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Abstract: This paper presents the results of an experimental study that investigated the effects of two
parameters: sand/fly ash (S/FA) ratio and water to geopolymer-solid (W/GS) ratio on the engineered
geopolymer composite. The trial mix designs were optimized using the response surface method.
These parameters influence the properties of the fresh and hardened geopolymer matrix, such as
slump flow, compressive strength, flexural strength, elastic modulus, flexural toughness, ductility
index and drying shrinkage. The optimizing process was conducted by developing statistical models
using the response surface methodology (RSM) technique. The developed models were statistically
validated and could be used to determine the desired response of engineered geopolymer composite
(EGC) with a significance level of more than 95%. In this study, the optimized values of the S/FA ratio
and W/GS ratio were obtained as 0.341701 and 0.225184, respectively. To validate the optimized S/FA
ratio and W/GS ratio, an experimental study was performed, and a difference of less than 5% was
found between predicted and experimental results.

Keywords: engineered geopolymer composite; sand/fly ash ratio; water/geopolymer solid ratio;
response surface methodology; statistical modeling; fly ash

1. Introduction

The growing demand for ordinary portland cement (OPC) due to the extensive use of concrete
by the global construction industry has created many concerns regarding sustainability and the
environment. Currently, concrete is the world’s most extensive consumable material after water.
In contrast, cement production contributes approximately 10% to the global CO2 emissions and
consumes about 15% of the total industrial energy produced, which is causing a significant burden on
environmental and sustainability measures [1]. In the last few years, researchers have been making
efforts to develop sustainable and environmentally-friendly solutions for producing an extensive
amount of concrete for the global construction industry. In such efforts, geopolymer binders are being
investigated as an innovative as well as a green alternative to traditional concrete [2]. Geopolymer
binders are formed when a precursor (a powder which contains a high content of alumina and
silica) interacts with an alkaline solution in the presence of heat; then, the system undergoes a chain
reaction [3]. Many types of industrial byproducts, which have faced criticism regarding their safe
disposal, are being used as a precursor to geopolymer binders [4]. Among the various types of
industrial byproducts, fly ash is the most commonly used precursor, which is a readily available
byproduct produced in coal-fired power plants. Fly ash is usually an amorphous powder that is
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rich in alumina and silica content, which can meet the requirements of sustainability and a green
environment [5]. Many existing research studies have reported that the fly-ash-based geopolymer
concrete has shown superior mechanical properties, high durability, and refined microstructures as
compared to traditional cement concrete [6].

The superior compressive strength achievements of geopolymer binders create an opportunity
for their application in the construction industry [7]. However, the brittleness, low tensile strength,
small ultimate strain, and susceptibility to cracking of geopolymer binders are considered significant
weaknesses which hinder their application in complex construction products [8]. In an effort to
overcome the reported weaknesses, short and randomly oriented fibers were mixed in the matrix
as an intrinsic reinforcement [9]. The short fibers in the cementing matrix can bridge the cracks,
which restricts the crack propagation by enhancing the tensile strength, ductility index, and post-crack
performance [10]. Many studies focused on the development of fiber-reinforced concrete (FRC)
have used a different type of microfibers, such as steel [11], glass [12], basalt [13] and polyvinyl
alcohol (PVA) [14]. All such types of fibers have shown various advantages and disadvantages as an
intrinsic reinforcement cement matrix. For example, steel fibers (SF) improve the tensile strength and
freeze–thaw resistance of concrete [15]. However, concerns around durability [16], cost and effects
on workability [17] have been identified as the disadvantages of steel fibers. Research findings have
shown that glass fibers were not stable in the alkaline environment [18]. Basalt fibers as an intrinsic
reinforcement caused a softening behavior after the first crack appeared [19]. Based on various research
studies, it has been found that PVA fibers are the most favorable type of fibers for achieving a high
performance of FRC because of their stability in the alkaline environment, possessing high tensile
strength, and because they have a significant value of elastic modulus compared to other types of
fibers [20]. In some studies, researchers observed an enhancement in the mechanical properties and
post-crack performance of concrete using PVA fibers [21,22].

It has been observed that in a conventional fiber reinforced concrete (FRC), the load-carrying
capacity decreases after the initiation of the first crack [23]. However, advancements made in the field
of FRC have resulted in the development of an engineered cementitious composite (ECC) [23]. This is
classified as a high-performance FRC which is capable of achieving multiple cracking patterns with an
increase in the applied load after the first crack appears [24]. Multiple cracking patterns indicate high
ductility, energy absorption capacity, crack growth resistance, and toughness of ECC under flexural
and tensile stresses [25]. A range of achievements in the mechanical and post-crack properties of ECC,
such as compressive strength (20–95 MPa), flexural strength (10–30 MPa), and ultimate strain (1%–8%),
make it a promising material for retrofitting and structural repair jobs [26].

