figure 7. A fragment of arabinogalactans in the primary plant cell wall. 

 

Scheme 27. The β-selective furanosylation with 3,5-O-tetraisopropyldisiloxanylidene-protected donor. 

 

β-(1,2-Cis)-selective furanosylation using 3,5-O-tetraisopropyldisiloxanylidene (TIPDS) as 
conformation-constraining protecting group was explored by Ito and coworkers, revealing good β-
selectivity (Scheme 27) [99,100]. 3,5-O-Tetraisopropyldisiloxanylidene could lock the 
arabinofuranosyl donor 183 in the low-energy conformation E3, in which nucleophilic attack inside the 
envelope was favored [101]. Molecular modeling studies of these glycosylated products showed the 
total energy of the β-linked product was lower than that of the α-isomer, suggesting that the formation 
of the β-isomer was the thermodynamically favored process. In the global minimum structure, the β-
product had pseudoaxially oriented glycosidic linkages, which may be favorable in light of the 
anomeric effect. 

3.4. Other conformation-constraining protecting groups 

The 3,4-O-bisacetal protecting system was used for β-selective glucosylation (Scheme 28). The 
donor 187 with a 3,4-O-bisacetal showed moderate β-selectivity but higher than that with the more 
electronically disarmed corresponding 3,4-O-carbonate [102], which showed that conformational 
factors could be more important than electronic factors here. According to Crich’s mechanistic 
hypothesis for the glycosyl triflate-based glycosylations, the explanation could be found in the 
equilibria shown in Figure 8, which are similar to benzylidene-directed β-mannosylation. When the 
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covalent triflate 191 collapses to the contact ion pair 192 with its glycosyl oxacarbenium ion in a 
conformation approximating a 4H3 half-chair, the C2–O2 bond necessarily rotates down below the 
nominal pyranose plane leading to an increased steric interaction with the methoxy group of the 
bisacetal. It is this increased steric interaction that destabilizes the glycosyl cation sufficiently to bring 
about the observed β-selectivity. In donor 189 there is no longer a destabilizing steric interaction 
between the O2 protecting group and the cyclic protecting group spanning O3 and O4, resulting in 
anomeric mixtures. 

Scheme 28. Comparision of donors 187 and 189 in glycosylation. 

 

Figure 8. The influence of the 3,4-O-bisacetal group on glycosylation selectivity. 

 

Conformationally restricted 2,3-O-xylylene-protected arabinofuranosyl donors were also reported in 
the stereoselective β-arabinofuranosylation (Scheme 29) [103]. It was found that the stereoselectivity 
of glycosylations was dependent on the reaction conditions, and the use of a 5-O-PMB-type donor 194 
was essential for relative good β-selectivity. The detailed mechanism was not checked. 

Scheme 29. β-Arabinofuranosylation of 2,3-O-xylylene-protected arabinofuranosyl donor 194. 

 

4. Conclusions 

Protecting groups play important roles in carbohydrate chemistry. As many kinds of protecting 
groups have been explored and used in recent years, the synthesis of oligosaccharides has made great 
progress, which will further benefit the development of glycobiology. However, current protecting 
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groups are not ideal in many cases, and new protecting groups that enhance the glycosylation reactivity 
and control the stereochemistry outcomes of glycosylations are still needed. At present, some 
mechanism issues involving how protecting groups influence glycosylations are still ambiguous. The 
resolution of these problems will greatly promote the advances in stereocontrolled  
oligosaccharide synthesis. 
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