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and Non-Colonized Medicago truncatula Root and Deliver Extra
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Abstract: Arbuscular mycorrhizal (AM) fungi establish symbiosis and improve the lead (Pb) tolerance
of host plants. The AM plants accumulate more Pb in roots than their non-mycorrhizal counterparts.
However, the direct and long-term impact of AM fungi on plant Pb uptake has been rarely reported.
In this study, AM fungus (Rhizophagus irregularis) colonized and non-colonized roots of Medicago trun-
catula were separated by a split-root system, and their differences in responding to Pb application
were compared. The shoot biomass accumulation and transpiration were increased after R. irregularis
inoculation, whereas the biomass of both colonized and non-colonized roots was decreased. Lead
application in the non-colonized root compartment increased the R. irregularis colonization rate and
up-regulated the relative expressions of MtPT4 and MtBCP1 in the colonized root compartments.
Rhizophagus irregularis inoculation increased Pb uptake in both colonized and non-colonized roots,
and R. irregularis transferred Pb to the colonized root segment. The Pb transferred through the
colonized root segment had low mobility and might be sequestrated and compartmented in the root
by R. irregularis. The Pb uptake of roots might follow water flow, which is facilitated by MtPIP2. The
quantification of Pb transfer via the mycorrhizal pathway and the involvement of MtPIP2 deserve
further study.

Keywords: Pb uptake; translocation; resource allocation; arbuscular mycorrhizal pathway for Pb
uptake; transpiration pull

1. Introduction

Heavy metal contamination in soil is a worldwide issue due to rapid urbanization,
mining, sewage sludge, application of fertilizers, and other anthropogenic activities [1–3].
Lead (Pb) is one of the most common heavy metal pollutants in China [4] and is a non-
essential element that poses an immense risk especially for children [5,6]. Phytoremediation
is an efficient and non-invasive way to remediate contaminated soils [7,8]. The application
of microorganisms in the phytoremediation of Pb has received extensive attention [9–12].

Arbuscular mycorrhizal (AM) fungi can establish mutualistic symbioses with more
than 80% of terrestrial plants in different ecosystems [13,14], including Pb polluted ar-
eas [15,16]. With AM fungal colonization, plants usually have higher biomass [17,18],
increased antioxidant enzyme activities and photosynthetic rates, and improved Pb tol-
erance [18,19]. Moreover, the establishment of AM symbiosis leads to the enhancement
of host plant photosynthetic rates, transpiration flow, and water uptake [18,20–23]. The
water transport from soil to leaves requires the participation of aquaporins (AQPs), which
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are a class of membrane intrinsic proteins. Aquaporins mediate water transport across
membranes following an osmotic gradient [24] and participate in hydraulic conductance
regulation [25,26]. Plant AQPs include plasma membrane intrinsic proteins (PIPs), tono-
plast intrinsic proteins (TIPs), NOD26-like intrinsic proteins (NIPs), small basic intrinsic
proteins, and uncategorized intrinsic proteins [25]. In AM plants, the uptake of water
and nutrients was suggested via two pathways. One pathway (plant root pathway) relies
on plant root, and the other pathway (mycorrhizal pathway) relies on the AM fungal
hyphae [27,28]. It has been confirmed that nutrient transportation via the mycorrhizal
pathway to plants requires the participation of aquaporin [29].

In previous studies, the AM plants accumulated more Pb in roots and less Pb in shoots
than their non-mycorrhizal counterparts [18,30,31]. However, the direct and long-distance
impact of AM fungi on plant Pb uptake has not been reported. Medicago truncatula, as a
pre-eminent model plant for studying symbiotic relationships between plants and their
symbiotic microbes, has been widely used to understand the effect of AM fungi on plant
lead stress [19,32]. The split-root system, which separates the AM fungi colonized and
non-colonized root segments, is beneficial to compare the direct and long-distance impact
of AM fungi on the plant [33,34]. In this study, we used a split-root system (Figure 1a) to
separate the AM fungi colonized and non-colonized root segments of Medicago truncatula
and investigated the influence of AM fungi on root Pb uptake and Pb transfer from roots
to shoots. We hypothesized that: (1) AM fungi increase Pb uptake in colonized and non-
colonized root segment through the improvement of plant transpiration; (2) AM fungi
deliver Pb to colonized root segment; and (3) plant Pb uptake involves the participation
of plant aquaporin. To our knowledge, this is the first study using a split-root system to
verify the contribution of AM fungi to plant Pb uptake.
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Seeds of M. truncatula (Jemalong A17) were kindly provided by Prof. Philipp Franken 