So far, many efforts have been dedicated to improving the mechanical properties of conventional
fiber-reinforced geopolymer concrete (FRGC) exhibiting softening behavior. The authors of [27]
improved the flexural strength of geopolymer by adding micro steel fibers, while the authors of [28]
enhanced compressive strength using basalt fiber in geopolymer. The authors of [29] observed
improvements in split tensile strength and flexural strengths by adding glass fibers in geopolymer
concrete. However, there is not much research work reported in the literature regarding the development
of high-performance fiber-reinforced geopolymer concrete or known as engineered geopolymer
composite (EGC). The mechanical and post-crack properties of EGC are considered similar, as
discussed in the literature for engineered cementitious composites (ECC) [30].

Similar to that of ECC, the performance of EGC depends on multiple factors, such as slump
flow of fresh mixture, compressive and flexural strength requirements, elastic modulus, flexural
toughness, ductility index and drying shrinkage [30], therefore, it is a challenging task for a concrete
expert to develop an appropriate mix design for achieving an optimized performance of EGC.
The optimization is referred to as a systematic way of improving the reliability of the products.
The Taguchi method [31], Plackett–Burman [32] and RSM [33] are reported as the most commonly-used
optimization techniques. However, RSM is considered an advanced technique for systematically
designing experiments, obtaining statistically significant models, and achieving optimum conditions
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for several desirable responses simultaneously [34,35]. The RSM technique is a widely accepted
modeling and optimizing tool in the concrete industry for achieving the highest responses by acquiring
an optimized mixture composition. Ghafari et al. (2014) [36] developed RSM-based statistical models
for predicting the influence of hybrid fibers on the performance of self-compacting and ultra-high
performance concrete. Similarly, another research reported the optimized effects of fiber volume
fraction in steel fiber-reinforced concrete for achieving maximum ductility [37]. In contrast, Al-Alaily
(2016) [38] applied the RSM technique to optimize the chloride permeability and mechanical properties
of metakaolin-based concrete. The available literature shows that the RSM technique is successfully
applied for the optimization of OPC-based concrete mixes. However, limited literature is available on
its application in the field of geopolymer technology. An experimental study discussed the optimized
mixture components of a lightweight geopolymer composite by minimizing the curing temperature,
binder content, and curing time for achieving maximum compressive strength [39]. The EGC properties
are primarily influenced by several parameters, such as NaOH molarity, Na2SiO3/NaOH ratio, curing
temperature, sand to fly ash ratio, and water to geopolymer solids ratio; therefore, it is essential
to determine the optimum level of dosages of the mix ingredients for achieving the most desired
performance of the matrix [30].

In a previous experimental program, Zahid et al. (2018) [20] applied RSM to optimize the effect
of the primary polymeric variables (NaOH molarity, Na2SiO3/NaOH and curing temperature) to
maximize the mechanical and post-crack performance of EGC. For a further improvement in achieving
the optimum mix design of EGC, the principal aim of this study was to apply the RSM technique to
optimize the effects of the sand/fly ash ratio and water/geopolymer-solid ratio on the EGC properties.
The effects were investigated on the slump flow, compressive strength, flexural strength, flexural
toughness, ductility index, elastic modulus, and drying shrinkage. In the final phase, an experimental
program was designed for validating the optimum parameters as determined from the RSM application.

Research Significance

Conventional concrete made of Portland cement is facing much criticism due to it using a massive
amount of natural resources and contributing to a substantial amount in global greenhouse gas (GHG)
emissions. Therefore, for the last few years, concrete researchers have been working on alternative
solutions that should be environmentally friendly and sustainable. In such efforts, geopolymer binders
are becoming a favorite research topic. However, there are many concerns and issues to be resolved
before they take a significant share in concrete application. This paper is significant in that it is
focused on the optimization of engineered geopolymer mixture design for achieving the desired
structural responses.

2. Experimental Program

2.1. Material Properties

For this experimental program, fly ash (FA) was obtained from the Manjung coal-fired power
station located in Perak, Malaysia [40]. The supplied fly ash was tested to verify the specified
characteristics; the morphological study was performed using a field emission scanning electron
microscope (FESEM). Figure 1a shows that the provided fly ash complied with the specified morphology.
Table 1 shows the elemental composition and surface area of FA samples as obtained using the X-ray
fluorescence (XRF) and Brunauer Emmet Taller (BET) techniques. Based on the characterization test
results, the supplied fly ash is classified as high-calcium as per ASTM 618-10 (CaO > 10%; SiO2 +

Al2O3 + Fe2O3 > 70%). Table 2 shows the gradation of microsilica sand that was supplied by a local
supplier in the state of Perak, Malaysia. Previous research suggested that the sodium-based alkaline
solution performs better in achieving compressive strength, flexural strength, and deflective capacity
of EGC [41]; 99% pure sodium hydroxide (NaOH) in combination with water glass, also called sodium
silicate (Na2SiO3), was used for the synthesis of EGC. Its chemical characteristics are given in Table 3.
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The Kurary group, Japan, provided polyvinyl alcohol (PVA) fibers; their mechanical and physical
properties are given in Table 4, and the FESEM image is shown in Figure 1b.
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Figure 1. Field emission SEM (FESEM) micrographs: (a) Fly ash (spherical particles); (b) polyvinyl
alcohol (PVA) fiber (diameter of 0.04 mm).

