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Abstract: Validation is a crucial aspect of quantitative structure–activity relationship 

(QSAR) modeling. The present paper shows that traditionally used validation parameters 

(leave-one-out Q2 for internal validation and predictive R2 for external validation) may be 

supplemented with two novel parameters rm
2 and Rp

2 for a stricter test of validation. The 

parameter rm
2

(overall) penalizes a model for large differences between observed and predicted 

values of the compounds of the whole set (considering both training and test sets) while the 

parameter Rp
2 penalizes model R2 for large differences between determination coefficient 

of nonrandom model and square of mean correlation coefficient of random models in case 

of a randomization test. Two other variants of rm
2 parameter, rm

2
(LOO) and rm

2
(test), penalize a 

model more strictly than Q2 and R2
pred respectively. Three different data sets of moderate to 

large size have been used to develop multiple models in order to indicate the suitability of 

the novel parameters in QSAR studies. The results show that in many cases the developed 

models could satisfy the requirements of conventional parameters (Q2 and R2
pred) but fail to 

achieve the required values for the novel parameters rm
2 and Rp

2. Moreover, these 

parameters also help in identifying the best models from among a set of comparable 

models. Thus, a test for these two parameters is suggested to be a more stringent 

requirement than the traditional validation parameters to decide acceptability of a 

predictive QSAR model, especially when a regulatory decision is involved. 
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1. Introduction  

Quantitative structure-activity relationships (QSARs) are statistically derived models that can be 

used to predict the physicochemical and biological (including toxicological) properties of molecules 

from the knowledge of chemical structure. The structural features and properties are encoded within 

descriptors in numerical form. Descriptors support application of statistical tools generating relations 

which correlate activity data with descriptors (properties) in quantitative fashion. The description of 

QSAR models has been a topic for scientific research for more than 40 years and a topic within the 

regulatory framework for more than 20 years [1]. In the field of QSAR, the main objective is to 

investigate these relationships by building mathematical models that explain the relationship in a 

statistical way with ultimate goal of prediction and/or mechanistic interpretation. QSARs are being 

applied in many disciplines like drug discovery and lead optimization, risk assessment and toxicity 

prediction, regulatory decisions and agrochemicals [2-4]. One of the major applications of QSAR 

models is to predict the biological activity of untested compounds from their molecular structures [5]. 

The estimation of accuracy of predictions is a critical problem in QSAR modeling [6]. Only recently, 

validation of QSAR models has received considerable attention [7-19]. Four tools of assessing validity 

of QSAR models [20] are (i) randomization of the response data, (ii) cross-validation, (iii) 

bootstrapping, (iv) external validation by splitting of set of chemical compounds into a training and a 

test set and/or confirmation using an independent external validation set or external validation using a 

designed validation set. In order to be considered for regulatory use, especially in view of REACH 

(Registration, Evaluation, and Authorization of Chemicals) [1,21,22] legislation enforced in the 

European Union, it is widely agreed that QSARs need to be assessed in terms of their scientific 

validity, so that regulatory bodies have a sound scientific basis on which decisions regarding 

regulatory implementation can be taken. Several principles for assessing the validity of QSAR models 

were proposed at an International workshop held in Setubal (Portugal), which were subsequently 

modified in 2004 by the OECD Work Programme on QSARs [21,22]. Against this background, a 

review of the performance of the traditional validation parameters and the search for novel parameters 

which may be better metrics than the currently used ones appear to be of current need. 

Recently the use of internal versus external validation has been a matter of great debate [23]. One 

group of QSAR workers supports internal validation, while the other group considers that internal 

validation is not a sufficient test for checking robustness of the models and external validation must be 

done. Hawkins et al., the major group of supporters of internal validation, are of the opinion that cross-

validation is able to assess the model fit and to check whether the predictions will carry over to fresh 

data not used in the model fitting exercise. They have argued that when the sample size is small, 

holding a portion of it back for testing is wasteful and it is much better to use “computationally more 

burdensome” leave-one-out cross-validation [24,25]. 

An inconsistency between internal and external predictivity was reported in a few QSAR studies 

[26-28]. It was reported that, in general, there is no relationship between internal and external 

predictivity [29]: high internal predictivity may result in low external predictivity and vice versa. 
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Recently we have shown [15] that predictive R2 (R2
pred) may not be a suitable measure to indicate 

external predictability, as it is highly dependent on training set mean. An alternative measure rm
2 

(based on observed and predicted data of the test set compounds) was suggested to be a better metric 

to indicate external predictability. But it can as well be applied for training set if one considers the 

correlation between observed and leave-one-out (LOO) predicted values of the training set compounds 

[30,31]. More interestingly, this can be used for the whole set considering LOO-predicted values for 

the training set and predicted values of the test set compounds. The advantages of such consideration 

are: (1) unlike external validation parameters (R2
pred etc.), the rm

2
(overall) statistic is not based only on 

limited number of test set compounds. It includes prediction for both test set and training set (using 

LOO predictions) compounds. Thus, this statistic is based on prediction of comparably large number 

of compounds. In many cases, test set size is considerably small and regression based external 

validation parameter may be less reliable and highly dependent on individual test set observations. In 

such cases, the rm
2

(overall) statistic may be advantageous. (2) In many cases, comparable models are 

obtained where some models show comparatively better internal validation parameters and some other 

models show comparatively superior external validation parameters. This may create a problem in 

selecting the final model. The rm
2

(overall) statistic may be used for selection of the best predictive models 

from among comparable models. 

Again, for an acceptable QSAR model, the average correlation coefficient (Rr) of randomized 

models should be less than the correlation coefficient (R) of the non-randomized model. No clear-cut 

recommendation was found in the literature for the difference between the average correlation 

coefficient (Rr) of randomized models and the correlation coefficient (R) of non-randomized model. 

We have used a parameter Rp
2 [32] which penalizes the model R2 for the difference between squared 

mean correlation coefficient (Rr
2) of randomized models and squared correlation coefficient (R2) of the 

non-randomized model.  

In this paper, we demonstrate the usefulness of the parameters rm
2 and Rp

2 in deriving predictive 

QSAR models. For this task, we have chosen three different data sets of moderate to large size and 

developed multiple models to indicate the suitability of the parameters in QSAR studies. It may be 

noted here that the purpose of this paper is not to develop new QSAR models for the data sets but to 

explore suitability of the novel parameters rm
2 and Rp

2 in judging quality of predictive QSAR models. 

2. Materials and Methods 

2.1. The data sets and descriptors 

In the present paper, three different data sets have been used for the QSAR model development: (1) 

CCR5 binding affinity data (IC50) of 119 piperidine derivatives [33-36]; (2) ovicidal activity data 

(LC50) of 90 2-(2′,6′-difluorophenyl)-4-phenyl-1,3-oxazoline derivatives [37] and (3) tetrahymena 

toxicity (IGC50) of 384 aromatic compounds [38]. For the three data sets (I, II and III), QSAR models 

were separately developed from genetic function approximation (GFA) technique [39] with 5,000 

crossovers using Cerius2 version 4.10 software [40]. The descriptors used were from the classes of 

topological, structural, physicochemical and spatial types (vide infra).  
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2.1.1. Data set I 

The CCR5 binding affinity data (IC50) of 119 piperidine derivatives [33-36] were converted to 

logarithmic scale [pIC50 = -logIC50 (mM)] and then used for the QSAR study. A total of 119 

compounds were selected in our study, which are shown in Table 1. In cases of racemic compounds, 

only S configuration was considered for modeling because the R isomers are less potent [33, 34]. For 

this data set, different classes of descriptors used were topological [Balaban index (Jx), kappa shape 

indices, Zagreb, Wiener, connectivity indices and E-state indices], structural [molecular weight (MW), 

numbers of rotatable bonds (Rotlbonds), number of hydrogen bond donors and acceptors and number 

of chiral centers], physicochemical [AlogP, AlogP98, LogP, MR and MolRef], spatial 

[RadOfGyration, Jurs, Shadow, Area, Density, Vm] and electronic [Apol, HOMO, LUMO and Sr] 

parameters. Definitions of all descriptors can be found at the Cerius2 tutorial available at the website 

http://www.accelrys.com. 

Table 1. Structural features and CCR5 binding affinities of piperidine containing compounds. 

S

N

O
(n)

N

CH3

S

R2

O O

R1

Y

N

R1

N

CH3

S

OO

R2

X

Z

Y

N

N

CH3

S

Cl

OO
N

NX

R1

O

R2

N

S

CH3

OO

Y

1-37 38-62

63-71 72-119  
 
Sl. 
No. 

 Structural Features CCR5 binding 

affinity 

(-logIC50(mM)) 

Number 
of oxygen 
atoms (n) 

R1 R2 Y X Y-Z Observed [33-

36] 

1 0 (S)-3,4-Cl2-phenyl Phenyl - - - 3.000 
2 1 (S)-3,4-Cl2-phenyl Phenyl - - - 4.456 
3 2 (S)-3,4-Cl2-phenyl Phenyl - - - 4.000 
4 1 (S)-3,4-Cl2-phenyl 2-Thienyl - - - 4.222 
5 2 (S)-3,4-Cl2-phenyl  2-Thienyl - - - 3.921 
6 1 (S)-3,4-Cl2-phenyl Dimethylamino - - - 3.469 
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7 1 (S)-3,4-Cl2-phenyl Benzyl - - - 3.229 
8 1 (S)-3,4-Cl2-phenyl Methyl - - - 3.071 
9 1 (S)-3,4-Cl2-phenyl n-Octyl - - - 2.854 
10 1 (S)-3,4-Cl2-phenyl Cyclopentyl - - - 4.000 
11 1 (S)-3,4-Cl2-phenyl Cyclohexyl - - - 4.000 
12 1 (S)-3,4-Cl2-phenyl 2-Cl-phenyl - - - 4.097 
13 1 (S)-3,4-Cl2-phenyl 3-Cl-phenyl - - - 4.155 
14 1 (S)-3,4-Cl2-phenyl  4-Cl-phenyl - - - 4.398 
15 2 (S)-3,4-Cl2-phenyl 3-NO2-phenyl - - - 3.824 
16 2 (S)-3,4-Cl2-phenyl 4-NO2-phenyl - - - 4.222 
17 1 (S)-3,4-Cl2-phenyl 4-MeO-phenyl - - - 4.398 
18 1 (S)-3,4-Cl2-phenyl 4-Phenyl-phenyl - - - 4.398 
19 1 (S)-3,4-Cl2-phenyl Naphth-1-yl - - - 3.444 
20 1 (S)-3,4-Cl2-phenyl Naphth-2-yl - - - 4.222 
21 1 (S)-3,4-Cl2-phenyl Indan-5-yl - - - 4.155 
22 1 (S)-3,4-Cl2-phenyl Pyridin-3-yl - - - 4.000 
23 1 (S)-3,4-Cl2-phenyl Quinolin-8-yl - - - 4.046 
24 1 (S)-3,4-Cl2-phenyl Quinolin-3-yl - - - 3.921 
25 1 (S)-3,4-Cl2-phenyl 1-Me-imidazol-4-yl - - - 3.469 
26 0 (R/S)-phenyl Phenyl - - - 3.347 
27 1 (R/S)-phenyl Phenyl - - - 4.456 
28 2 (R/S)-phenyl Phenyl - - - 4.523 
29 1 (R/S)-2-Cl-phenyl Phenyl - - - 2.699 
30 2 (R/S)-2-Cl-phenyl Phenyl - - - 2.886 
31 0 (S)-3-Cl-phenyl Phenyl - - - 3.569 
32 1 (S)-3-Cl-phenyl Phenyl - - - 5.000 
33 2 (S)-3-Cl-phenyl Phenyl - - - 4.824 
34 1 (S)-4-Cl-phenyl Phenyl - - - 3.569 
35 1 (S)-4-F-phenyl Phenyl - - - 3.244 
36 1 (R/S)-3,5- Cl2-

phenyl 
Phenyl - - - 

4.046 
37 2 (R/S)-3,5- Cl2-

phenyl 
Phenyl - - - 

3.959 
38 - Phenyl (R/S)-Phenyl -CH- - - 3.921 
39 - Phenyl (R/S)-2-Cl-phenyl -CH- - - 2.523 
40 - Phenyl (S)-3-Cl-phenyl -CH- - - 4.523 
41 - Phenyl (S)-4-F-phenyl -CH- - - 3.000 
42 - Phenyl (R/S)-3,5-Cl2-

phenyl 
-CH- - - 

3.523 
43 - Phenyl (R/S)-3-F-phenyl -CH- - - 4.000 
44 - Phenyl (R/S)-3-Me-phenyl -CH- - - 4.097 
45 - Phenyl (R/S)-3-Et-phenyl -CH- - - 3.959 
46 - Phenyl (R/S)-3-CF3-phenyl -CH- - - 3.301 
47 - Phenyl (R/S)-4-Me-phenyl -CH- - - 3.699 
48 - Phenyl (R/S)-3,5-Me2-

phenyl 
-CH- - - 

3.796 
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49 - Phenyl (R/S)-3,4-F2-
phenyl 