(Plant Physiology Department, Humboldt University of Berlin). The seeds were soaked in 

Figure 1. (a) Split root system used for the study of the influence of R. irregularis on Pb uptake by M. truncatula. (b) The 2
compartments of the root systems inoculated with/without R. irregularis, and 2 compartments with/without Pb applied after
4 weeks of mycorrhizal colonization. NAM = non-mycorrhizal treatment; AM = arbuscular mycorrhizal fungi inoculation;
Pb = Pb treatment; NPb = non-Pb treatment. CK = control treatment. Only Pb = Pb was added to only 1 compartment;
Only AMF = AM fungi was added to only 1 compartment; Separate = Pb and AM fungi were added into the split-root
system in the 2 compartments separately; Together = Pb and AM fungi were added into the split-root system in the same
compartment together. LNN = no AM fungi or Pb was added to the left compartment; RNN = no AM fungi or Pb was
added to the right compartment; RAN = AM fungi was added to the right compartment without Pb; RNP = Pb was added
to the right compartment without AM fungi; LNP = Pb was added to the left compartment without AM fungi; RAP = AM
fungi and Pb were added to the right compartment.

2. Materials and Methods
2.1. Plant Material, Split-Root System, Growth Substrate, and AM Fungal Inoculum

Seeds of M. truncatula (Jemalong A17) were kindly provided by Prof. Philipp Franken
(Plant Physiology Department, Humboldt University of Berlin). The seeds were soaked
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in concentrated sulfuric acid for 10 min and washed 5 times using sterile distilled water.
Sterilized seeds were germinated in Petri dishes with water agar (0.7%; w/v) at 4 ◦C for
4 days, and at room temperature in darkness for 2 days. After placed at room temperature
for 1 d in the light, the seeds were germinated [32].

Germinated seeds were transplanted into plastic pots (10 cm in diameter, 12 cm in
height) with sterilized sand (<2 mm) to grow roots, and each pot contained one germinated
seed. After 8 weeks, uniform seedlings were selected for the pot experiment. The roots
were washed with tap water and split in half evenly and then planted in a split-root system
consisting of 2 adjoining compartments with one root half in each (as Figure 1a). Each root
compartment was filled with 0.8 kg growth substrate. The split-root system was made
of acrylic plate bonded with ABS plastic adhesive. The 2 compartments of the system
were separated by an acrylic plate to prevent the transfer of Pb and AM fungal inoculum
between compartments.

The growth substrate was a mixture of sand and vermiculite (1:1; v:v), and the contents
of available nitrogen, available phosphorus, and available potassium were 10.78 mg/kg,
2.49 mg/kg, and 24.00 mg/kg, respectively. The sand was sieved through a 2 mm sieve,
thoroughly washed with tap water, and sterilized at 170 ◦C for 4 h. The vermiculite was
autoclaved at 121 ◦C (0.11 MPa) for 2 h for sterilization. The vermiculite was a clay mineral
with a 2:1 crystalline structure that contained 2 silica tetrahedral sheets with a central
alumina octahedral layer [35].

The AM inoculum of Rhizophagus irregularis (Bank of Glomales in China, No. BGC
BJ09), which consisted of a sandy substrate that contained spores (approximately 21 spores
per gram), mycelium, and colonized root fragments, was provided by the Beijing Academy
of Agriculture and Forestry Sciences (Beijing, China).