Table 1. Elemental composition, loss on ignition (LOI), and surface area of fly ash.

The Chemical Composition of Fly Ash (%)

SiO2 Al2O3 Fe2O3 CaO MgO K2O SO3 TiO2 P2O5 LOI BET (m2/g)

34.5 11.8 23.6 19.0 2.27 2.08 1.49 1.46 1.27 2.6 0.9985

LOI is a loss on ignition, and BET represents the average Brunauer Emmet Taller (BET) surface area.

Table 2. Gradation of silica sand.

Sieve Size (µm) 710 600 300 150

Passing (%) 99.8 78.12 16.14 1.23

Table 3. The chemical composition of the alkaline solution (% by mass).

Na2SiO3 Solution (%) 8M NaOH Solution (%)

Na2O 14.7 NaOH 26
SiO2 29.75 H2O 74
H2O 55.52

Table 4. Properties of micro-PVA fiber.

Brand Product
Code

Length
(mm)

Diameter
(mm)

Fiber Strength
(MPa)

Young’s
Modulus (GPa)

Elongation
(%)

Density
(g/cm3)

Kuraray RECS 15 8 0.04 1600 41 6 1.3

Note: The type of PVA fiber is chosen from the available literature [30].

2.2. Response Surface Method (RSM) Application for Experiment Design

The trial and error method has conventionally been practiced to find out the influence on the
responses by changing the value of one variable at a time. This process is time-consuming, especially
for multivariable systems. Therefore, it is needed to utilize a robust technique for solving multiobjective
optimization problems. The response surface method (RSM) is a robust approach for optimizing
complex problems through the development of statistical interaction between factors (independent
variables) and responses (dependent variables). The process of optimization through RSM is initiated
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with the systematic designing of experiments and through the collections of responses by performing
experimental programs. Finally, statistical models are developed for the prediction of each response,
and optimization is performed for the desired targets [36]. The most practically adopted method for
experimental design, statistical modeling, and optimization is the central composite design (CCD) of
RSM [42]. The process of selection of data points through CCD using RSM is illustrated in Figure 2.
The experiments are designed so that the space of independent variables must include corner points
(+1 and −1), a center point, and extreme points (+α and –α) [43]. Quadratic models that are used to
estimate each response are developed using the 2nd-degree polynomial Equation (1) [36].

y = βo +
∑

βiXi +
∑

βiiXi
2 +

∑
βi jXiX j (1)

where the predicted response (slump flow, compressive strength, flexural strength, elastic modulus,
flexural toughness, and ductility index of EGC) is represented by “y”.
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Figure 2. Central composite design (CCD) module (face-centered). (a) Corner points, (b) middle, and
central point (c) CCD design.

Moreover,βo, βi, βii, and βi j are the constant coefficient, linear coefficient, the quadratic coefficient,
and interaction coefficient, respectively. Furthermore, the independent variables in Equation (1)
are denoted by Xi and X j. Table 5 shows the defined independent variables (factors) and their
corresponding code and levels.

Table 5. Boundaries of factors in response surface methodology (RSM).

Factor Code
Levels

−α 0 +α

Water/GP solids X1 0.22 0.24 0.26
sand/fly ash X2 0 0.4 0.8

An experimental program was designed using commercially available Design-Expert® software
version 10 (Table 6). The ranges of sand to fly ash and water to geopolymer solids were selected as
0 to 0.8 and 0.22 to 0.26, respectively, while other factors such as NaOH molarity, Na2SiO3/NaOH,
and curing temperature were kept constant at 8 M and 2.5 and 60 ◦C, respectively [30].
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Table 6. Mix designs of engineered geopolymer composite (EGC).

Factors
Alkaline

Solution a
Extra

Water a Na2SiO3/NaOH
NaOH

Molarity
(M)

PVA
Fiber b

Curing
Temperature

(◦C)Mix W/GP
Solids

Sand/Fly
Ash

M1 0.22 0 0.36 0.035 2.5 8M 0.02 60
M2 0.22 0.4 0.36 0.035 2.5 8M 0.02 60
M3 0.22 0.8 0.36 0.035 2.5 8M 0.02 60
M4 0.24 0 0.36 0.058 2.5 8M 0.02 60
M5 0.24 0.4 0.36 0.058 2.5 8M 0.02 60
M6 0.24 0.8 0.36 0.058 2.5 8M 0.02 60
M7 0.26 0 0.36 0.08 2.5 8M 0.02 60
M8 0.26 0.4 0.36 0.08 2.5 8M 0.02 60
M9 0.26 0.8 0.36 0.08 2.5 8M 0.02 60

