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Abstract: Fermentation is widely used in the processing of dairy, meat, and plant products. Due to
the growing popularity of plant diets and the health benefits of consuming fermented products, there
has been growing interest in the fermentation of plant products and the selection of microorganisms
suitable for this process. The review provides a brief overview of lactic acid bacteria (LAB) and their
use in fermentation of legumes and legume-based beverages. Its scope also extends to prebiotic
ingredients present in legumes and legume-based beverages that can support the growth of LAB.
Legumes are a suitable matrix for the production of plant-based beverages, which are the most popular
products among dairy alternatives. Legumes and legume-based beverages have been successfully
fermented with LAB. Legumes are a natural source of ingredients with prebiotic properties, including
oligosaccharides, resistant starch, polyphenols, and isoflavones. These compounds provide a broad
range of important physiological benefits, including anti-inflammatory and immune regulation, as
well as anti-cancer properties and metabolic regulation. The properties of legumes make it possible
to use them to create synbiotic food, which is a source of probiotics and prebiotics.

Keywords: lactic acid bacteria; fermentation; legumes; plant-based beverages; legume-based bever-
ages; bioactive metabolites; probiotics; prebiotics

1. Introduction

Fermentation is a natural food preservation method that has been used for centuries.
Initially, this process was carried out spontaneously with microorganisms naturally present
in food, whereas currently, selected starter cultures with specific compositions are used
to this end [1]. The fermentation process is done by lowering the pH of the food, using
microorganisms that convert the sugars present in the product into acid. It is most often
accomplished with lactic acid bacteria (LAB), which produce lactic acid as the major
product of carbohydrate metabolism [2–6]. Some microorganisms in this group also exhibit
probiotic properties, and their consumption is beneficial to selected aspects of human
health (e.g., gastrointestinal function, immunity) [7,8]. Fermentation is widely used in
the processing of dairy, meat, and plant products [7,9]. In fermented foods, LAB shape
the taste, texture, nutritional value, and produce of beneficial metabolites that affect the
functional and healthy properties of food products [2]. Due to the growing popularity
of plant diets and the health benefits of consuming fermented products, there has been
growing interest in the fermentation of plant products and the selection of microorganisms
suitable for this process. The expanding range of alternatives to dairy products has spurred
new research into plant products as matrices for the production of fermented and probiotic
products [10–12].

The global dairy alternatives market was valued at USD 20.50 billion in 2020 and is
expected to expand at a compound annual growth rate (CAGR) of 12.5% from 2021 to
2028 [13]. A global survey conducted in 2019 showed that 40% of the surveyed consumers
try to limit their consumption of animal proteins, which resulted from concerns about

Microorganisms 2022, 10, 91. https://doi.org/10.3390/microorganisms10010091 https://www.mdpi.com/journal/microorganisms

https://doi.org/10.3390/microorganisms10010091
https://doi.org/10.3390/microorganisms10010091
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0002-3665-8889
https://orcid.org/0000-0001-7445-6375
https://doi.org/10.3390/microorganisms10010091
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms10010091?type=check_update&version=2


Microorganisms 2022, 10, 91 2 of 39

climate change [14]. Plant-based beverages are among the most popular dairy alternatives,
usually treated as analogues of cow’s milk. The milk-based dairy alternatives product
segment led the market and accounted for a revenue share of more than 67.0% in 2020 [13].

The main drivers of the plant-based beverage boom are the growing popularity of the
plant-based diets and the growing concern for the environment among consumers [15,16].
Plant-based beverages are also consumed by people who are lactose intolerant, allergic
to cow’s milk proteins, and interested in low-cholesterol foods [15,16]. With the growing
number of consumers choosing alternatives to cow’s milk, the demand for non-dairy
probiotic foods (both fermented and unfermented) is increasing. However, so far, probiotics
have been used for enrichment mainly in dairy products due to their natural occurrence,
properties, and widespread availability [17,18].

The most popular among the alternatives to cow’s milk are beverages made from
soybeans, which are a type of legume [19,20]. However, there are also other legumes highly
suitable for the production of plant-based beverages, e.g., beans, peas, and chickpeas [21].
Legumes are a source of carbohydrates, dietary fiber, and proteins, and they are rich in
bioactive ingredients (including, e.g., polyphenols and phytosterols) [22]. Legumes are
also a potentially suitable matrix for the fermentation process [23]. The development of
legume-based beverages, subject to additional fermentation, can help expand and enrich
the range of milk alternatives available [24]. With that in mind, the aim of this review was
to evaluate legumes and legume-based beverages fermented with LAB as a potential carrier
of probiotics and prebiotics. The review provides a brief overview of lactic acid bacteria
(LAB) and their use in the fermentation of legumes and legume-based beverages. Its scope
also extends to prebiotic ingredients present in legumes and legume-based beverages that
can support the growth of LAB.