2.2. Experimental Design

The experiment consisted of 5 treatments (Figure 1b) that were neither AM inoculum
nor Pb application in root compartment (CK), only AM inoculum application in 1 root
compartment (OA), only Pb application in 1 root compartment (OP), AM inoculum and
Pb applications in separated root compartments (SE), and AM inoculum and Pb appli-
cations in the same root compartment together (TO). The seedling roots in different root
compartments were also named according to their position, AM status, and Pb status (as
in Figure 1b). Ten grams of inoculum was applied underneath the root of M. truncatula
seedlings upon transplanting into the split-root system in mycorrhizal treatments, whereas
sterilized inoculum (170 ◦C for 4 h) was applied in the non-mycorrhizal treatments. Pb
was applied 4 weeks after the AM inoculum application to ensure AM fungal colonization.
It was accomplished by applying 32 mL 20 g L−1 Pb(NO3)2 solution to the junction of
root and growth substrate by syringe to reach 800 mg kg−1 Pb in growth substrate. Four
seedlings were merged into 1 sample as 1 biological replication. Each treatment contained
3 biological replications.

Seedlings were grown in a greenhouse at 28 ◦C/24 ◦C day/night temperatures under
16 h daylight and 40–60% humidity. Twenty milliliters of modified Hoagland’s nutrient
solution [36] containing 10% phosphate (0.1 mM KH2PO4) was added twice a week to
each root compartment before Pb application. After Pb application, only water (20 mL)
was added to the root compartment of all treatments once every 2 days to avoid direct
precipitation of Pb.

2.3. Plant Sampling, Biomass, and AM Fungal Colonization

At harvest (8 weeks after Pb treatment), the biomass of shoots and roots and the fresh-
to-dry mass ratio [37] were measured. After measuring fresh weights, parts of the leaves
were dried in an oven at 105 ◦C with forced air circulation for 15 min to inactivate enzymes
and then at 65 ◦C until they reached a constant weight for Pb content measurement. The
remaining parts of the leaves were immediately frozen in liquid nitrogen and stored at
−80 ◦C. Roots were soaked with water for root structure scanning (EPSON EXPRESSION
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1680, Seiko Epson Corporation, Japan). After root structure scanning, parts of roots were
fixed in FAA solution (37% formaldehyde: glacial acetic acid: 95% ethanol, 9:0.5:0.5, v:v:v)
for assessment of AM colonization [38]. Total colonization and arbuscular colonization
were measured using the magnified cross-section method [39]. Parts of the roots were
dried in an oven at 105 ◦C for 15 min and then at 65 ◦C with forced air circulation until
they reached a constant weight for Pb concentration measurement. The remaining parts of
the roots were immediately frozen in liquid nitrogen and stored at −80 ◦C.

2.4. Concentrations of Pb and P

The dry sample was ground in a mortar and placed in the digestion tube (50 mL) with a
5 mL mixture of HNO3 plus HClO4 (4:1) to digest at a temperature that gradually increased
to 220 ◦C. Lead concentrations were measured using flame atomic absorption spectrometry
(PinAAciie 900F, American), and P concentration was measured using the Molybdenum
yellow colorimetric method [40]. Lead content was calculated using Pb concentration, fresh-
to-dry mass ratio, and plant biomass [37]. The ratio of root Pb concentration to root surface
area was calculated to indicate the root surface’s contribution to Pb absorbing capacity.

2.5. Photosynthesis

The fifth leaf of each plant was used for the measurements. On the harvest day from
8:00 to 11:30 a.m., the net photosynthetic rate (Pn), intercellular CO2 concentration (Ci),
transpiration rate (Tr), and conduction to H2O (Gs) were measured using a Li-6400 portable
open flow gas-exchange system (Li Corporation, American) and converted with measured
leaf area. Leaf area was measured by ImageJ 1.38 (National Institutes of Health, American)
after being photographed by a camera. The measurement conditions were as follows:
photosynthetically active irradiation, 1000 µmol m−2 s−1; temperature, 22 ◦C; relative
humidity, 30%; and CO2 concentration of sample cell, 419 µmol mol−1.

2.6. Gene Relative Expression

Root samples stored at −80 ◦C were ground and homogenized with mortar and
pestle with liquid nitrogen. Total RNA was isolated from root samples by E.Z.N.A.TM

Plant RNA Kit (Omega Biotech, Norcross, GA, USA) following the supplier’s instructions.
After quantification of RNA yield by Nanodrop 2000 (Thermo Scientific, Pittsburgh, PA,
USA), cDNA was synthesized from 1000 ng of RNA using FastKing RT Kit with gDNase
(TIANGEN Biotech, Beijing, China). The synthesized cDNA was diluted 5-fold and used
as the template for PCR reactions.