-CH- - - 
3.244 

50 - Phenyl (R/S)-3,4-Me2-
phenyl 

-CH- - - 
4.222 

51 - Phenyl (R/S)-3-Me-4-F-
phenyl 

-CH- - - 
3.745 

52 - Phenyl (R/S)-3-F-4-Me-
phenyl 

-CH- - - 
3.959 

53 - Phenyl 3-Cl-phenyl -N- - - 3.155 
54 - 2-Methyl-phenyl 3-Cl-phenyl -N- - - 2.620 
55 - 2-Methyl-phenyl 3-Cl-phenyl -CH- - - 3.398 
56 - 2-MeO-phenyl 3-Cl-phenyl -CH- - - 4.155 
57 - 3-CF3-phenyl 3-Cl-phenyl -CH- - - 3.921 
58 - 4-Cl-phenyl 3-Cl-phenyl -CH- - - 3.699 
59 - 4-F-phenyl 3-Cl-phenyl -CH- - - 4.602 
60 - Benzyl 3-Cl-phenyl -CH- - - 3.602 
61 - C6H5CH2CH2 3-Cl-phenyl -CH- - - 4.187 
62 - C6H5CH2CH2CH2 3-Cl-phenyl -CH- - - 5.301 
63 - - - - -a -CH2CH2- 3.745 
64 - - - - -a -NHCH2- 4.301 
65 - - - - -a -C(O)CH2- 5.301 
66 - - - - -a -C(O)NH- 4.347 
67 - - - - -a -

C(O)N(Me) 4.000 
68 - - - - -a -C(O)NHCH2- 4.456 
69 - - - - -a -NHC(O)CH2- 4.456 
70 - - - - -a -CH(OH)CH2- 4.000 
71 - - - - -CH2- -O- 3.585 
72 - Me H H O - 3.000 
73 - t-Bu H H O - 3.000 
74 - t-Bu Et H O - 4.523 
75 - Me Me H O - 3.824 
76 - Me Et H O - 4.398 
77 - Me n-Pr H O - 4.699 
78 - Me n-Bu H O - 4.824 
79 - Me n-C6H13 H O - 5.000 
80 - Me c-C6H11-CH2 H O - 5.222 
81 - Me Bn H O - 4.000 
82 - Et c-C6H11-CH2 H O - 4.456 
83 - Bn c-C6H11-CH2 H O - 3.097 
84 - Et Et H O - 4.398 
85 - t-Bu Et H O - 4.602 
86 - c-C6H11-CH2 Et H O - 4.824 
87 - Ph Et H O - 5.000 
88 - Bn Et H O - 5.699 
89 - Bn Et Cl O - 5.699 
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90 - Bn Me H O - 5.301 
91 - Bn n-Pr H O - 5.699 
92 - Bn n-Pr Cl O - 5.398 
93 - Bn n-Bu H O - 5.301 
94 - Bn Allyl H O - 5.824 
95 - 2-Me-C6H4-CH2 n-Pr H O - 5.398 
96 - 3-Me-C6H4-CH2 n-Pr H O - 5.523 
97 - 4-Me-C6H4-CH2 n-Pr H O - 5.523 
98 - 4-CF3-C6H4-CH2 n-Pr H O - 5.222 
99 - 4-NO2-C6H4-CH2 n-Pr H O - 5.824 
100 - 4-NO2-C6H4-CH2 Allyl H O - 5.699 
101 - 4-NO2-C6H4-CH2 Allyl Cl O - 5.699 
102 - 3-NH2COC6H4-CH2 n-Pr H O - 6.097 
103 - 4-NH2COC6H4-CH2 n-Pr H O - 5.699 
104 - 4-NH2COC6H4-CH2 n-Pr Cl O - 5.523 
105 - Bn n-Pr H O - 5.699 
106 - Me H H NH - 3.000 
107 - Me Et H NH - 3.921 
108 - Bn H H NH - 4.000 
109 - Bn n-Pr H NH - 5.602 
110 - Ph n-Pr H NH - 5.398 
111 - Bn n-Pr H N-Me - 4.699 
112 - (S)-α-Me-Bn n-Pr H NH - 4.125 
113 - 4-NO2-Bn Allyl H NH - 6.125 
114 - Me Et H - - 3.921 
115 - Ph n-Pr H - - 4.000 
116 - Bn n-Pr H - - 5.523 
117 - PhOCH2 n-Pr H - - 5.398 
118 - PhCH2CH2 n-Pr H - - 4.699 
119 - 4-NO2-Bn Allyl H - - 5.699 

aThe X feature in these structures is a single bond. 

2.1.2. Data set II 

The ovicidal activity data (LC50) of 90 2-(2′,6′-difluorophenyl)-4-phenyl-1,3-oxazoline derivatives 

[37] were converted to reciprocal logarithmic values [pLC50 = -logLC50 (M)] which were used for the 

QSAR analysis. There is only one region of structural variations in the compounds, which is the R 

position of the phenyl ring. Thus the present QSAR study explores the impact of substitutional 

variations at the 4-phenyl ring of the 1,3-oxazoline nucleus on the ovicidal activity of the compounds. 

The structures of the compounds and associated ovicidal activities are listed in Table 2. The range of 

the ovicidal activity values is quite wide (6.1 log units). For this data set, only topological descriptors 

(Balaban J, kappa shape, flexibility, subgraph count, connectivity, Wiener, Zagreb and E-sate) along 

with structural parameters [molecular weight (MW), numbers of rotatable bonds (Rotlbonds), number 
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of hydrogen bond donors and acceptors and number of chiral centers] and hydrophobic substituent 

constant  were used for the model development. 

Table 2. Structural features and ovicidal activity of 2-(2′,6′-difluorophenyl)-4-phenyl-1,3-

oxazoline derivatives. 

F

F
O

N R

 
 

Sl. No. Substitution (R) 

Ovicidal 
activity 

Observed [37] 

1 H 4.71 

2 2-CH3 3.74 

3 2-Et 4.76 

4 2-OCH3 3.76 

5 2-OEt 3.78 

6 2-F 4.74 

7 2-Cl 5.77 

8 3-CH3 3.74 

9 3-Et 3.76 

10 3-OCH3 4.76 

11 3-OEt 4.78 

12 3-F 4.74 

13 3-Cl 4.77 

14 4-CH3 5.74 

15 4-Et 7.76 

16 4-i-Pr 7.78 

17 4-n-Bu 8.8 

18 4-i-Bu 8.8 

19 4-t-Bu 8.8 

20 4-n-C6H13 8.84 

21 4-n-C8H17 8.87 

22 4-n-C10H21 8.9 

23 4-n-C12H25 8.93 

24 4-n-C15H31 7.97 

25 4-OH 3.74 

26 4-OCH3 4.76 

27 4-OEt 7.78 
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28 4-O-iPr 7.8 

29 4-n-Bu 8.82 

30 4-O-n-C8H17 8.89 

31 4-O-n-C10H21 8.92 

32 4-O-n-C13H27 7.96 

33 4-O-n-C14H29 6.97 

34 4-OCF3 7.84 

35 4-OCH2CF3 8.85 

36 4-SCH3 5.79 

37 4-S-i-Pr 5.82 

38 4-S-NC9H19 6.92 

39 4-S(=O)CH3 3.81 

40 4-SO2CH3 2.83 

41 4-F 5.74 

42 4-Cl 7.77 

43 4-Br 7.83 

44 4-CF3 6.82 

45 4-N(CH3)2 3.78 

46 4-Si(CH3)3 8.82 

47 2-CH3, 4-CH3 3.76 

48 2-CH3, 4-n-C8H17 8.89 

49 2-CH3, 4-Cl 5.79 

50 2-OCH3, 4-t-Bu 7.84 

51 2-OCH3, 4-n-C8H17 6.9 

52 2-OCH3, 4-n-C9H19 7.92 

53 2-OCH3, 4-n-C10H21 6.93 

54 2-OCH3, 4-F 5.79 

55 2-OCH3, 4-Cl 5.81 

56 2-OEt, 4-i-Pr 6.84 

57 2-OEt, 4-t-Bu 7.86 

58 2-OEt, 4-n-C5H11 8.87 

59 2-OEt, 4-F 7.81 

60 2-OEt, 4-Cl 5.83 

61 2-OEt, 4-Br 5.88 

62 2-O-n-Pr, 4-i-Pr 8.86 

63 2-O-n-Pr, 4-t-Bu 7.87 

64 2-O-n-Pr, 4-n-C5H11 7.89 

65 2-O-n-Bu, 4-t-Bu 6.89 
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66 2-O-n-Bu, 4-F 8.84 

67 2-O-n-Hex, 4-t-Bu 5.92 

68 2-F, 4-Et 5.79 

69 2-F, 4-n-C6H13 8.86 

70 2-F, 4-n-C7H15 8.88 

71 2-F, 4-n-C8H17 8.89 

72 2-F, 4-n-C10H21 7.92 

73 2-F, 4-n-C12H25 6.95 

74 2-F, 4-F 6.77 

75 2-F, 4-Cl 8.79 

76 2-Cl, 4-Et 7.81 

77 2-Cl, 4-i-Bu 8.84 

78 2-Cl, 4-n-C6H13 8.88 

79 2-Cl, 4-n-C8H17 8.91 

80 2-Cl, 4-n-C10H21 5.94 

81 2-Cl, 4-n-C12H25 5.97 

82 2-Cl, 4-F 5.79 

83 2-Cl, 4-Cl 6.82 

84 3-CH3, 4-CH3 4.76 

85 3-F, 4-n-C6H13 5.86 

86 3-F, 4-F 5.77 

87 3-F, 4-Cl 6.79 

88 3-Cl, 4-n-C6H13 5.88 

89 3-Cl, 4-F 5.79 

90 3-Cl, 4-Cl 5.82 

2.1.3. Data set III 

Toxicity data (-log IGC50) (Table 3) determined against T. pyriformis [38] for 384 diverse 

compounds were used as the third data set. Different topological descriptors [ETA parameters [41,42] 

and non-ETA (Balaban J, kappa shape, flexibility, subgraph count, connectivity, Wiener, Zagreb, 

Hosoya and E-sate) parameters] were used to develop the models.  