Note: Water to geopolymer (W/GP) solids and sand/fly ash were selected according to the central composite design
configurations for two factors using Design expert® software. Geopolymer solids (solids in NaOH and Na2SiO3
solution plus fly ash), PVA fibers, NaOH molarity, and Na2SiO3/NaOH and curing temperature were selected
from the available literature on EGC [30]. The dosage of the alkaline solution was selected from the literature [20].
Extra water was added to maintain desired W/GP solids. a Quantity in a mass ratio of fly ash. b Quantity in the
volume fraction of the total volume of material.

2.3. Mixing and Casting of Samples

To optimize the water to geopolymer solid (W/GS) ratio and the sand to fly ash ratio (S/FA), nine
EGC mixes, as shown in Table 6, were prepared. A total of 320 g of NaOH pellets were dissolved in the
tap water for making one litter of 8 M NaOH solution. Since it is an exothermic reaction, the NaOH
solution was placed in the laboratory until it cooled down. To achieve a homogeneous paste, mixing
activity was done for a total of five minutes using the Hobart mixture. In the beginning, fly ash and
sand samples were dry-mixed for thirty seconds in slow mode, then the alkaline solution was gradually
added. After adding the alkaline solution, the PVA fibers were mixed in the mixture and the mixing
operation was carried out for four minutes in the fast mode. After completing the mixing process, the
matrix was poured into the standard molds (e.g., 50 mm cubes for compressive strength test) and left
in the molds until the samples hardened. Upon hardening, the samples were demolded and wrapped
in three folds of thin plastic wrap to avoid excessive loss of water during heat curing. All samples
were placed in an oven at 60 ◦C for 24 h. After completion of the curing time, samples were placed in
the lab at a constant temperature of 23 ◦C. Testing was carried out on the 28th day of the casting.

2.4. Experimental and Test Procedures

The workability of the fresh EGC mix was evaluated via a flow table test complying with the
requirements of ASTM C1437 [44]. A truncated cone (70 × 100 × 60 mm) was placed in the middle of
the flow table, subsequently filled with EGC paste and lifted to allow the paste to flow. After removing
the cone, the paste was subjected to 25 jerks in 15 s using mechanical rising and dropping of the flow
table. The slump flow is expressed as a percentage change in the flow diameter of the paste and the
original base diameter. The same procedure was used to assess the workability of ECC mixes [45].

A total of three samples from all mix designs were tested against each property. A compressive
strength test was performed applying the ASTM C109 standard test procedure. The samples were
subjected to a gradually applied load; the load was increased at a rate of 3.0 kN/s until complete failure.
An elastic modulus test was carried out on cylindrical samples (150 × 300 mm) as per the requirements
given in ASTM C 469-14. Flexural strength, flexural toughness, and ductility index were estimated by
conducting a three-point loading test on the prismatic samples; the experimental arrangement and
sample details are given in Figure 3a, while Figure 3b shows the typical load–deflection curve of a
ductile material. The load was applied under deflection control mode; the deflection was increased at
a rate of 0.15 mm/s using a universal testing machine (UTM) with a 100 kN capacity. A linear variable
differential transformer (LVDT) was attached to the sample for measuring the midspan deflection.
Flexural strength is the ability of a material to resist bending failure and is evaluated according to
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the procedure described in ASTM C1609 [46]. Flexural toughness is calculated by estimating the area
under the load–deflection curve (Figure 3b), according to ASTM C1609, [46]. The ductility index is the
measure of the ductility of a given material. It is defined as the ratio between deflection at peak load to
the deflection at which the first crack appears on the surface of the sample. The ductility index was
calculated according to the procedure proposed by Nematollahi et al. (2014) [38], using Equation (2):

Ductility index =
δMOR
δLOP

(2)

where δMOR and δLOP represent deflection at peak load and deflection at the first crack (Figure 3b).
The drying shrinkage test was performed according to the procedure given in ASTM C157-17.
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Figure 3. (a) Sample details and loading arrangement for the flexural strength test (measurements are
in “mm”). (b) Load versus deflection curve (Typical).

3. Results and Discussion

The experimental test results for the EGC properties (slump flow, compressive strength, elastic
modulus, flexural strength, flexural toughness, ductility index, and drying shrinkage) of all mixtures
are given in Table 7. The obtained results were analyzed for the effect of sand to fly ash (S/FA) and water
to geopolymer (W/GP) solids on each EGC property using Design-Expert® software by developing
three-dimensional response surface diagrams, contour diagrams, and statistical models as given in
subsections. Finally, model validation and optimization of S/FA and W/GS were performed.
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Table 7. Experimental results.