2. Lactic Acid Bacteria (LAB)
2.1. Characteristics of LAB

Lactic acid bacteria (LAB) are a phylogenetically heterogeneous group of Gram-
positive bacteria that share metabolic and physiological characteristics [25]. These bacteria
ferment carbohydrates into lactic acid (homofermentation), or into lactic acid, ethanol, and
CO2 (heterofermentation) [7,9]. Sugars are fermented mainly under anaerobic conditions,
but some species produce more lactic acid in the presence of a small amount of oxygen,
e.g., Lactobacillus delbrueckii subsp. bulgaricus, Lactiplantibacillus plantarum subsp. plantarum,
and Leuconostoc mesenteroides. They are non-sporulating cocci or bacilli, low in guanine
and cytosine in chromosomal DNA (not more than 53 mole% of G + C pairs). LAB do not
produce catalase, instead synthesizing superoxide dismutase, which removes reactive oxy-
gen species [9,26–28]. The majority of LAB belongs to the genera Lactobacillus, Leuconostoc,
Pediococcus, Lactococcus, Streptococcus, Enterococcus, Carnobacterium, Aerococcus, Oenococcus,
Tetragenococcus, Vagococcus, and Weissella [7,9,25,27]. LAB are generally associated with the
order of Lactobacillales (phylum Firmicutes); however, bacteria of the genus Bifidobacterium
(phylum Actinobacteria) are often grouped together with them. Bifidobacterium are strictly
anaerobic Gram-positive bacteria that also produce lactic acid as a major product of carbo-
hydrate metabolism [2,29].

Lactic bacteria have the ability to regulate intracellular pH and thus survive in a rela-
tively low pH environment [9]. LAB grow until the carbohydrates, amino acids, and other
substances necessary for life are consumed in the medium; until toxic or growth inhibitory
substances (e.g., hydrogen peroxide) accumulate; or until the concentration of hydrogen
ions drops below the tolerance limits of the bacteria. For example, Lactococcus lactis subsp.
lactis and Streptococcus thermophilus are grown in milk until the pH of the environment
drops to 4.5, even if the nutrient stock is unlimited [3,9,30].

Due to the limited biosynthetic capacity of some compounds (called auxotrophy),
LAB occur in environments rich in amino acids, vitamins, purines, and pyrimidines [9]. In
laboratory conditions, LAB cultures are grown in media containing tryptone, yeast extract,
and lactose. Lactose-free strains are cultured in glucose-containing media. Some of them
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are free living organisms, while others live in association with vertebrate animals and can
also be found in humans and animals as potential pathogens (e.g., Streptococcus pyogenes,
S. pneumoniae) [9,30]. Although most LAB are vitamin auxotrophs, some strains have the
ability to synthesize water soluble vitamins, mainly B vitamins (including folates, riboflavin,
and vitamin B12). For example, Streptococcus thermophilus and Lactobacillus delbrueckii subsp.
lactis have the ability to produce folates, while Lactococcus reuteri have the ability to biosyn-
thesize cobalamin [31].

LAB play an important role in many industrial sectors, including agricultural, food,
and clinical [7,9]. In nature, these microorganisms occur in fermented dairy, meat, and
vegetable products, in the digestive and urogenital tracts of humans and animals, as well
as in soil and water [7,9,25,27]. LAB are generally considered safe for human consumption.
Most of them are classified as GRAS (generally recognized as safe). Currently, the most
common use of LAB is as starter cultures for the production of fermented foods. Some LAB
have been classified as probiotic [2]. In addition, they are widely used in the industrial
production of lactic acid, polyols, vitamins, and food ingredients due to their resistance
to environmental stress and their versatile metabolic properties. In fermented foods, LAB
shape the taste, texture, and nutritional value of products, mainly by performing glycolysis
(sugar fermentation), lipolysis (fat breakdown), and proteolysis (protein breakdown) [2,28].
Their use as starter cultures is motivated not only by their production of lactic acid, but
also the production of beneficial metabolites that affect the taste and properties of food
products, including organic acids, alcohols, aldehydes, esters, sulfur compounds, polyols,
exopolysaccharides, and antimicrobial compounds. The starter cultures used in the food
industry most often include LAB from the genera Lactococcus, Streptococcus, Lactobacillus,
Pediococcus, and Leuconostoc [2,32].