Table 3. Toxicity (-log IGC50) of diverse compounds against T. Pyriformis. 

Sl. No Name Toxicity [38] 
1 3-Aminobenzyl alcohol -1.13 

2 2-Aminobenzyl alcohol -1.07 

3 Benzyl alcohol -0.83 

4 4-Hydroxyphenethyl alcohol -0.83 
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5 4-Aminobenzyl cyanide -0.76 

6 2-Nitrobenzamide -0.72 

7 4-Hydroxy-3-methoxybenzyl alcohol -0.7 

8 2-Methoxyaniline -0.69 

9 (sec)-Phenethyl alcohol -0.66 

10 1,3-Dihydroxybenzene -0.65 

11 1-Phenyl-2-propanol -0.62 

12 Phenethyl alcohol -0.59 

13 2-Phenyl-2-propanol -0.57 

14 3-Amono-2-cresol -0.55 

15 2,4,6-tris-(Dimethylaminomethyl)phenol -0.52 

16 4-Methylbenzyl alcohol -0.49 

17 Phenylacetic acid hydrazide -0.48 

18 3-Cyanoaniline -0.47 

19 Acetophenone -0.46 

20 2-Methylbenzyl alcohol -0.43 

21 ()1-Phenyl-1-propanol -0.43 

22 2,3-Dimethylaniline -0.43 

23 2,6-Dimethylaniline -0.43 

24 2-Methyl-1-phenyl-2-propanol -0.41 

25 N-Methylphenethylamine -0.41 

26 2-Phenyl-1-propanol -0.4 

27 3-Fluorobenzyl alcohol -0.39 

28 4-Hydroxybenzyl cyanide -0.38 

29 4-Cyanobenzamide -0.38 

30 2-Fluoroaniline -0.37 

31 3,5-Dimethylaniline -0.36 

32 Benzyl cyanide -0.36 

33 Phenol -0.35 

34 3-Methoxyphenol -0.33 

35 2,5-Dimethylaniline -0.33 

36 2-Methylphenol -0.29 

37 2,4-Dimethylaniline -0.29 

38 3-Methylaniline -0.28 

39 - Methylphenethylamine -0.28 

40 4-Methylphenethyl alcohol -0.26 

41 Benzylamine -0.24 

42 2-Tolunitrile -0.24 
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43 3-Methylbenzyl alcohol -0.24 

44 Aniline -0.23 

45 2-Ethylaniline -0.22 

46 3-Nitrobenzyl alcohol -0.22 

47 3-Phenyl-1-propanol -0.21 

48 Benzaldehyde -0.2 

49 2-Phenyl-3-butyn-2-ol -0.18 

50 1-Phenylethylamine -0.18 

51 2-Chloroaniline -0.17 

52 1-Phenyl-2-butanol -0.16 

53 3,4-Dimethylaniline -0.16 

54 2-Methylaniline -0.16 

55 4-Methylphenol -0.16 

56 3-Phenylpropionitrile -0.16 

57 3-Acetamidophenol -0.16 

58 4-Methoxyphenol -0.14 

59 Phenetole -0.14 

60 3-Hydroxy-4-methoxybenzaldehyde -0.14 

61 Chlorobenzene -0.13 

62 Benzene -0.12 

63 2-Phenyl-1-butanol -0.11 

64 Benzaldoxime -0.11 

65 Anisole -0.1 

66 3-Fluoroaniline -0.1 

67 2,4,5-Trimethoxybenzaldehyde -0.1 

68 (S)-1-Phenyl-1-butanol -0.09 

69 3,5-Dimethoxyphenol -0.09 

70 3-Methylphenol -0.08 

71 3-Phenyl-2-propen-1-ol -0.08 

72 ,-Dimethylbenzenepropanol -0.07 

73 Propiophenone -0.07 

74 2-Nitroanisole -0.07 

75 4-Methylaniline -0.05 

76 2,4,6-Trimethylaniline -0.05 

77 2-(4-Tolyl)-ethylamine -0.04 

78 3-Ethylaniline -0.03 

79 3-Methoxy-4-hydroxybenzaldehyde -0.03 

80 4-Hydroxy-3-methoxybenzonitrile -0.03 



Molecules 2009, 14                            

 

 

1672

Table 3. Cont. 

81 Ethyl phenylcyanoacetate -0.02 

82 (R)-1-Phenyl-1-butanol -0.01 

83 4-Methylbenzylamine -0.01 

84 Thioacetanilide -0.01 

85 3-Phenyl-1-butanol 0.01 

86 -Methylbenzyl cyanide 0.01 

87 4-Ethoxyphenol 0.01 

88 3-Ethoxy-4-hydroxybenzaldehyde 0.02 

89 4-Fluorophenol 0.02 

90 4-Ethylaniline 0.03 

91 3-Nitroaniline 0.03 

92 4-Chloroaniline 0.05 

93 ()-2-Phenyl-2-butanol 0.06 

94 Benzyl chloride 0.06 

95 N-Methylaniline 0.06 

96 4-Ethylbenzyl alcohol 0.07 

97 N-Ethylaniline 0.07 

98 Bromobenzene 0.08 

99 2-Nitroaniline 0.08 

100 2-Propylaniline 0.08 

101 3-Hydroxybenzaldehyde 0.08 

102 Thiobenzamide 0.09 

103 1-Fluoro-4-nitrobenzene 0.1 

104 2-Bromobenzyl alcohol 0.1 

105 4-Methoxybenzonitrile 0.1 

106 3,5-Dimethylphenol 0.11 

107 3-Nitrobenzaldehyde 0.11 

108 4-Phenyl-1-butanol 0.12 

109 4/-Hydroxypropiophenone 0.12 

110 2-iso-Propylaniline 0.12 

111 3,4-Dimethylphenol 0.12 

112 2,3-Dimethylphenol 0.12 

113 4-Chlororesorcinol 0.13 

114 2,4-Dimethylphenol 0.14 

115 2-(4-Chlorophenyl)-ethylamine 0.14 

116 Nitrobenzene 0.14 

117 2,5-Dimethylphenol 0.14 

118 4-Phenylbutyronitrile 0.15 
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119 3-Chlorobenzyl alcohol 0.15 

120 2-Anisaldehyde 0.15 

121 2-Ethylphenol 0.16 

122 4-Chlorobenzylamine 0.16 

123 ()-1-Phenyl-2-pentanol 0.16 

124 Cinnamonitrile 0.16 

125 2-Nitrobenzaldehyde 0.17 

126 Thioanisole 0.18 

127 2-Chloro-4-methylaniline 0.18 

128 4-iso-Propylbenzyl alcohol 0.18 

129 Phenyl-1,3-dialdehyde 0.18 

130 2-Fluorophenol 0.19 

131 4-Nitrobenzaldehyde 0.2 

132 4-Ethylphenol 0.21 

133 Butyrophenone 0.21 

134 4-iso-propylaniline 0.22 

135 3-Chloroaniline 0.22 

136 4-(Dimethylamino)-benzaldehyde 0.23 

137 3-Anisaldehyde 0.23 

138 1-Fluoro-2-nitrobenzene 0.23 

139 4-Xylene 0.25 

140 Toluene 0.25 

141 4-Methylanisole 0.25 

142 4-Chlorobenzyl alcohol 0.25 

143 2,4-Dihydroxyacetophenone 0.25 

144 2-Nitrotoluene 0.26 

145 Pentafluoroaniline 0.26 

146 2-Phenylpyridine 0.27 

147 3-Hydroxy-4-nitrobenzaldehyde 0.27 

148 2,3,6-Trimethylphenol 0.28 

149 3-Ethylphenol 0.29 

150 2,6-Diethylaniline 0.31 

151 Methyl-4-methylaminobenzoate 0.31 

152 Benzoyl cyanide 0.31 

153 4-Chlorophenethyl alcohol 0.32 

154 3/-Nitroacetophenone 0.32 

155 2-Allylphenol 0.33 

156 5-Hydroxy-2-nitrobenzaldehyde 0.33 
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157 2-Bromophenol 0.33 

158 2,5-Difluoronitrobenzene 0.33 

159 4-Chloro-2-methylaniline 0.35 

160 2-Iodoaniline 0.35 

161 2,3,5-trimethylphenol 0.36 

162 Iodobenzene 0.36 

163 4-(tert)-Butylaniline 0.36 

164 4-methyl-2-nitroaniline 0.37 

165 2-Amino-4-(tert)-butylphenol 0.37 

166 2-Benzylpyridine 0.38 

167 3-Chloro-2-methylaniline 0.38 

168 3-Chloro-4-methylaniline 0.39 

169 Methyl-4-nitrobenzoate 0.39 

170 4-Chlorobenzaldehyde 0.4 

171 5-Phenyl-1-pentanol 0.42 

172 (2-Bromoethyl)-benzene 0.42 

173 2,4,6-Trimethylphenol 0.42 

174 3-Nitrotoluene 0.42 

175 2-Hydroxybenzaldehyde 0.42 

176 1-Chloro-4-nitrobenzene 0.43 

177 Dimethylnitroterephthalate 0.43 

178 2-Amino-5-chlorobenzonitrile 0.44 

179 3-Nitrobenzonitrile 0.45 

180 4-Bromotoluene 0.47 

181 3-Phenylpyridine 0.47 

182 4-iso-Propylphenol 0.47 

183 4-(tert)-Butylbenzyl alcohol 0.48 

184 Benzhydrol 0.5 

185 5-Chloro-2-methylaniline 0.5 

186 3-Nitrophenol 0.51 

187 1,2-Dichlorobenzene 0.53 

188 2-Chloro-5-nitrobenzaldehyde 0.53 

189 4-Chlorophenol 0.54 

190 Phenyl propargyl sulfide 0.54 

191 2-Chloro-5-methylphenol 0.54 

192 2-Hydroxy-4-methoxyacetophenone 0.55 

193 2,4-Dichloroaniline 0.56 

194 1,2-Dimethyl-3-nitrobenzene 0.56 
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195 Valerophenone 0.56 

196 4-Methyl-2-nitrophenol 0.57 

197 2,5-Dichloroaniline 0.58 

198 trans-Methyl cinnamate 0.58 

199 1,2-Dimethyl-4-nitrobenzene 0.59 

200 5-Chloro-2-hydroxybenzamide 0.59 

201 5-Methyl-2-nitrophenol 0.59 

202 4-Chloroanisole 0.6 

203 2-Bromo-4-methylphenol 0.6 

204 4-Bromophenyl acetonitrile 0.6 

205 4-Butoxyaniline 0.61 

206 4-sec-Butylaniline 0.61 

207 3-iso-Propylphenol 0.61 

208 2-iso-Propylphenol 0.61 

209 3-Methyl-2-nitrophenol 0.61 

210 4-Hydroxy-3-nitrobenzaldehyde 0.61 

211 5-Bromovanillin 0.62 

212 ,,-Trifluoro-4-cresol 0.62 

213 4-Benzylpyridine 0.63 

214 4-Propylphenol 0.64 

215 Benzylidine malononitrile 0.64 

216 4-Nitrotoluene 0.65 

217 3-Iodoaniline 0.65 

218 Benzyl methacrylate 0.65 

219 4-Chlorobenzylcyanide 0.66 

220 2-Methyl-5-nitrophenol 0.66 

221 2-Nitroresorcinol 0.66 

222 1-Bromo-4-ethylbenzene 0.67 

223 4-iso-Propylbenzaldehyde 0.67 

224 2-Nitrophenol 0.67 

225 1,4-Dibromobenzene 0.68 

226 2-Chloro-6-nitrotoluene 0.68 

227 1-Chloro-2-nitrobenzene 0.68 

228 4-Bromophenol 0.68 

229 4-Benzoylaniline 0.68 

230 iso-Propylbenzene 0.69 

231 2-Chloro-4,5-dimethylphenol 0.69 

232 4-Butoxyphenol 0.7 
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233 4-Chloro-2-methylphenol 0.7 