Responses (Average EGC Properties; Standard Deviation)

Mix
Compressive
Strength

(MPa)

Slump
Flow
(%)

Elastic
Modulus

(GPa)

Flexural
Toughness

(N·m)

Ductility
Index

Flexural
Strength

(MPa)

Drying
Shrinkage

(%)

M1 77.5; 2.1 114; 3.6 12.7; 0.6 20.1; 0.8 18.0; 0.3 10.6; 0.4 0.28; 0.008
M2 77.5; 3.0 91; 3.50 13.9; 0.4 21.0; 0.7 18.5; 0.4 10.7; 0.4 0.18; 0.009
M3 73.0; 3.5 85; 4.60 8.00; 0.2 11.7; 0.6 14.6; 0.6 9.50; 0.3 0.14; 0.007
M4 73.6; 1.1 168; 3.6 7.20; 0.2 18.6; 0.9 25.0; 0.6 9.20; 0.2 0.34; 0.006
M5 75.0; 2.1 155; 2.6 9.00; 0.2 20.1; 0.9 23.8; 0.8 9.90; 0.4 0.21; 0.008
M6 73.0; 2.4 134; 2.6 6.50; 0.1 11.2; 0.5 19.0; 0.3 10.0; 0.3 0.15; 0.003
M7 67.0; 1.8 182; 3.6 4.00; 0.1 13.2; 0.7 15.0;0.7 6.70; 0.2 0.51; 0.006
M8 70.8; 1.9 173; 6.1 7.00; 0.1 15.8; 0.6 12.9; 0.1 7.90; 0.3 0.32; 0.004
M9 72.0; 3.5 158; 4.4 6.00; 0.2 8.40; 0.4 8.00; 0.3 8.30; 0.4 0.24; 0.005

3.1. Effect of S/FA and W/GP Solids on the Slump-Flow (Workability) of EGC

Workability is a measure of how easy or difficult it is for a mixture to place and handle, usually
expressed as the slump flow. The effect of W/GP solids and S/FA on the slump flow of EGC is illustrated
with the help of a 3D response surface diagram, while the intervals of compressive strength are shown
in the contour diagram as given in Figure 4. A gradual increase in composite flow was observed with
the increment in W/GP solids. However, a contrary behavior was observed for S/FA which might have
been because higher water content tends to reduce the internal particle friction. The spherical particle
shape of the fly ash also induces the roller effect and encourages the flow of the composite. In this
study, a maximum slump flow of 182% was observed when EGC synthesizes with W/GP solids and
S/FA of 0.26, 0, respectively.
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Furthermore, the lowest level of slump flow (85%) was observed in W/GP solids of 0.22 and
S/FA of 0.8. Intervals of composite flow are given in the contour diagram, which can be used to
predict the values of W/GP solids and S/FA for the desired value of composite flow. Second-order
models developed by the RSM technique can be accurately utilized for the prediction and optimization
of responses over first-order models [47]. In a study, Mohammed et al. (2012) [48] developed a
second-order RSM model for concrete with paper mill residuals. They concluded that the developed
model could accurately predict the slump flow of the concrete for two variable systems, i.e., water
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to cement ratio and the residual content of the paper mill. Therefore, the second-order RSM model
representing slump flow was developed to correlate between W/GP solids and S/FA (Equation (3)):

Slump flow (%) = −2928 + 23995.8x1 − 76.25x2 + 156.25 x1 x2 − 46250x1
2 + 3.125x2

2 (3)

where x1 and x2 represents W/GP solids and S/FA, respectively.

3.2. Effect of W/GP Solids and S/FA on the Compressive Strength of EGC

Compressive strength is a primary mechanical property because it provides useful information
for the structural design of the concrete members. From the 3D response surface diagram (Figure 5),
the gradual improvement in compressive strength was observed with the reduction in W/GP solids
from 0.26 to 0.244. This could have happened due to the low porosity obtained using a smaller water
content in the mix [49]. In another study, Chung et al. (2017) [50] observed a similar behavior of
compressive strength at a lower water to binder ratio in ECC. However, further reduction in W/GP
solids (e.g., 0.22) was responsible for the sudden drop in workability, leaving macropores in EGC,
and therefore, the compressive strength was abruptly decreased for the said scenario.
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Additionally, an increase in S/FA caused improvements in compressive strength; a similar trend
is mentioned in the available EGC literature [30]. Moreover, the optimum level of compressive
strength (77.5 MPa) was observed in W/GP solids and S/FA ash of 0.22 and 0.4, respectively. Another
study reported the optimized effect of fly ash and metakaolin in the concrete mixture using the RSM
technique [51]. They concluded that ANOVA models developed by RSM could be accurately utilized
to predict the compressive strength of concrete; therefore, in this study, the prediction model for
compressive strength of EGC is developed and given in Equation (4):

Compressive strength (MPa)
= +8.60000 + 809.58333x1 − 62.54167x2 + 296.87500 x1 x2

−2250.00000x1
2
− 10.93750x2

2
(4)

where x1 and x2 represent W/GP solids and S/FA, respectively.