The primers used in the qRT-PCR were as in [26] and are listed in Supplementary
Table S1. Gene relative expression was normalized to the M. truncatula housekeeping gene
MtEF1α. The relative expressions of MtPT4 and MtBCP1 were used as the indicator of
functional arbuscules and their quantity [41,42]. The qRT-PCR reaction was conducted
using the CFX96 real-time PCR detection system (Bio-Rad Laboratories, Hercules, CA,
USA) and contained 5 µL ChamQTM Universal SYBR® qPCR Master Mix (Vazyme Biotech,
Nanjing, China), 0.5 µL (10 µM) of each primer, 1 µL a cDNA, and 3 µL ddH2O. The PCR
procedure consisted of a 3 min denaturation at 95 ◦C; 40 cycles of denaturation at 95 ◦C for
10 s; annealing at the annealing temperature (Supplementary Table S1) for 20 s; extension
at 72 ◦C for 20 s; followed by heating from 60 to 95 ◦C to check the specificity of the PCR
amplification. All samples were technically replicated twice. Negative controls without
cDNA were run within each analysis. The relative quantity of transcripts was determined
using the 2−∆CT method [43].

2.7. Statistical Analysis

Statistical analysis was performed using the SPSS 19.0 statistical program (SPSS Inc.,
Chicago, IL, USA). Data were compiled with the assumption of a normal distribution, and
the variance equality was also tested. Multiple comparisons were tested by LSD. Corre-
lation analyses were performed using Spearman’s correlation (Supplementary Table S2).
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Figures were drawn with Origin 2018 (Origin Lab, Northampton, MA, USA). Heatmap
and cluster analysis of relative genes were performed using MetaboAnalyst 4.0 [44].

3. Results
3.1. Biomass and Colonization

Eight weeks after Pb application in root compartments, the biomass of shoot and root
in different compartments was recorded (Figure 2a). In the CK treatment, the biomass of
roots in the two compartments showed no difference, which indicated that the split-root
system divided the roots into two parts evenly. Inoculation of R. irregularis in one root
compartment (comparing OA treatment with CK treatment) increased the shoot biomass
(not significantly), but reduced root biomass both locally (OA-RAN) and systemically
(OA-LNN). Application of Pb in one root compartment (comparing treatment OP with CK)
significantly reduced shoot biomass and root biomass in the other root compartment (OP-
LNN). When plants received inoculations of R. irregularis and Pb (together and separately),
the shoot biomass was not affected significantly (comparing treatment SE and TO with
CK), but the root biomass was reduced in both compartments.
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arbuscular colonization (c) in M. truncatula. The data are shown as means ± standard error (n = 3). Different uppercase and
lowercase letters above the columns indicate a significant difference among the means by LSD test (p < 0.05), respectively.
ND = not detected. The abbreviations are consistent with Figure 1.

No AM fungal feature was observed in roots from the non-mycorrhizal treatment
(Figure 2b,c). Over 60% of root in the OA-RAN treatment was colonized, and the typical
feature (arbuscules) was observed. Application of Pb showed little limitation to the total
colonization of R. irregularis in the treatment TO (not significantly), but it significantly
promoted the total and arbuscular colonization in the treatment SE. The relative expressions
of MtPT4 and MtBCP1 that were used as the indicator of functional arbuscules and their
quantity [41,42] resembled the colonization results (Supplementary Figure S1).

3.2. Root Structure, Pb Concentration, and Content

In the CK treatment, root surface, length, and average diameter in the two com-
partments showed no difference (Figure 3a–c), which indicated that the spilt-root system
divided roots into two parts evenly. Inoculation of R. irregularis or Pb application in the
OA treatment and OP treatment did not show local or systemic influence on root surface
area, length, or average diameter, except for the OA-RAN treatment, in which the average
root diameter was locally reduced. The results described above indicated that inoculation
of R. irregularis directly reduced average root diameter. The root surface area, length,
and average diameter were reduced (compared to the CK treatment) when plant roots
received R. irregularis inoculation and Pb application separately (SE treatment) or together
(TO treatment).
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the means ± standard error (n = 3). Different letters above the columns indicate a significant difference among the means by
LSD test (p < 0.05), respectively. The abbreviations are consistent with Figure 1.