234 3,5-Dichloroaniline 0.71 

235 2-Hydroxy-4,5-dimethylacetophenone 0.71 

236 Ethyl-4-nitrobenzoate 0.71 

237 3-Nitroanisole 0.72 

238 2,4-Dinitroaniline 0.72 

239 1-Chloro-3-nitrobenzene 0.73 

240 2,6-Dichlorophenol 0.73 

241 3-tert-Butylphenol 0.74 

242 1,1-Diphenyl-2-propanol 0.75 

243 2-Chloro-4-nitroaniline 0.75 

244 1-Bromo-2-nitrobenzene 0.75 

245 2-Methoxy-4-propenylphenol 0.75 

246 2-Chloromethyl-4-nitrophenol 0.75 

247 4,5-Difluoro-2-nitroaniline 0.75 

248 2,6-Diisopropylaniline 0.76 

249 3-Chloro-5-methoxyphenol 0.76 

250 4-Ethoxy-2-nitroaniline 0.76 

251 1,3-Dinitrobenzene 0.76 

252 ,,-4-Tetrafluoro-3-touidine 0.77 

253 Ethyl-4-methoxybenzoate 0.77 

254 ()-1,2-Diphenyl-2-propanol 0.8 

255 4-Chloro-3-methylphenol 0.8 

256 3-Chloro-4-fluoronitrobenzene 0.8 

257 Methyl-2,5-dichlorobenzoate 0.81 

258 4-Chloro-2-nitrotoluene 0.82 

259 Pentafluorobenzaldehyde 0.82 

260 4-Bromophenyl-3-pyridyl ketone 0.82 

261 Methyl-4-chloro-2-nitrobenzoate 0.82 

262 4-Nitrophenetole 0.83 

263 2,6-Dinitrophenol 0.83 

264 2,6-Dinitroaniline 0.84 

265 4-Iodophenol 0.85 

266 1,3,5-Trimethyl-2-nitrobenzene 0.86 

267 6-Phenyl-1-hexanol 0.87 

268 3-Chlorophenol 0.87 

269 Benzophenone 0.87 

270 1,3,5-Trichlorobenzene 0.87 
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271 2,4-Dinitrotoluene 0.87 

272 4-(tert)-Butylphenol 0.91 

273 4-Biphenylmethanol 0.92 

274 3,4,5-Trimethylphenol 0.93 

275 2,2/,4,4/-Tetrahydroxybenzophenone 0.96 

276 4-Pentyloxyaniline 0.97 

277 2,4-Dichloronitrobenzene 0.99 

278 (trans)-Ethyl cinnamate 0.99 

279 4-Benzoylphenol 1.02 

280 1-Bromo-3-nitrobenzene 1.03 

281 2,4-Dichlorophenol 1.04 

282 2,5-Dinitrophenol 1.04 

283 2,4-Dichlorobenzaldehyde 1.04 

284 Biphenyl 1.05 

285 2,4-Dinitrophenol 1.06 

286 4-Butylaniline 1.07 

287 3,4-Dichlorotoluene 1.07 

288 2,3-Dichloronitrobenzene 1.07 

289 Benzyl-4-hydroxylphenyl ketone 1.07 

290 1,2,4-Trichlorobenzene 1.08 

291 4-Chloro-3-ethylphenol 1.08 

292 1-Fluoro-3-iodo-5-nitrobenzene 1.09 

293 Resorcinol monobenzoate 1.11 

294 6-Chloro-2,4-dinitroaniline 1.12 

295 4-Biphenylcarboxaldehyde 1.12 

296 3,5-Dichloronitrobenzene 1.13 

297 2,5-Dichloronitrobenzene 1.13 

298 2-Bromo-5-nitrotoluene 1.16 

299 3,4-Dichloronitrobenzene 1.16 

300 6-tert-butyl-2,4-dimethylphenol 1.16 

301 4-Bromo-2,6-dimethylphenol 1.16 

302 2,2/-Dihydroxybenzophenone 1.16 

303 3,5-Dibromo-4-hydroxybenzonitrile 1.16 

304 4-(Pentyloxy)-benzaldehyde 1.18 

305 4-Nitrobenzyl chloride 1.18 

306 Hexanophenone 1.19 

307 4-Chloro-3,5-dimethylphenol 1.2 

308 4-tert-Pentylphenol 1.23 
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309 n-Propyl cinnamate 1.23 

310 2-Bromo-4,6-dinitroaniline 1.24 

311 n-Butylbenzene 1.25 

312 1,2-Dinitrobenzene 1.25 

313 4-Bromobenzophenone 1.26 

314 2,4-Dichloro-6-nitroaniline 1.26 

315 4-Phenoxybenzaldehyde 1.26 

316 4-Chloro-3-nitrophenol 1.27 

317 4-Bromo-6-chloro-2-cresol 1.28 

318 2,4,5-Trichloroaniline 1.3 

319 1,4-Dinitrobenzene 1.3 

320 2-Nitrobiphenyl 1.3 

321 5-Pentylresorcinol 1.31 

322 Ethyl-4-bromobenzoate 1.33 

323 2/,3/,4/-Trichloroacetophenone 1.34 

324 Phenyl benzoate 1.35 

325 Phenyl-4-hydroxybenzoate 1.37 

326 2,5-Dibromonitrobenzene 1.37 

327 4-Hexyloxyaniline 1.38 

328 2,4-Dibromophenol 1.4 

329 2,4,6-Trichlorophenol 1.41 

330 Phenyl isothiocyanate 1.41 

331 2-Hydroxy-4-methoxybenzophenone 1.42 

332 1,3,5-Trichloro-2-nitrobenzene 1.43 

333 Benzyl benzoate 1.45 

334 iso-Amyl-4-hydroxybenzoate 1.48 

335 2,5-Diphenyl-1,4-benzoquinone 1.48 

336 4-Chlorobenzophenone 1.5 

337 1,2,3-Trichloro-4-nitrobenzene 1.51 

338 1,2,4-Trichloro-5-nitrobenzene 1.53 

339 n-Butyl cinnamate 1.53 

340 3-Chlorobenzophenone 1.55 

341 3,5-Dichlorosalicylaldehyde 1.55 

342 Heptanophenone 1.56 

343 3,5-Dichlorophenol 1.56 

344 4-Nitrophenyl phenyl ether 1.58 

345 2,4-Dibromo-6-nitroaniline 1.62 

346 4-Chloro-6-nitro-3-cresol 1.63 
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347 Pentafluorophenol 1.63 

348 3,5-Di-tert-butylphenol 1.64 

349 3,5-Dibromosalicylaldehyde 1.65 

350 3-Trifluoromethyl-4-nitrophenol 1.65 

351 4,5-Dichloro-2-nitroaniline 1.66 

352 2,4-Dinitro-1-fluorobenzene 1.71 

353 2-(Benzylthio)-3-nitropyridine 1.72 

354 4,6-Dinitro-2-methylphenol 1.73 

355 2,4-Dichloro-6-nitrophenol 1.75 

356 2,3,5,6-Tetrachloroaniline 1.76 

357 4-Bromo-2,6-dichlorophenol 1.78 

358 2,3,4,5-Tetrachloronitrobenzene 1.78 

359 n -Amylbenzene 1.79 

360 4-Hexylresorcinol 1.8 

361 4-(tert)-Butyl-2,6-dinitrophenol 1.8 

362 2,6-Diiodo-4-nitrophenol 1.81 

363 2,3,5,6- Tetrachloronitrobenzene 1.82 

364 2,3,4,6- Tetrachloronitrobenzene 1.87 

365 Octanophenone 1.89 

366 1,2,3-Trifluoro-4-nitrobenzene 1.89 

367 2,4,6-Tribromophenol 1.91 

368 2,3,4,5-Tetrachloroaniline 1.96 

369 4-Ethylbiphenyl 1.97 

370 1,2,4,5-Tetrachlorobenzene 2 

371 Pentachlorophenol 2.07 

372 2,4,5-Trichlorophenol 2.1 

373 2,4-Dinitro-1-iodobenzene 2.12 

374 1-Chloro-2,4-dinitrobenzene 2.16 

375 2,3,4,6-Tetrachlorophenol 2.18 

376 1,3,5-Trichloro-2,4-dinitrobenzene hemihydrate 2.19 

377 1,2-Dichloro-4,5-dinitrobenzene 2.21 

378 1,5-Dichloro-2,3-dinitrobenzene 2.42 

379 Nonylphenol 2.47 

380 3,4,5,6-Tetrabromo-2-cresol 2.57 

381 1,3-Dinitro-2,4,5-trichlorobenzene 2.60 

382 Pentabromophenol 2.66 

383 2,3,4,5-Tetrachlorophenol 2.72 

384 1,4-Dinitrotetrachlorobenzene 2.82 



Molecules 2009, 14                            

 

 

1680

2.2. Model development 

A model's predictive accuracy and confidence for different unknown chemicals varies according to 

how well the training set represents the unknown chemicals and how robust the model is in 

extrapolating beyond the chemistry space defined by the training set. So, the selection of the training 

set is significantly important in QSAR analysis. Predictive potential of a model on the new data set is 

influenced by the similarity of chemical nature between training set and test set [43]. The test set 

molecules will be predicted well when these molecules are very similar to the training set compounds. 

The reason is that the model has represented all features common to the training set molecules. In this 

paper, for the development of models for a particular data set, standardized descriptor matrix was 

subjected to cluster analysis by K-nearest neighbour method [44]. After clustering, test set compounds 

were selected from each cluster so that both test set and training set could represent all clusters and 

characteristics of the whole dataset. This approach (clustering) ensures that the similarity principle can 

be employed for the activity prediction of the test set. Based on clustering, each data set was divided 

into 50 combinations of training and test sets. In each case, 75% of the total compounds were selected 

as training set and remaining 25% were selected as test set. Models were developed from a training set 

using genetic function approximation and the best model was selected from the population of models 

obtained based on lack-of-fit score. The selected model was then validated internally by leave-one-out 

method and then externally by predicting the activity values of the corresponding test set. Based on the 

results obtained from multiple models which are derived based on different combinations of training 

and test sets, we have tried to evaluate performance of different validation parameters. 

2.3. Statistical methods 

2.3.1. GFA 

In this work, all models were developed using genetic function approximation (GFA) technique. 

Genetic algorithms are derived from an analogy with the evolution of DNA [39]. The genetic function 

approximation algorithm was initially anticipated by: 1) Holland’s genetic algorithm and 2) 

Friedman’s multivariate adaptive regression splines (MARS) algorithm. In this algorithm an individual 

or model is represented as one-dimensional string of bits. A distinctive feature of GFA is that it 

produces a population of models (e.g. 100), instead of generating a single model, as do most other 

statistical methods. Genetic algorithm makes superior models to those developed using stepwise 

regression techniques because it selects the basis functions genetically. Descriptors, which were 

selected by this algorithm, were subjected to multiple linear regression for generation of models. A 

“fitness function” or lack of fit (LOF) was used to estimate the quality of a model, so that best model 

receives the best fitness score. The error measurement term LOF is determined by the following 

equation:  

2
*

1

LSE
LOF

c d p
M


  

 

   (1) 
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In Eq. (1), ‘c’ is the number of basis functions (other than constant term); ‘d’ is smoothing 

parameter (adjustable by the user); ‘M’ is number of samples in the training set; LSE is least squares 

error and ‘p’ is total numbers of features contained in all basis functions. 