3.3. Effect of W/GP Solids and Sand/fly Ash on the Modulus of Elasticity of EGC

The modulus of elasticity is an important mechanical property that describes the tendency of a
material to deform elastically [52]. Figure 6 depicts the response surface and the contour for elastic
modulus versus W/GP solids and S/FA. A reduction in composite elastic modulus was observed with
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the increment in W/GP solids; this was also reported in the literature [30]. Furthermore, the increase
in S/FA tends to improve the composite elastic modulus; a similar trend with the addition of sand
content was observed in conventional ECC [53]. Similarly, another research study presented an RSM
prediction model for the elastic modulus of rubbercrete having crumb rubber content and water to
cement ratio (W/C) as two variables of the system [54]. However, the elastic modulus of EGC can be
predicted using Equation (5):

Elastic modulus (GPa)
= +211.37778− 1470.41667x1 − 38.83333 x2 + 209.3750 x1 x2

+2583.3333 x1
2
− 16.04167x2

2
(5)

where x1 and x2 represents W/GP solids and S/FA, respectively.
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3.4. Flexural Properties

It is a well-understood fact that the flexural performance of the conventional ECC member reflects
its tensile ductility; additionally, there is a good correlation between tensile strain capacity and flexural
deflection capacity [55,56]. Hence, it is essential to understand the flexural characteristics of EGC
for the evaluation of its performance. The deflection-hardening property is a result of the unique
interaction between the fiber and EGC matrix. Furthermore, during the application of load, a crack is
initiated from the defected or weak part of the beam sample. The fiber-bridging phenomenon resists
the opening of this initial crack. Hence, the load is distributed to the nearest weak area of the crack,
which results in another crack formation. The whole process ends with the formation of multiple
microcracks at the moment zone of the beam sample, which allow it to undergo a plastic deformation
with a deflection-hardening behavior [55]. As matrix-related parameters influence flexural properties,
subsections focus on the effect of W/GP solids and S/FA on the flexural properties of EGC. Flexural
strength versus midspan deflection curves for all mix designs is given in Figure 7. All the mixes have
exhibited deflection-hardening behavior.
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3.4.1. Effect of W/GP Solids and S/FA on Flexural Strength of EGC

Fibre–matrix interaction strongly influenced the flexural strength of fiber-reinforced
composites [54]. It has been observed in previous research that increase in water content is responsible
for weak fiber–matrix interaction [21]. Hence, a reduction in flexural strength was noticed with the rise
in W/GP solids (Figure 8). This finding is based on the behavior observed for the water to binder ratio
of ECC [57].
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Furthermore, contrary to the effect of W/GP solids, improvement in flexural strength was observed
with the increment in S/FA. The same behavior of sand dosage on ultimate strength properties was
observed in previous studies of fiber-reinforced geopolymer concrete [30]. However, flexural strength
can be predicted using the statistical model (Equation (6)) given below.

Flexural Strength (MPa)
= −74.76667 + 800.41667x1 − 17.45833x2 + 84.3750x1x2

−1875x1
2
− 2.8125x2

2
(6)

where x1 and x2 represent W/GP solids and S/FA, respectively.

3.4.2. Effect of W/GP Solids and S/FA on Flexural Toughness of EGC

Flexural toughness (FT) is an indication of energy absorption capacity to be studied for the
evaluation of the structural performance of EGC under hazardous dynamic loading conditions, such as
earthquakes or blast. Therefore, flexural toughness provides useful information for the structural
designs of such applications. As given in Figure 9, improvement in FT was observed with the initial
increment in S/FA; however, a further increase in S/FA resulted in lower FT. This could have happened
because of an alteration in the fiber–matrix bond at different S/FA levels. Previous studies have revealed
the same findings for the sand to binder ratio of ECC [58].
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Furthermore, the increase in the water to binder ratio caused a weak fiber–matrix interfacial
transition zone [59] and loosened the frictional bond strength [60]. Therefore, FT was reduced with
an increment in the W/GS ratio. Additionally, the optimum level of flexural toughness was observed
when EGC synthesizes with W/GP solids and S/FA of 0.22 and 0.4, respectively. However, flexural
toughness can be estimated for any value of W/GP solids and sand/fly ash using Equation (7):

Flexural toughness (N·mm)

= −170.433 + 1746.666x1 − 10.083x2 + 112.5 x1 x2 − 4000 x1
2

−31.875 x2
2

(7)

where x1 and x2 represent W/GP solids and S/FA, respectively.