Environmental Pb existed and could not be eliminated as in a previous study [32]. To
evaluate the effect of R. irregularis on Pb extract and stimulation, both Pb concentration
and content were calculated. The lowest concentration and content of Pb in root and
shoot were shown in the CK treatment (Figure 4a,b). Solely Pb application increased local
root Pb concentration (comparing OP-RNP to CK-RNN by t-test, p = 0.007) and shoot Pb
concentration. The highest concentration and content of Pb in the shoot were shown in
the SE treatment. The highest concentration of Pb in the root segment was shown in the
SE-LNP root compartment, and the highest content of Pb in the root segment was shown
in the TO-RAP root compartment. Inoculation of R. irregularis in one root compartment
increased Pb concentration in root segments from the other compartment to which extra
Pb solution had been added (comparing SE-LNP to OP-RNP) or not (comparing OA-LNN
and TO-LNN to CK-RNN; OA-LNN was compared to CK-LNN by t-test, p = 0.027). The
Pb concentrations and contents in root segments from compartments that received Pb were
increased compared to CK. Especially, the increases in Pb concentration and content in
the root segment were higher when inoculation of R. irregularis was involved (comparing
SE-LNP and TO-RAP to OP-RNP). In addition, the Pb content in the root segment that had
direct contact with R. irregularis (TO-RAP) was much higher than that in the root segment
that had indirect contact with R. irregularis (SE-LNP).

The ratio of root Pb concentration to root surface area was calculated to evaluate
the contribution of the plant root surface to Pb uptake (Figure 4c). Compared with CK,
increased ratios were observed in the root compartment that received extra Pb (SE-LNP
and TO-RAP) and in the root compartment that was inoculated with R. irregularis (SE-RAN)
in the SE treatment. The highest ratio was shown in the root compartment (SE-RAN) that
received Pb and R. irregularis in different root compartments.

3.3. Photosynthesis

Compared to the CK, solely R. irregularis inoculation increased Pn but decreased Ci
(Figure 5a,b). Lead application (only Pb) increased Tr, while only Pb applied and Pb applied
with R. irregularis together increased Ci and Gs (Figure 5b–d). When Pb and R. irregularis
inoculum were applied together in the same root compartment, the Gs was higher than
when they were applied separately in different root compartments.
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Figure 5. Effects of Pb and R. irregularis inoculation on net photosynthetic rate Pn (a), intercellular
CO2 concentration Ci (b), transpiration rate Tr (c), and stomatal conductance Gs (d) in leaves of
M. truncatula. The data are the means ± standard error (n = 3). The different letters above the
columns indicate significant differences among the means by LSD test (p < 0.05), respectively. The
abbreviations are consistent with Figure 1.

3.4. Relative Expressions of Aquaporins

To test the hypothesis that inoculation of R. irregularis improves the capacity of Pb
uptake in M. truncatula with the help of aquaporins, the relative expressions of aquaporins
were detected (Figure 6). Inoculation of R. irregularis locally increased the relative expres-
sions of MtAQP1 in root compartment SE-RAN, MtPIP2 in root compartment TO-RAP, and
MtNIP1 in root compartments OA-RAN and TO-RAP (compared to CK). Inoculation of R.
irregularis also systemically increased the relative expression of MtPIP1 in root compart-
ment OA-LNN. Application of Pb locally increased the relative expression of MtAQP1 in
root compartment OP-RNP, MtPIP2 in root compartment TO-RAP, and MtNIP1 in root
compartment TO-RAP (compared to CK). The relative expression of MtNIP4 was higher in
root compartment OA-RAN than that in root compartment TO-RAP.
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3.5. Correlation Analysis

From the Spearman correlation analysis (Supplementary Table S2), Pb concentration
and content in shoot and root showed negative correlations with root biomass, root surface
area, and root length, but positive correlations with the relative expression of MtPIP2 in
the root. Moreover, root Pb concentration showed a positive correlation with the relative
expression of MtPT4. The ratio of root Pb concentration to root surface area showed positive
correlations with Pb concentration and content of shoot and root. Additionally, the ratio of
root Pb concentration to root surface area showed positive correlations with the relative
expression of MtPT4, MtBCP1, and MtPIP2 in the root.