Once models in the population have been rated using the LOF score, the genetic cross over 

operation is repeatedly performed. Initially two good models are probabilistically selected as parents 

and each parent is randomly cut into two pieces and a new model (child) is generated using a piece 

from each parents. After many mating steps, i.e., genetic crossover type operation, average fitness of 

models in the population increases as good combinations of genes are discovered and spread through 

the population. It can build not only linear models but also higher-order polynomials, splines and 

Gaussians. In our present work, only linear terms have been used. For the development of genetic 

function approximation (GFA) model, Cerius2 version 4.10 [38] has been used. The mutation 

probabilities were kept at 5,000 iterations. Smoothness (d) was kept at 1.00. Initial equation length 

value was selected as 4 and the length of the final equation was not fixed.  

2.3.2. Validation parameters 

2.3.2.1. Q2 

In case of leave-one-out (LOO) cross-validation, each member of the sample in turn is removed, the 

full modeling method is applied to the remaining n-1 members, and the fitted model is applied to the 

holdback member. The LOO approach perturbs the data structure by removing 1/Nth compound in 

each crossvalidation round, thus, accomplishing an increasingly smaller perturbation with increasing 

N. Hence, the Q2 value of LOO approaches to that of R2, which is highly unsatisfactory [20]. 

Cross-validated squared correlation coefficient R2 (LOO-Q2) is calculated according to the formula: 
2

2

2

( )
1

( )

predY Y
Q

Y Y


 





     

(2) 

In Eq. (2), Ypred and Y indicate predicted and observed activity values respectively and Y indicate 

mean activity value. A model is considered acceptable when the value of Q2 exceeds 05. 

2.3.2.2. R2
pred 

Cross validation provides a reasonable approximation of ability with which the QSAR predicts the 

activity values of new compounds. However, external validation gives the ultimate proof of the true 

predictability of a model. In many cases, truly external data points being unavailable for prediction 

purpose, original data set compounds are divided into training and test sets [45], thus enabling external 

validation. This subdivision of the data set can be accomplished in many ways, but approximately 

similar ranges of the biological responses and structural properties and all available structural and/or 

physicochemical features should be represented in both training and test sets. 

Equations are generated based on training set compounds and predictive capacity of the models is 

judged based on the predictive R2 (R2
pred) values calculated according to the following equation: 

2
( ) ( )2

r 2
( )

( )
1

( )
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

     

(3) 



Molecules 2009, 14                            

 

 

1682

In Eq. (3), Ypred(test) and Y(test) indicate predicted and observed activity values respectively of the test 

set compounds and Y training indicates mean activity value of the training set. For a predictive QSAR 

model, the value of R2
pred should be more than 0.5. 

2.3.2.3. rm
2 

It has been previously shown [15] that R2
pred may not be sufficient to indicate external predictivity 

of a model. The value of R2
pred is mainly controlled by 2

( )( )trainingobs testY Y , i.e., sum of squared 

differences between observed values of test set compounds and mean observed activity values of 

training data set. Thus, it may not truly reflect the predictive capability of the model on a new dataset. 

Besides this, a good value of squared correlation coefficient (r2) between observed and predicted 

values of the test set compounds does not necessarily mean that the predicted values are very near to 

corresponding observed activity (there may be considerable numerical difference between the values 

though maintaining an overall good intercorrelation). So, for better external predictive potential of the 

model, a modified r2 [rm
2

(test)] was introduced by the following equation [15]: 
2 2 2 2
( ) 0*(1 )m testr r r r      (4) 

In Eq. (4), r0
2 is squared correlation coefficient between the observed and predicted values of the 

test set compounds with intercept set to zero. The value of r2
m(test) should be greater than 0.5 for an 

acceptable model.  

Initially, the concept of rm
2 was applied only to the test set prediction [15], but it can as well be 

applied for training set if one considers the correlation between observed and leave-one-out (LOO) 

predicted values of the training set compounds [39, 40]. More interestingly, this can be used for the 

whole set considering LOO-predicted values for the training set and predicted values of the test set 

compounds. The rm
2

(overall) statistic may be used for selection of the best predictive models from among 

comparable models.  

2.3.2.4. Rp
2 

Further statistical significance of the relationship between activity and the descriptors can be 

checked by randomization test (Y-randomization) of the models. This method is of two types: process 

randomization and model randomization. In case of process randomization, the values of the 

dependent variable are randomly scrambled and variable selection is done freshly from the whole 

descriptor matrix. In case of model randomization, the Y column entries are scrambled and new QSAR 

models are developed using same set of variables as present in the unrandomized model. For an 

acceptable QSAR model, the average correlation coefficient (Rr) of randomized models should be less 

than the correlation coefficient (R) of non-randomized model. We have used a parameter Rp
2 [32] in 

the present paper, which penalizes the model R2 for the difference between squared mean correlation 

coefficient (Rr
2) of randomized models and squared correlation coefficient (R2) of the non-randomized 

model. The above mentioned novel parameter can be calculated by the following equation:  
2 2 2 2*p rR R R R     (5) 

This novel parameter Rp
2 ensures that the models thus developed are not obtained by chance. We 

have assumed that the value of Rp
2 should be greater than 0.5 for an acceptable model.  
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3. Results and Discussion 

3.1. Data set I 

The dataset (n = 119) was divided into training set of 89 compounds and test set of 30 compounds 

in 50 different combinations. Each of the 50 different training sets was then used for developing 

QSAR models using the genetic function approximation (GFA) technique. Each of the selected QSAR 

models was validated internally using the leave-one-out technique and externally using the 

corresponding test set compounds. All the models were also validated by the process randomization 

technique. From the internal validation technique, the value of Q2 was determined and from the 

external validation technique the value of R2
pred was calculated which were then used as the parameters 

for determining the model predictivity. Using the process randomization technique, the average of the 

correlation coefficients of the randomized models (Rr) was compared with the correlation coefficient 

(R) of the non-randomized model. To penalize a model for the difference between the squared 

correlation coefficients of the randomized and the non-randomized models, the value Rp
2 was also 

calculated. 

An illustration of the results obtained for each combination studied is given in Table 4. The Q2 

values obtained for all the models are well above the stipulated value of 0.5 with model no. 39 

showing the highest Q2 value of 0.701. However, external validation of the models showed a wide 

range of variation in the values of R2
pred. A very low value of R2

pred is obtained for models showing 

high values of Q2 while models with moderate values of Q2 showed a similarly moderate values of 

R2
pred. The value of R2

pred for model no. 39 is only 0.240 which is far below the stipulated acceptable 

value of 0.5 although the model gives the maximum value of Q2. Similarly model no. 12 gives the 

lowest value of R2
pred (0.117) in spite of having a quite acceptable value of Q2 (0.632). On the 

contrary, only model nos. 3, 6, 10, 11, 15, 18, 29, 37, 41 and 42 having Q2 values just exceeding 0.5 

give values of R2
pred above 0.5. Again for model nos. 41 and 42, the value of R2

pred is greater the value 

of Q2. Thus it may be inferred that very a high value of Q2 does not indicate the model to be highly 

predictive while determining the activity of external dataset and also a model with high external 

predictivity may be poorly predictive internally. Thus the parameter, rm
2

(overall), was used which 

penalizes a model for large differences in observed and predicted activity values of the congeners. A 

model may be considered satisfactory when rm
2

(overall) is greater than 0.5. 

Table 4. Comparison of statistical qualities and validation parameters of different models (Data set I). 

Trial 
No. 

No. of  
predictor  
variables 

LOF R2 Q2 R2
pred rm

2
(LOO) rm

2
(test) 

rm
2 

(overall) 

rm
2

(overall) 
(adjusted) 

Rr
2 Rp

2 

01 4 0.276 0.677 0.642 0.329 0.466 0.313 0.444 0.418 0.143 0.495 
02 2 0.336 0.596 0.569 0.358 0.378 0.348 0.383 0.369 0.098 0.421 
03 3 0.380 0.552 0.511 0.595 0.367 0.566 0.400 0.379 0.118 0.364 
04 4 0.349 0.621 0.569 0.438 0.409 0.391 0.407 0.379 0.108 0.445 
05 4 0.323 0.634 0.567 0.367 0.407 0.339 0.402 0.374 0.078 0.473 
06 2 0.357 0.542 0.511 0.542 0.366 0.508 0.399 0.385 0.116 0.354 
07 3 0.351 0.597 0.560 0.436 0.402 0.466 0.416 0.395 0.100 0.421 
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08 4 0.304 0.660 0.620 0.346 0.414 0.303 0.400 0.371 0.117 0.486 