3.4.3. Effect of W/GP Solids and S/FA on Ductility Index of EGC

The ductility index (DI) is a quantitative measure of the ductile nature of any material. It is a
ratio of deflection at peak load (δPP ) and deflection at first crack load (δLop) [58]. Figure 10 depicts the
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ductility index value with the variation of W/GP solids and S/FA. A slight improvement in DI was
observed with the rise in W/GP solids up to a certain level. However, the maximum value of DI was
observed at W/GP of 0.24, which is a moderate level. Furthermore, a decrease in DI was found with
the increase in S/FA because the higher dosage of sand tends to increase matrix fracture toughness
(Km), which causes the reduction of ductility of a material [61]. However, the DI can be predicted using
Equation (8):

Ductility index = −1125.41 + 9666.33x1 − 29.28x2 − 112.50x1 x2 − 20308.33x1
2
− 11.39 x2

2 (8)

where x1 and x2 represent W/GP solids and S/FA, respectively.
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3.4.4. Effect of W/GP solids and S/FA on drying shrinkage of EGC

Reduction in length of the mortar caused by the loss of water during the drying process is known
as drying shrinkage [62]. ECC does not utilize coarse aggregates; therefore, shrinkage is a significant
concern [63]. The same is valid for EGC. The effect of W/GP solids and S/FA on the 28 days drying
shrinkage of fiber-reinforced geopolymer is shown in Figure 11. Drying shrinkage was increased with
the increment in W/GP solids. The same phenomenon for drying shrinkage was observed with the use
of a high amount of water content in ECC [64].
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Furthermore, the dosage of sand reduced the value of drying shrinkage. These results followed
the same pattern as that observed in ECC [65]. The ANOVA prediction model for drying shrinkage is
given in Equation (9):

Drying shrinkage (%) = +5.39− 47.62x1 + 0.52 x2 − 4.06 x1x2 + 110.83x1
2 + 0.24 x2

2 (9)

where x1 and x2 represent W/GP solids and S/FA, respectively.

3.5. Validation of ANOVA Models

Analysis of variance (ANOVA) results of developed RSM models have been analyzed and
statistically validated for their practical usage in the future. As given in Table 8, the relative change
in adjusted R2 and predicted R2 of less than 0.2, a higher value of adequate precision (>4), and the
low standard deviation of each response are the indicators of model acceptance [3]. Furthermore,
the ANOVA result for all prediction models is shown in Table 9. Prob > F is less than 0.05, and the
higher level of F-value is the indicator of the statistically significant model with a 95% confidence
level [66]. Therefore, all models were statistically significant and could be used to estimate the response
value for any given value of factors.

Table 8. Model validation for responses.

Response Standard
Deviation Mean R2 Predicted

R2
Adjusted

R2
Adequate
Precision

Slump flow 2.36 136.56 0.9988 0.9859 0.9969 63.873
Compressive strength 0.43 73.27 0.9937 0.9231 0.9831 31.105

Elastic modulus 0.61 8.26 0.9863 0.8427 0.9634 19.166
Flexural strength 0.22 9.20 0.9898 0.8836 0.9729 22.255

Flexural toughness 0.27 15.57 0.9987 0.9841 0.9965 56.884
Ductility index 0.38 17.21 0.9981 0.9769 0.9949 55.144

Drying shrinkage 0.011 0.26 0.9969 0.9632 0.9918 41.383

Table 9. ANOVA results for the full regression model of each response.

Response Sum of
Squares

Mean
Square F-Value P-Value

Prob > F Remarks

Slump flow 14,431.44 2886.29 516.09 0.0001 Significant
Compressive strength 85.52 17.10 94.29 0.0017 Significant

Elastic modulus 80.09 16.02 43.09 0.0054 Significant
Flexural strength 14.04 2.81 58.42 0.0034 Significant

Flexural toughness 170.63 34.13 451.68 0.0002 Significant
Ductility index 225.20 45.04 315.08 0.0003 Significant

Drying shrinkage 0.11 0.022 193.65 0.0006 Significant

To avoid repetition, plots such as predicted versus actual, normal probability, and perturbation
were drawn for only one response (compressive strength). Predicted and actual values are close enough
and have a good agreement with the plot, almost coinciding with a 45-degree straight line (Figure 12).
The straight-line coincident with data points of responses indicates normal distribution, as shown
in Figure 13. To better understand the effect of independent variables (S/FA and W/GP solids) on
compressive strength at a particular point, the perturbation plot is given in Figure 14. Steep slope and
curvature indicate that the compressive strength is sensitive to both factors (W/GP solids and S/FA).
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3.6. Optimization

Usually, the optimum solution of individual responses is located in a different area, and it
is tough to find an optimal condition that fulfills the targeted goals of all responses concurrently.
Therefore, a multiobjective optimization is utilized in this study to seek dosages of water/geopolymer
solids (W/GP solids) and sand/fly ash (S/FA) satisfying the desired conditions of all responses at the
same time. The RSM optimization was performed using the global desirability function, as given in
Equation (10) [67].