4. Discussion

Arbuscular mycorrhizal fungi can survive in various environments including Pb
polluted areas and improve growth and stress tolerance of host plants [15,32,45]. Under
Pb stress, AM fungi colonized plants were reported to have better growth [17,18,46] and
accumulate more Pb in root than in shoot [31]. To verify the influence of AM fungi on
plant root Pb uptake, a split-root system was established to separate the colonized and
non-colonized root segments and compare their differences in Pb uptake.

The evenly distributed root biomass in two root compartments of CK treatment
demonstrated the success of the split-root system. A similar split-root system was used
in other studies of the systemic influence of AM fungi in M. truncatula [33,34]. When
root segments of M. truncatula were only colonized in one root compartment, the AM
fungi showed improvement on plant shoot growth and systemic reduction of plant root
growth (Figure 2a) as reported previously [33]. The systemic influence of AM fungi on
root growth reduction was due to the carbon investment of plants in AM fungal hyphae,
which require less carbon than root to acquire nutrients and water from soil [47]. Plant
carbon expenditure on AM fungi was more economic than expenditure on root growth in
terms of improving P uptake [48]. Application of Pb had a negative effect on the biomass
accumulation of non-AM plants, confirming the sensitivity of M. truncatula to Pb toxicity
in the treated concentration [19]. The beneficial effect and alleviation of Pb toxicity by AM
fungi, which was indicated by the higher shoot biomass of AM plants than those of the
non-AM plants, was consistent with previous studies [18,30,32].

Inoculation with R. irregularis successfully established AM symbiosis in the root
compartments and set the basis for this study. The colonization rate showed a similar
tendency with the relative expression of MtPT4 and MtBCP1 in the root segment, and
this supported the view that the expressions of these two genes were indicators of AM
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symbiosis in the root of M. truncatula [34,41,42]. When Pb and R. irregularis were applied in
different root compartments, the colonization rate of R. irregularis increased [49] and the
relative expressions of MtPT4 and MtBCP1 were up-regulated. This might be because AM
symbiosis maintains the balance of plant mineral element uptake, which was disturbed
by Pb through hindering permeability of root cell plasma membrane [50,51], by increased
reliance of plant on AM symbiosis [27,52]. Nevertheless, when Pb and R. irregularis were
applied in the same root compartment, the extension of extraradical hyphae was inhibited.
Moreover, the reliance of plants on AM symbiosis was limited, and the colonization
rate was restored. Heavy metal presence in the substrate can reduce AM fungal hyphae
extension during spore germination in vitro [53]. This could have happened when Pb and
R. irregularis were applied in the same root compartment. The extension of extraradical
hyphae may have been inhibited by Pb with the reliance of the plant on AM symbiosis
being limited, and the colonization rate being restored to the OA-RAN compartment value.

Although Pb is a non-essential element, the uptake of Pb by a plant is inevitable [5,6,54].
The application of Pb in one root compartment hardly affected the root Pb concentration
in the other root compartment, but increased the shoot Pb concentration as [55] shown
with Cd. Compared with non-mycorrhizal plants, mycorrhizal plants usually had higher
shoot Pb content under Pb stress. This is related to R. irregularis which improves plant
growth and reduces Pb toxicity. When R. irregularis and Pb were applied in different root
compartments, the Pb concentration and content in the shoot were also increased, and this
indicated an improvement of Pb transfer from non-colonized root segment to shoot by AM
symbiosis [17]. However, the Pb concentration and content in the shoot of TO treatment
was lower than those of SE treatment (Figure 4a,b), implying an inhibitory effect of R.
irregularis on Pb translocation.