09 3 0.256 0.697 0.675 0.080 0.494 0.142 0.417 0.396 0.102 0.538 

10 4 0.347 0.596 0.549 0.530 0.394 0.509 0.431 0.404 0.087 0.425 

11 3 0.359 0.567 0.519 0.556 0.372 0.506 0.407 0.386 0.102 0.387 

12 3 0.294 0.663 0.632 0.117 0.458 0.133 0.405 0.384 0.138 0.480 

13 4 0.273 0.678 0.640 0.326 0.463 0.324 0.441 0.414 0.089 0.520 

14 3 0.345 0.604 0.568 0.390 0.408 0.364 0.410 0.389 0.176 0.395 

15 3 0.369 0.558 0.502 0.523 0.360 0.500 0.386 0.364 0.130 0.365 

16 3 0.318 0.627 0.584 0.282 0.401 0.310 0.373 0.351 0.126 0.444 

17 4 0.330 0.622 0.562 0.462 0.405 0.445 0.417 0.389 0.100 0.449 

18 4 0.370 0.581 0.531 0.542 0.381 0.529 0.415 0.387 0.091 0.407 

19 4 0.346 0.615 0.564 0.447 0.406 0.427 0.411 0.383 0.111 0.437 

20 3 0.289 0.657 0.625 0.301 0.452 0.268 0.420 0.400 0.108 0.487 

21 3 0.299 0.648 0.614 0.254 0.443 0.241 0.412 0.391 0.124 0.469 

22 3 0.324 0.610 0.573 0.426 0.410 0.426 0.418 0.397 0.143 0.417 

23 3 0.347 0.581 0.519 0.471 0.373 0.440 0.398 0.377 0.116 0.396 

24 4 0.290 0.673 0.636 0.238 0.461 0.254 0.425 0.398 0.092 0.513 

25 3 0.313 0.622 0.591 0.343 0.425 0.324 0.411 0.390 0.122 0.440 

26 4 0.257 0.686 0.645 0.233 0.467 0.179 0.405 0.377 0.108 0.521 

27 4 0.299 0.659 0.615 0.212 0.445 0.219 0.404 0.376 0.095 0.495 

28 4 0.342 0.603 0.558 0.497 0.369 0.468 0.396 0.367 0.122 0.418 

29 4 0.385 0.593 0.536 0.544 0.386 0.474 0.399 0.370 0.118 0.409 

30 4 0.324 0.627 0.580 0.394 0.418 0.361 0.414 0.386 0.095 0.457 

31 4 0.353 0.592 0.544 0.286 0.389 0.260 0.368 0.338 0.111 0.411 

32 3 0.314 0.636 0.602 0.264 0.434 0.272 0.411 0.390 0.113 0.460 

33 5 0.295 0.685 0.644 0.179 0.468 0.201 0.413 0.378 0.106 0.521 

34 2 0.271 0.652 0.629 0.263 0.454 0.244 0.415 0.401 0.132 0.470 

35 4 0.340 0.615 0.566 0.303 0.406 0.273 0.387 0.358 0.088 0.447 

36 4 0.335 0.641 0.604 0.286 0.436 0.321 0.425 0.398 0.096 0.473 

37 3 0.341 0.585 0.547 0.517 0.392 0.503 0.413 0.392 0.095 0.409 

38 3 0.279 0.659 0.628 0.253 0.454 0.266 0.419 0.398 0.166 0.463 

39 4 0.210 0.731 0.701* 0.240 0.517 0.285 0.452* 0.426 0.135 0.564 

40 3 0.302 0.630 0.597 0.359 0.429 0.367 0.422 0.402 0.158 0.433 

41 3 0.380 0.558 0.510 0.565 0.367 0.542 0.399 0.378 0.107 0.375 

42 3 0.404 0.557 0.517 0.595 0.374 0.578 0.403 0.382 0.106 0.374 

43 3 0.285 0.632 0.585 0.284 0.420 0.282 0.396 0.375 0.134 0.446 

44 4 0.337 0.611 0.565 0.424 0.405 0.453 0.421 0.393 0.137 0.421 

45 3 0.360 0.602 0.567 0.320 0.408 0.299 0.398 0.377 0.094 0.429 

46 6 0.302 0.697 0.646 0.239 0.471 0.262 0.431 0.389 0.076 0.549 

47 3 0.312 0.615 0.573 0.369 0.411 0.365 0.411 0.390 0.134 0.427 

48 3 0.298 0.653 0.617 0.167 0.446 0.179 0.404 0.383 0.134 0.470 
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49 3 0.290 0.623 0.589 0.400 0.421 0.412 0.424 0.404 0.097 0.452 

50 2 0.311 0.590 0.561 0.420 0.428 0.401 0.415 0.401 0.106 0.410 

*Models with maximum Q2, R2
pred and rm

2
(overall) values are shown in bold. 

 

As we know, high or acceptable values of the two parameters, Q2 and R2
pred, may be obtained as 

long as a moderate overall correlation is maintained between the observed and predicted activity 

values even if there is a considerable difference between them. The parameter rm
2

(overall) determines 

whether the predicted activities are really close to the observed values or not since high values of Q2 

and R2
pred does not necessarily mean that the predicted values are very close to the observed ones. The 

value of rm
2

(overall) is a good compromise between a high value of Q2 and a low value of R2
pred and vice 

versa. For models showing high acceptable values of Q2 but very low values of R2
pred (below 0.5) and 

vice versa, it becomes difficult to conclude whether the model is well predictive or not. Similarly, the 

results obtained here show that some of the models give high Q2 values while others give high R2
pred 

values. So, the selection of the best model becomes difficult. The value of rm
2

(overall) takes into 

consideration predictions for both training and test set compounds and maintains a balance between 

the values of Q2 and R2
pred. This fact can be well established from the Figure 1 showing a comparative 

plot of the values of Q2, R2
pred and rm

2
(overall) for the 50 different models (trial nos. in x axis). The line 

showing the values of rm
2

(overall) indicates that it can penalize a model with high Q2 but low R2
pred. 

Furthermore, models with rm
2

(overall) values greater than 0.5 may be considered acceptable. Thus, in this 

dataset, although some of the models are acceptable considering the values of the conventional 

parameters (Q2 and R2
pred), none of the models satisfy the value of rm

2
(overall). So none of the models 

obtained using the present descriptor matrix appears to be truly predictive.  

Figure 1. Comparative plots of Q2, R2
pred and rm

2
(overall) values of 50 models (data set I). 
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In all the models developed for this dataset, there is a difference of at least 0.15 or more between 

the values of Q2 and rm
2

(LOO), the latter parameter showing lower values. Model no. 8 having an 



Molecules 2009, 14                            

 

 

1686

acceptable value of Q2 (0.620) may appear to be quite good at a first glance, but this model bears the 

maximum difference between the values of Q2 and rm
2

(LOO) (0.204). The rm
2

(LOO) parameter for a given 

model indicates the extent of deviation of the LOO predicted activity values from the observed ones 

for the training set compounds. This implies that model 8, despite having an acceptable Q2, is not 

capable of accurately predicting the activities of some training set molecules (7 out of 89 training set 

compounds have LOO predicted residuals of more than 1 log unit) and this is reflected in the value of 

rm
2

(LOO). Similar results are also obtained for model nos. 2, 9, 16, 28 and 39. Interestingly, model 39 

has the maximum Q2 value (0.701) while the rm
2

(LOO) value of this model is only 0.517. Figure 2 shows 

a comparative plot of the values of Q2 and rm
2

(LOO) for the 50 different models. 

Figure 2. Comparative plots of Q2 and rm
2

(LOO) values of 50 models (data set I). 
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The rm
2

(test) parameter determines the extent of deviation of the predicted activity from the observed 

activity values of test set compounds where the predicted activity is calculated on the basis of the 

model developed using the corresponding training set. Model nos. 3, 6, 10, 11, 15, 18 and 41 show 

acceptable values of R2
pred and rm

2
(test).  

 

Figure 3. Comparative plots of R2
pred and rm

2
(test) values of 50 models (data set I). 
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Moreover, for these models the difference between the value of R2
pred and rm

2
(test) is very low (less 

than 0.1) indicating that the predicted activity values of the test set compounds obtained from the 

corresponding models are very close to the corresponding observed activities of the compounds. 

Figure 3 shows a comparative plot of the values of R2
pred and rm

2
(test) for the 50 different models. 

The developed models were further validated by the process randomization technique. The values 

of Rr
2 and R2 were determined which were then used for calculating the value of Rp

2. Models with Rp
2 

values greater than 0.5 are considered to be statistically robust. If the value of Rp
2 is less than 0.5, then 

it may be concluded that the outcome of the models is merely by chance and they are not at all well 

predictive for truly external datasets. Figure 4 shows a comparative plot of the values of R2, Rr
2 and 

Rp
2 for the 50 different models. In this work although some of the models satisfy the requirement for 

Rp
2, they do not achieve the stipulated value of rm

2
(overall). Model nos. 9, 13, 24, 33, 39, 46 show 

acceptable values of Rp
2 (above 0.5) but at the same time none of them achieve the required value (0.5) 

of rm
2

(overall). Thus it may be concluded that the different models obtained for this dataset using the 

given descriptor matrix do not appear to be truly predictive as none of them fulfills the requirements of 

both the parameters, rm
2

(overall) and Rp
2, though many of them satisfy the conventional parameters, Q2 

and R2
pred.  

Figure 4. Comparative plots of R2, Rr
2 and Rp

2 values of 50 models (data set I). 
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3.2. Data set II 

The total data set (n=90) was divided into training set (n=68) and test (external evaluation) set 

(n=22) (75% and 25% respectively of the total number of compounds) in 50 different combinations, 

based on clusters obtained from K-means clustering applied on standardized topological, structural and 

physicochemical descriptor matrix. Models were generated with topological, structural and 

physicochemical descriptors of each of the training sets using GFA. The predictive potentials of those 

models were determined on the corresponding test sets. Each of the models were validated both 

internally (using Q2) and externally (using R2
pred). The models were further validated using process 

randomization technique. A comparison of statistical quality parameters and validation parameters of 

the models are listed in Table 5. The Q2 values of model nos. 8, 37 and 42 did not cross the stipulated 

value, i.e., 0.5. But, the rest 47 models successfully crossed that threshold value. A very low value of 
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R2
pred was obtained for models showing a high value of Q2 and vice versa, while models with a 

moderate value of Q2 showed a similarly moderate value of R2
pred. As for example, model number 44 

has the maximum leave-one-out (LOO) predicted variance (Q2 = 0.723), but the external predictive 

power of that model is very poor (R2
pred = 0.136), which is far less than the threshold value, i.e., 0.5. 

Similarly, model number 35 has also high internal predictive variance (Q2 = 0.704), but the external 

predictive potential of that model is very poor (R2
pred = -0.002). However, in case of model number 8, 

internal predictive variance (Q2 = 0.468) is quite less than the stipulated value, but the external 

predictive potential of that model (R2
pred = 0.714) is very good. However, the models with acceptable 

moderate values (greater than 0.5) of LOO predicted variance (Q2) like the model nos. 4, 6, 9, 13, 15, 

17, 20, 22, 25, 28, 29, 34, 36, 46, 47, 50 showed satisfactory moderate values (higher than 0.5) of 

external predictive variance (R2
pred). This dataset also implies that very high value of Q2 does not 

indicate the model to be highly predictive while determining the activity of external dataset and also a 

model with high external predictivity may be poorly predictive internally. Thus the values of rm
2

(overall) 

were also calculated to penalize the models for large differences between observed and predictive 

values of the congeners. 

Table 5. Comparison of statistical qualities and validation parameters of different models (Data set II). 

Trial 
No. 

No. of 
predictor 
variables 

LOF R2 Q2 R2
pred rm

2
(LOO) rm

2
(test) 

rm
2

(overall

) 
rm

2
(overall) 

(adjusted) 
Rr

2 Rp
2 

01 4 1.306 0.673 0.617 0.325 0.462 0.280 0.426 0.390 0.076 0.520 

02 4 1.696 0.577 0.510 0.479 0.384 0.433 0.393 0.354 0.078 0.408 

03 4 1.529 0.612 0.559 0.347 0.418 0.326 0.408 0.370 0.078 0.447 

04 6 1.620 0.607 0.517 0.540 0.385 0.473 0.415 0.357 0.079 0.441 

05 4 1.347 0.646 0.606 0.441 0.449 0.430 0.444 0.409 0.071 0.490 

06 4 1.534 0.606 0.548 0.600 0.408 0.585 0.437 0.401 0.059 0.448 

07 4 1.496 0.642 0.585 0.024 0.440 0.149 0.372 0.332 0.107 0.470 

08 4 1.644 0.553 0.468 0.714* 0.357 0.684 0.408 0.370 0.050 0.392 

09 4 1.593 0.588 0.521 0.633 0.391 0.535 0.423 0.386 0.066 0.425 

10 2 1.514 0.547 0.513 0.325 0.381 0.291 0.367 0.348 0.104 0.364 

11 5 1.457 0.658 0.589 0.448 0.439 0.472 0.448 0.403 0.051 0.513 

12 4 1.436 0.642 0.596 0.470 0.443 0.435 0.439 0.403 0.075 0.483 

13 4 1.517 0.590 0.529 0.613 0.394 0.577 0.433 0.397 0.074 0.424 

14 4 1.318 0.654 0.609 0.443 0.452 0.433 0.449 0.414 0.076 0.497 

15 4 1.523 0.586 0.523 0.652 0.390 0.573 0.434 0.398 0.103 0.407 

16 4 1.466 0.622 0.567 0.203 0.422 0.243 0.397 0.359 0.094 0.452 

17 6 1.409 0.681 0.613 0.597 0.457 0.597 0.471 0.419 0.072 0.531 

18 5 1.253 0.705 0.656 0.351 0.493 0.328 0.448 0.403 0.072 0.561 

19 5 1.173 0.711 0.665 0.331 0.499 0.312 0.455 0.411 0.100 0.556 

20 5 1.546 0.630 0.558 0.507 0.416 0.468 0.425 0.379 0.060 0.476 
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21 4 1.288 0.681 0.636 -0.028 0.477 0.129 0.382 0.343 0.056 0.538 