D =
(
dr1

1 × dr2
2 × dr3

3 × . . . .× drn
n

) 1∑
ri = [

∫ n

i=1
dri

i ]

1∑
ri

(10)

Desirability (D) of the optimal solution is the geometric average of the desirability of all independent
as well as dependent variables, where n is the number of factors and responses involved in the
optimization process. In this study, two factors, namely, W/GP solids and S/FA, in addition to
seven responses named slump flow, compressive strength, flexural strength, elastic modulus, flexural
toughness, drying shrinkage, and ductility index, were optimized simultaneously, where di represents
individual desirability function and ranges from 0 to 1 (0 for non-desired and 1 for desired). Furthermore,
the importance of each factor or response is given as ri, which ranges from 1 to 5, where 1 stands for
the least important, and 5 represents the most important.

A desirability value close to zero indicates a potential undesirable response and desirability
close to one shows that the optimal solution is supposed to achieve the desired goal or target.
A goal for responses (dependent variables) can be one of the given choices, i.e., “none”, “maximize”,
“minimize”, “target” or “in range”; however, the desired goal for factor includes “equal to” instead of
the “none” choice.

A multiobjective optimization technique of response surface methodology was applied to get
an optimum solution that could satisfy the desired goals of all responses concurrently. Definitions of
factors and responses in multiobjective optimization problem are given in Table 10. The primary aim
of this research was to maximize the responses, which include compressive strength, elastic modulus,
flexural strength, flexural toughness, and ductility index, while at the same time, drying shrinkage was
kept the minimum. A single solution was obtained, which satisfied the specified criteria (Table 11).
Ramps of the optimized EGC mix and related optimal responses are shown in Figure 15. After selecting
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an optimal solution, a validation study was carried out to find the variation in results obtained by
performing experiments.

Table 10. Definitions of factors and responses in the multiobjective optimization problem.

Name of Factors and Response Goal Lower Limit Upper Limit

W/GP solids In range 0.22 0.26
S/FA In range 0 0.8

Slump flow In range 85 182
Compressive strength Maximize 67 77.5

Elastic modulus Maximize 4 13.9
Flexural strength Maximize 6.7 10.7

Flexural toughness Maximize 8.4 21
Ductility index Maximize 8 25

Drying shrinkage Minimize 0.138 0.51

Table 11. Optimized solutions with desirability.

Factors (Variables) Responses (EGC Properties)

W/GP
Solids S/FA

Slump
Flow
(%)

Compressive
Strength

(MPa)

Elastic
Modulus

(GPa)

Flexural
Toughness

(N·m)

Ductility
Index

Flexural
Strength
(MPa)

Drying
Shrinkage

(%)
Desirability

0.225184 0.341701 116.574 77.008 12.226 21.546 21.520 10.595 0.185 0.891
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Experimental Validation Study

An experimental program was designed to determine the precision of the RSM models and the
consistency of the optimized condition. Mixing, casting, curing, and testing of the samples followed
the same procedure as that given in Sections 2.3 and 2.4. Experimental results were found to be in close
agreement with the predicted values of the responses, and the difference between them was less than
5% (Table 12). Figures 16 and 17 are added as the evidence of the ultraductile nature of optimized EGC
with multiple-crack formation. By contrast, Figure 18 shows the flexural strength versus the midspan
deflection curve of the optimized mix.
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Table 12. Experimental validation of the optimized Mixture.

Response
Slump
Flow
(%)

Compressive
Strength

(Mpa)

Elastic
Modulus

(Gpa)

Flexural
Toughness

(N·m)

Ductility
Index

Flexural
Strength

(Mpa)

Drying
Shrinkage

(%)

Predicted 116.574 77.008 12.226 21.546 21.520 10.595 0.185
Experimental 121.3 80.4 11.8 22.61 20.65 11.13 0.176
Error (%) 4.05 4.4 3.48 4.94 4.04 4.98 4.86
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4. Conclusions

In this study, optimal dosages of water/geopolymer (W/GP) solids and sand/fly ash (S/FA) in EGC
were determined by performing and analyzing the experiments through response surface methodology
(RSM). Based on the findings of the investigations reported in this paper, significant conclusions are
drawn as follows.

The influence of factors (W/GP solids and S/FA) on responses (slump flow, compressive strength,
elastic modulus, flexural strength, flexural toughness, ductility index, and drying shrinkage) has been
effectively observed with 3D response surface diagrams.

Contour diagrams can effectively be used to predict the ranges of factors for the desired
EGC property (response). Moreover, ANOVA equations have been developed and statistically
validated. These ANOVA equations can be used to predict desired responses for any target value of
factors accurately.

The optimum dosages of S/FA and W/GP solids in EGC obtained using the multiobjective
optimization technique of RSM are 0.341701 and 0.225184, respectively.

The RSM optimization technique reduces the design time and efficiently analyzes the experimental
data as well as improves the performance and reliability of the existing process and product.
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