In the root, Pb application increased the Pb concentration and content (Figure 4a,b).
The increase in Pb concentration and content in colonized and non-colonized M. truncatula
root segments by R. irregularis (comparing TO-RAP and SE-LNP to OP-RNP) (Figure 4a,b)
followed a previous study showing that AM plants accumulated more Pb in root than non-
mycorrhizal plants [30]. The increased root Pb concentration and content by R. irregularis
might be due to the increased water and nutrient uptake, which was proven by the higher
shoot biomass and lower root biomass of SE and TO treatments compared to those of OP
treatment (Figure 2a) and by the positive correlations of the relative expression of MtPT4
and root Pb content. Moreover, the increase in root Pb content by R. irregularis in colonized
root segment was higher than that in the non-colonized root segment (comparing TO-RAP
with SE-LNP) (Figure 4a). It might be due to the mycorrhizal diluting effect [56]. This
indicated an increased Pb accumulation capability of AM fungi colonized root segment,
which has two nutrient and water uptake pathways [27,28].

The Pb accumulation capability of different root segments was compared through
the ratio of root Pb concentration to root surface area. The ratio was positively correlated
with the relative expressions of MtPT4 and MtBCP1. This result further confirmed that
the AM fungi increased the Pb accumulation capability of plant roots. However, the
Pb concentration and content in the shoot of TO treatment was lower than those of SE
treatment (Figure 4a,b) and the ratio of root Pb concentration to root surface area in TO-RAP
treatment was lower than that in SE-LNP treatment (Figure 4c), implying an inhibitory
effect of AM fungi on Pb translocation. It may due to the increase in P by AM fungi
(Supplementary Figure S2). Pb(PO4)2 is a stable environmental soil Pb form that may form
rapidly when adequate phosphate is present [57]. The retention of Pb by AM fungi might
also be the result of sequestration by their cell walls and proteins and compartmentation in
vacuoles [27,58]. The AM fungi colonized root segments with the mycorrhizal pathway
transferred less Pb to shoot than non-colonized root segments without the mycorrhizal
pathway. Thus, the Pb supplied by the colonized root segment with the mycorrhizal
pathway to plant root has lower mobility than Pb absorbed from growth substrate by plant
root itself (Figure 7).
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in a plant.

The nutrient delivery of the mycorrhizal pathway was ascertained to follow the water
flow [29,59], which involves the participation of aquaporins [25]. The increased effect
of AM fungi on Pb and P showed a similar phenomenon. (Supplementary Figure S2).
The AM fungi inoculation both systemically and locally increased root P uptake. The
increased P uptake from AM fungi inoculation was inhibited by Pb, especially in SE-LNP
(not significant). This also indicated that AM plant might have promoted Pb uptake as P
uptake by providing more transpiration flow.

The relative expression of gene encoding MtPIP2, which was suggested to have higher
water permeability than PIP1 and form a heterotetramer with PIP1 [60], was up-regulated
in root compartment TO-RAP (Figure 6) and was positively correlated with the Pb content
and concentration in root and shoot and with the ratio of root concentration to root surface
area. This result fitted the hypothesis that Pb uptake by plant root follows water flow
(Figure 7). The specific role of MtPIP2 in Pb uptake is under study.

5. Conclusions

To summarize, inoculation with R. irregularis had a beneficial effect on M. truncatula
and could alleviate Pb toxicity. AM symbiosis increased Pb uptake in both colonized
and non-colonized plant root segments, whereas AM fungi might transfer extra Pb to
the colonized root segment. The Pb uptake through the colonized root segment had low
mobility moving from root to shoot, and might be sequestrated and compartmented by
AM fungi. The Pb uptake of plant roots might follow water flow, which is facilitated by the
aquaporin MtPIP2. Further research will quantify the Pb that is directly transferred from R.
irregularis to plant root, and decipher the role of MtPIP2 in root Pb uptake.
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irregularis inoculation on the concentration of P in roots and shoots of M. truncatula. Table S1: Primer
list of RT-qPCR. Table S2: Correlation analysis between Pb and AM fungi colonization in root with
biomass, root structure, nutritive element concentrations, and the relative expressions of genes in M.
truncatula plants in different treatments.
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