22 6 1.349 0.675 0.612 0.608 0.457 0.538 0.488* 0.438 0.077 0.522 

23 5 1.392 0.660 0.600 0.488 0.449 0.467 0.447 0.402 0.046 0.517 

24 5 1.321 0.680 0.637 0.409 0.475 0.374 0.451 0.407 0.086 0.524 

25 6 1.360 0.701 0.635 0.525 0.476 0.484 0.475 0.423 0.075 0.555 

26 6 1.231 0.722 0.666 0.403 0.504 0.363 0.464 0.411 0.068 0.584 

27 4 1.116 0.708 0.672 0.282 0.503 0.254 0.451 0.416 0.063 0.569 

28 5 1.363 0.648 0.582 0.588 0.432 0.552 0.455 0.411 0.097 0.481 

29 5 1.414 0.627 0.564 0.614 0.418 0.572 0.447 0.402 0.110 0.451 

30 4 1.267 0.673 0.630 0.213 0.470 0.260 0.436 0.400 0.058 0.528 

31 4 1.454 0.626 0.577 0.330 0.430 0.302 0.411 0.374 0.084 0.461 

32 5 1.595 0.613 0.540 0.433 0.407 0.349 0.391 0.342 0.081 0.447 

33 4 1.408 0.633 0.577 0.249 0.429 0.248 0.392 0.353 0.068 0.476 

34 4 1.522 0.586 0.517 0.656 0.387 0.635 0.434 0.398 0.070 0.421 

35 6 1.075 0.758 0.704 -0.002 0.536 0.108 0.422 0.365 0.083 0.623 

36 4 1.446 0.598 0.535 0.616 0.398 0.545 0.445 0.410 0.074 0.433 

37 4 1.695 0.552 0.486 0.614 0.368 0.559 0.409 0.371 0.098 0.372 

38 4 1.305 0.650 0.596 0.368 0.442 0.450 0.443 0.408 0.080 0.491 

39 5 1.298 0.687 0.616 0.361 0.463 0.322 0.437 0.392 0.090 0.531 

40 4 1.330 0.663 0.617 0.125 0.460 0.149 0.397 0.359 0.078 0.507 

41 5 1.319 0.682 0.620 0.077 0.465 0.140 0.393 0.344 0.093 0.523 

42 4 1.601 0.556 0.485 0.656 0.365 0.634 0.413 0.376 0.047 0.396 

43 4 1.218 0.651 0.588 0.496 0.436 0.482 0.444 0.409 0.060 0.500 

44 6 0.993 0.770 0.723* 0.136 0.551 0.169 0.462 0.409 0.075 0.642 

45 4 1.097 0.705 0.663 0.200 0.496 0.173 0.427 0.391 0.078 0.558 

46 5 1.494 0.633 0.558 0.636 0.418 0.550 0.439 0.394 0.103 0.461 

47 5 1.392 0.649 0.575 0.545 0.427 0.536 0.439 0.394 0.059 0.498 

48 5 1.254 0.682 0.623 0.077 0.466 0.134 0.388 0.339 0.070 0.533 

49 4 1.252 0.684 0.636 0.151 0.476 0.173 0.411 0.374 0.073 0.535 

50 5 1.270 0.657 0.583 0.556 0.433 0.548 0.447 0.402 0.057 0.509 

*Models with maximum Q2, R2
pred and rm

2
(overall) values are shown in bold. 

 

Due to the wide distribution of the ovicidal activity among the congeners (range: 6.1 log units) 

acceptable values of the two parameters, Q2 and R2
pred, were obtained in spite of bearing a considerable 

difference in numerical values of the observed and predicted activities. To penalize a model for large 

predicted residuals, rm
2

(overall) was calculated. The results obtained here show that some of the models 

give high Q2 values while others give high R2
pred values, so for selecting the best model the values  
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of rm
2

(overall) were compared. The fact that the value of r2
m(overall) takes into consideration predictions for 

the whole dataset and maintains a compromise between the values of Q2 and R2
pred is established from 

the Figure 5 showing a comparative plot of the values of Q2, R2
pred and rm

2
(overall) for the 50 different 

models. The line showing the values of rm
2

(overall) indicates that it penalizes a model for large difference 

between Q2 and R2
pred values. Models with rm

2
(overall) values greater than (or, at least near to) 0.5 may 

be considered acceptable. Thus, in this dataset, although some of the models are acceptable 

considering the values of the conventional parameters (Q2 and R2
pred), yet none of the models satisfy 

the value of r2
m(overall). But, the value of rm

2
(overall) of the model no. 22 (0.488) is very close to the 

predetermined criterion.  

Figure 5. Comparative plots of Q2, R2
pred and rm

2
(overall) values of 50 models (data set II). 
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The rm
2

(LOO) parameter for a given model is a measure of the extent of deviation of the LOO 

predicted activity values from the observed ones for the training set compounds. In all the models 

developed for this dataset, there is a difference of at least 0.111 or more between the values of Q2 and 

rm
2

(LOO) and value of the latter parameter is always lower than the former. A very high value of Q2 may 

indicate the model to be well predictive internally but at the same time low value of rm
2

(LOO) (below 

0.5) for that model indicates that there exists a considerable difference between the observed and LOO 

predicted activity values. Hence, it may be considered that a model predictivity improves as the 

difference between these two parameters [Q2 and rm
2

(LOO)] reduces. Model number 44 has a 

considerably high value of Q2 (0.723) and thus the predictive potential of the model may appear to be a 

highly acceptable but the LOO predicted residuals of 13 compounds (out of 68) in the training set are 

more than 1 log unit. This has not been reflected in the Q2 value while rm
2

(LOO) value of the model is 

comparatively much lower (0.551). Thus the parameter rm
2

(LOO) has been able to capture the 

information on deviation of LOO predicted values from the observed ones for the training set 

compounds more efficiently and it may serve as a more strict parameter than Q2 for internal validation. 

Figure 6 shows a comparative plot of the values of Q2 and rm
2

(LOO) for the 50 different models. 

Similarly, rm
2

(test) parameter determines the extent of deviation of the predicted activity from the 

observed activity values for the test set compounds. Model number 25 has an acceptable value of R2
pred 
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(0.525) but the predicted residuals of 6 compounds (out of 22 compounds) in the test set are more than 

1 log unit. Though the model bears an acceptable value of R2
pred (0.525), the model can not be 

concluded to be truly predictive externally and it has not been reflected in the value of R2
pred. 

However, the value of rm
2

(test) (0.484) has not crossed the threshold value of 0.5. Thus rm
2

(test) appears to 

be a more stringent parameter than R2
pred for external validation. Figure 7 shows a comparative plot of 

the values of R2
pred and rm

2
(test) for the 50 different models. 

Figure 6. Comparative plots of Q2 and rm
2

(LOO) values of 50 models (data set II). 
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Figure 7. Comparative plots of R2
pred and rm

2
(test) values of 50 models (data set II). 
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Robustness of the models relating the ovicidal activity with selected descriptors was judged by 

randomization (Y-randomization) of the model development process. To penalize the model R2 for the 

difference between Rr
2 and R2, Rp

2 was also determined. Figure 8 shows a comparative plot of the 

values of R2 and Rp
2 for the 50 different models. In this data set, the values of Rp

2 of 23 models out of 

50 models crossed the threshold value of 0.5 and thus those models may be considered to be 

statistically robust. But, at the same time if the value of rm
2

(overall) is considered then those models are 

not acceptable since none of them achieve the required value (0.5) of rm
2

(overall). But, we mentioned 

previously that the value of rm
2

(overall) of the model number 22 (0.488) is very close to the required 
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value (0.5) and that model has also acceptable value of Rp
2 (0.522). These results thus suggest that this 

combination of training and test sets is the best one out of the 50 combinations. 

Figure 8. Comparative plots of R2, Rr
2 and Rp

2 values of 50 models (data set II). 
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3.3. Data set III 

Based on cluster analysis applied on standardized descriptor matrix, the dataset (n=384) was 

divided into training set of 288 compounds and test set of 96 compounds in 50 different combinations. 

Each of the 50 different training sets was then used for developing QSAR models using the genetic 

function approximation (GFA) technique. Each of the best QSAR models obtained from training set 

was validated internally using the leave-one-out technique and externally using the corresponding test 

set compounds to determine the values of Q2 and R2
pred respectively which were used for determining 

model predictivity. The models were also validated by the process randomization technique and the 

values of Rr and R were calculated to obtain the value of Rp
2 which penalizes the models for 

differences in the values of Rr
2 and R2.  

The results of the above-mentioned 50 different trials are shown in Table 6. For this dataset all the 

50 models passed the critical value (0.5) for Q2 (Q2 ranging from 0.660 to 0.774) while only two 

models (37, 23) failed to cross the 0.5 limit for R2
pred (R

2
pred ranging from 0.384 to 0.834). For all the 

models the difference between R2 and Q2 values is not very high (less than 0.3). As illustrated in Table 

6 that models with maximum internal predictive variance do not correspond to model with maximum 

external prediction power and vice versa. Trial 50 has the highest Q2 value (0.774) but the 

corresponding predictive R2 value is 0.596. On the other hand trial 45 shows the maximum value of 

R2
pred (0.834) and the corresponding Q2 value is 0.677. Models with small differences in the above two 

parameters values are observed in the trials (6, 10, 13, 18, 27, 33, 35, 37 and 40). Large differences in 

the values of the parameters are observed in trials 1, 9, 15, 20, 25, 42 and 50. Except models 37 and 23 

all the other models are statistically acceptable (Q2> 0.5 and R2
pred> 0.5). Thus for selecting the best 

model, values of rm
2

(overall) for all the models was determined. As shown above, this parameter 

penalizes a model for large differences in observed and predicted activity values of the congeners.  
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Table 6. Comparison of statistical qualities and validation parameters of different models 

(Data set III). 

Trial 
No. 

No. of  
predictor  
variables 

LOF R2 Q2 R2
pred rm

2
(LOO) rm

2
(test) 

rm
2

(overall

) 
rm

2
(overall) 

(adjusted) 
Rr

2 Rp
2 

01 08 0.132 0.774 0.758 0.551 0.711 0.559 0.675 0.666 0.042 0.662
02 08 0.147 0.753 0.721 0.641 0.694 0.647 0.693 0.684 0.037 0.637
03 08 0.167 0.721 0.660 0.750 0.668 0.721 0.657 0.647 0.025 0.601
04 07 0.139 0.764 0.744 0.685 0.723 0.586 0.667 0.659 0.045 0.648
05 06 0.135 0.760 0.671 0.681 0.659 0.653 0.631 0.623 0.052 0.640
06 07 0.148 0.747 0.727 0.703 0.704 0.661 0.680 0.672 0.037 0.629
07 06 0.159 0.731 0.708 0.612 0.694 0.620 0.669 0.662 0.035 0.610
08 07 0.144 0.758 0.703 0.641 0.681 0.628 0.650 0.641 0.031 0.646
09 07 0.123 0.772 0.759 0.572 0.712 0.577 0.680 0.672 0.036 0.662
10 09 0.137 0.765 0.734 0.742 0.701 0.752 0.677 0.667 0.042 0.651
11 09 0.145 0.748 0.713 0.583 0.693 0.590 0.657 0.646 0.036 0.631
12 08 0.150 0.738 0.672 0.734 0.669 0.712 0.669 0.660 0.037 0.618
13 12 0.129 0.780 0.738 0.716 0.698 0.669 0.691 0.678 0.032 0.675
14 09 0.143 0.759 0.703 0.622 0.679 0.595 0.639 0.627 0.038 0.645
15 09 0.122 0.789 0.769 0.545 0.724 0.518 0.658 0.647 0.029 0.688
16 07 0.149 0.734 0.692 0.753 0.676 0.728 0.688 0.680 0.032 0.615
17 07 0.123 0.770 0.755 0.595 0.706 0.594 0.672 0.664 0.037 0.659
18 09 0.138 0.756 0.731 0.741 0.699 0.671 0.688 0.678 0.025 0.646
19 07 0.162 0.726 0.676 0.678 0.673 0.674 0.643 0.634 0.027 0.607
20 07 0.138 0.769 0.752 0.577 0.720 0.536 0.659 0.650 0.028 0.662
21 08 0.147 0.733 0.690 0.731 0.669 0.643 0.670 0.661 0.047 0.607
22 08 0.160 0.730 0.693 0.731 0.679 0.688 0.666 0.656 0.044 0.605
23 06 0.131 0.769 0.755 0.497 0.710 0.478 0.654 0.647 0.035 0.659
24 09 0.154 0.751 0.721 0.635 0.697 0.610 0.676 0.666 0.038 0.634
25 06 0.108 0.784 0.772 0.575 0.715 0.594 0.674 0.667 0.023 0.684
26 08 0.153 0.723 0.697 0.781 0.683 0.752 0.688 0.679 0.032 0.601
27 08 0.158 0.732 0.706 0.744 0.692 0.742 0.687 0.678 0.025 0.615
28 08 0.164 0.726 0.696 0.736 0.696 0.686 0.664 0.654 0.052 0.596
29 07 0.165 0.720 0.690 0.746 0.681 0.727 0.683 0.675 0.038 0.594
30 09 0.123 0.792 0.771 0.692 0.720 0.687 0.699* 0.689 0.052 0.682
31 08 0.118 0.783 0.766 0.580 0.716 0.559 0.665 0.655 0.032 0.678
32 07 0.162 0.709 0.685 0.712 0.679 0.678 0.681 0.673 0.040 0.580
33 09 0.144 0.759 0.730 0.730 0.705 0.699 0.683 0.673 0.034 0.646
34 13 0.154 0.758 0.718 0.678 0.699 0.638 0.674 0.659 0.025 0.649
35 13 0.130 0.795 0.757 0.704 0.715 0.701 0.681 0.666 0.033 0.694
36 08 0.146 0.754 0.728 0.579 0.703 0.510 0.641 0.631 0.035 0.639
37 05 0.135 0.769 0.757 0.382 0.720 0.385 0.646 0.640 0.032 0.660
38 10 0.151 0.748 0.719 0.601 0.693 0.568 0.659 0.647 0.033 0.632
39 06 0.164 0.709 0.687 0.739 0.681 0.714 0.673 0.666 0.034 0.583
40 08 0.153 0.739 0.710 0.758 0.692 0.722 0.691 0.682 0.037 0.619
41 08 0.164 0.727 0.692 0.680 0.684 0.664 0.659 0.649 0.032 0.606
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Table 6. Cont. 

42 09 0.139 0.766 0.734 0.522 0.697 0.473 0.634 0.622 0.036 0.655
43 07 0.147 0.748 0.727 0.643 0.699 0.638 0.661 0.653 0.039 0.630
44 08 0.167 0.726 0.699 0.656 0.684 0.600 0.655 0.645 0.031 0.605
45 07 0.168 0.700 0.677 0.834* 0.676 0.753 0.685 0.677 0.027 0.574
46 08 0.162 0.708 0.676 0.753 0.679 0.725 0.676 0.667 0.039 0.579
47 07 0.151 0.736 0.712 0.659 0.689 0.669 0.674 0.666 0.042 0.613
48 07 0.159 0.723 0.695 0.737 0.685 0.714 0.685 0.677 0.021 0.606
49 08 0.130 0.781 0.764 0.596 0.719 0.610 0.693 0.684 0.035 0.675
50 09 0.123 0.792 0.774* 0.596 0.726 0.587 0.678 0.668 0.023 0.695

*Models with maximum Q2, R2
pred and rm

2
(overall) values are shown in bold. 

 

Similar to the results obtained for the two datasets mentioned above, Table 6 also corresponds to 

the fact that the parameter, rm
2

(overall) penalizes a model for wide difference in the values of Q2 and 

R2
pred. This fact can be further established from the Figure 9 showing a comparative plot of the values 

of Q2, R2
pred and rm

2
(overall) for the 50 different models. For this data set all the models have the rm

2
(overall) 

value above 0.5 (0.631-0.699). The best model according to r2
m(overall) is obtained from trial 30 and the 

corresponding Q2 and R2
pred values are 0.771 and 0.692 respectively. It is obvious none of the 

parameter (Q2 and R2
pred ) has its maximum value for this trial, however the overall parameter, 

rm
2

(overall), shows a maximum. 

Figure 9. Comparative plots of Q2, R2
pred and rm

2
(overall) values of 50 models (data set III). 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 5 9 13 17 21 25 29 33 37 41 45 49

Q2

R2pred

rm2(overall)

 
 

Besides rm
2

(overall), we have calculated rm
2

(test) and rm
2

(LOO) values for all the 50 trials. These two 

parameters signify the differences between the observed and predicted activities of the test and training 

set compounds in that order. For an ideal predictive model, the difference between R2
pred and rm

2
(test) 

and difference between Q2 and rm
2

(LOO) should be low. Large difference between the values of R2
pred and 

rm
2

(test) and that between Q2 and rm
2

(LOO) will ultimately lead to poor values of rm
2

(overall) parameter. 

Figure 10 shows a comparative plot of the values of Q2 and rm
2

(LOO) for the 50 different models while 

Figure 11 shows a comparative plot of the values of R2
pred and rm

2
(test) for the 50 different models. For 
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this data set, the difference between Q2 and rm
2

(LOO) is quite less (-0.008 to 0.057) and that between 

R2
pred and rm

2
(test) is also very less (-0.019 to 0.099). Thus indicates that the models obtained for this 

data set using the topological descriptors are quite robust and predictive. 

Figure 10. Comparative plots of Q2 and rm
2

(LOO) values of 50 models (data set III). 
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Figure 11. Comparative plots of R2
pred and rm

2
(test) values of 50 models (data set III). 
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Further validation of the developed models by the randomization technique and the subsequent 

calculation of the value of Rp
2 yielded results showing that none of the models developed were by 

chance only and the models were statistically robust. Figure 12 shows a comparative plot of the values 

of R2 and Rp
2 for the 50 different models. In this dataset, values of Rp

2 for all the models are well 

above the stipulated value of 0.5 (Rp
2: 0.574-0.695) as shown in Table 6. Moreover since all the 

models showed acceptable values of r2
m(overall), it can be concluded that besides being robust all the 

models developed are well predictive. 

 

 



Molecules 2009, 14                            

 

 

1696

Figure 12. Comparative plots of R2, Rr
2 and Rp

2 values of 50 models (data set III). 
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3.4. Overview 

The QSAR models obtained for all the datasets considered in this work and their subsequent 

validation show that the parameters which are traditionally calculated during internal and external 

validation of models (Q2 and R2
pred) are not enough for determining whether the model obtained is 

acceptable or not from the view point of predictability. Thus, additional parameters are needed for 

selecting the best model and confirming that the model obtained is robust and not by mere chance. 

These criteria are fulfilled by the parameters r2
m(overall) and Rp

2. The value of r2
m(overall) determines 

whether the range of predicted activity values for the whole dataset of molecules are really close to the 

observed activity or not. Since the value of r2
m(overall) takes into consideration the whole dataset, it 

penalizes models for differences between the values of Q2 and R2
pred enabling one to select the best 

predictive model. The value of Rp
2, on the contrary, determines whether the model obtained is really 

robust or obtained as a result of chance only. Hence it can be inferred that if the values of rm
2

(overall) and 

Rp
2 are equal to or above 0.5 (or at least near 0.5), a QSAR model can be considered acceptable. 

Finally it can be inferred that selection of QSAR models on the basis of Q2 and R2
pred may mislead the 

search for the ideally predictive model. The selection of robust and well predictive QSAR models may 

be done merely on the basis of the two parameters, rm
2

(overall) and Rp
2, in addition to the conventional 

parameters. Consideration of these parameters helps one to develop more stringent models which can 

be successfully applied to predict the activities of molecules in a truly external dataset. 

The results obtained from the present study on the three data sets show that only the third data set 

gives Q2
 values very close to corresponding rm

2
(LOO) values (Figure 10) while other two data sets show 

large fluctuations of Q2 values from the corresponding rm
2

(LOO) values, the latter being always less than 

the former (Figures 2 and 6). The reason may be the quality of the biological activity data, apart from 

the performance of the selected descriptors to explain a particular biological activity in relation to the 

structural features. In case of data sets I and III, the biological activity data are satisfactorily 

distributed (Figure 13), while in case of data set II the distribution is not satisfactory. Thus, for data set 

I, the differences between Q2
 and corresponding rm

2
(LOO) values may be attributed to the inability of the 

selected descriptors to satisfactorily explain the change of biological activity values with changes in 
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structural features while in case of the second data set, it may be due to unsatisfactory distribution of 

the biological activity values.  

Figure 13. Frequency distribution of compounds for different relative ranges of biological 

activity data (from low to high in log units): (a) data set I, (b) data set II, (c) data set III. 
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It may be noted here that rm
2 values do not take into account the number of predictor variables 

included in a model. When different models, having different number of predictor variables are 

compared then it may be very difficult to determine which one is the best model as rm
2 does not 

consider the number of predictor variables used. To solve this problem, another parameter 

[rm
2

(overall)(adjusted)] may be calculated in a manner similar to the adjusted R2 (R2
a):  

2
( )2

( )

( 1)*
( )

1
m overall

m overall

n r p
r adjusted

n p

 


 
                            (6) 

In Eq. (6), n is the total number of compounds and p is the number of predictor variables. The 

values of the parameter rm
2

(overall)(adjusted) for all the models of data sets I, II and III have been shown 

in Tables 4, 5 and 6 respectively. 

4. Conclusions 

QSAR models have been traditionally tested for their predictive potential using internal (Q2) and 

external validation (R2
pred) parameters. The present study shows that even in presence of considerable 

differences between observed and LOO predicted values of the training set compounds, Q2 value may 

be considerably high thus not reflecting bad predictions for some compounds. The parameter rm
2

(LOO) 

is a stricter metric for internal validation than Q2. Similarly rm
2

(test) appears to be a better metric to 

denote external predictivity than the traditional parameter R2
pred. The parameter rm

2
(overall) is unique in 

that it considers predictions for both training and test set compounds and its value is not obtained from 

prediction of limited number of test set compounds as is the case for R2
pred. In addition to this, rm

2
(overall) 

helps to identify the best model from among comparable models, especially when different models 

show different patterns in internal and external predictivity. The parameter Rp
2 penalizes model R2 for 

large differences between determination coefficient of nonrandom model and square of mean 

correlation coefficient of random models in case of a randomization test and thus confirms whether a 

model has been obtained by chance or not. A model can be considered robust, truly predictive and not 

obtained by chance when the parameters rm
2 (all three variants) and Rp

2 cross the minimum limit of 0.5 

(or at least near 0.5). Thus, in addition to the traditional validation parameters, tests for rm
2 and Rp

2 

should be carried out for a more stringent test of validation of predictive QSAR models, especially 

when a regulatory decision is involved. 
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