2.2. Fermentation with LAB

LAB are widely used in the fermentation of animal and plant products [9,18,33,34].
Their main application is in the fermentation of dairy products (e.g., yoghurt, kefir, but-
termilk, koumiss, cheese) [35,36], meat [37], fish [38], fruit [39], vegetables [40], and cereal
products [41]. LAB fermentation is one of the main forms of food preservation that does
not require the use of chemical food additives [7]. LAB lower the pH of food, inhibit the
growth of putrefactive bacteria, improve the organoleptic properties of food, enhance the
nutrient profile, and optimize health benefits. LAB enzymes (including amylases, proteases,
and lipases) hydrolyze polysaccharides, proteins, and lipids into flavors, fragrances, and
texture modifiers and confer properties attractive to consumers [18,42].

LAB grow in the temperature range of 10 to 45 ◦C, salinity of 6.5% NaCl, and pH be-
tween 4 and 9.6. The fastest LAB-mediated fermentation and biomass production processes
take place at a temperature of 26 to 42 ◦C, whereas the bacteria themselves are mostly
grown at a temperature of 35–37 ◦C [9]. LAB can be classified as homofermentative or
heterofermentative organisms, based on their ability to ferment carbohydrates. Homofer-
mentative LAB (e.g., Lactococcus, Streptococcus) use the EM glucose degradation pathway
(Embden–Meyerhof) and produce two lactate molecules from one glucose molecule. Hetero-
fermentative bacteria (e.g., Leuconostoc, Wiessella) catabolize glucose along the 4PP (pentose
phosphate) pathway and produce lactate, ethanol, and carbon dioxide from a single glucose
molecule [7,9,25].

Traditionally, fermentation was carried out mainly by inoculating the food with a
sample of a previously fermented product, which is known as backslopping. However, the
products obtained via this process were of heterogeneous quality [2]. Currently, LAB are
predominantly added to products in the form of commercial, freeze-dried starter cultures,
which enables the production of homogeneous, high quality products on a large scale.
The starter cultures are divided into defined- and mixed-strain cultures. Strain-defined
cultures are pure cultures with known physiological and technological characteristics. They
consist of two to six strains, used in rotation either as paired single strains or as multiple
strains, and can be used to make high quality products on an industrial scale. Mixed
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strain cultures contain an unknown number of strains of the same species and may also
contain bacteria from different LAB species or genera [2]. The most common use of starter
cultures is in dairy production. The bacteria associated with fermented milk products are
the genera Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, Bacillus, Propionibacterium, and
Bifidobacterium. In the production of fermented dairy products, LAB are used as primary
starter cultures involved in the acidification of the product (e.g., Lactobacillus sp., Leuconostoc
sp., Streptococcus sp.) and also as secondary starter cultures responsible for shaping aroma,
taste, and texture (e.g., Propionibacterium sp., Brevibacterium sp., Debaryomyces sp., Geotrichum
sp., Penicillium sp., Enterococcus sp.) [7,42].

In addition to the ability to bio-conserve food, LAB can also synthesize other sub-
stances that affect the organoleptic characteristics of food and its properties [7,32]. LAB
require essential amino acids and peptides to grow, which are released in the process of
proteolysis of proteins present in the raw material. They are capable of degrading the fats in
dairy products, turning them into methyl ketones, lactones, thioesters, and hydroxy acids,
which give dairy products their ultimate flavor. The products of these conversions help
develop the characteristic organoleptic features of fermented products [7,9,32]. The fermen-
tation process has also been found to elicit a beneficial effect on reducing the content of
anti-nutritional factors (ANFs), e.g., phytates and protease inhibitors, in plant products [18].
In addition, LAB have the ability to produce antimicrobial substances called bacteriocins,
which are ribosome-synthesized peptides that exhibit antimicrobial activity, can inhibit
pathogenic microflora in food [7,43,44], and are usually secreted outside the bacterial cell.
Bacteriocins synthesized by LAB strains, including those of the genera Lactococcus sp.,
Lactobacillus sp., Pediococcus sp., Carnobacterium sp., or Leuconostoc sp., are considered safe
to be used in food production [32,45,46].

LAB also include bacteria recognized as probiotic [8]. Probiotics were originally
defined as microorganisms that promoted the growth of other microorganisms [8,29]. In
recent years, they have been more precisely defined as mono- or mixed cultures of living
microorganisms which, when administered to an animal or a human, are beneficial for the
host, improving the properties of the native microflora. In the context of food, probiotics
are defined as preparations or dietary supplements that improve human and animal
health [8,29]. Their function is to restore the natural state of the human microflora that has
been disturbed by improper nutrition, disease, or the healing process. The main purpose
of consuming probiotics—whether as food and pharmaceutical preparations—is for their
beneficial effect on the colonic microflora [18]. Probiotics can be consumed in fermented
foods or in the form of capsules, pills, and tablets [17]. In order for a probiotic strain to be
considered for human use, it should be isolated from the human microflora, which grants it
a high capacity for adhesion to the human intestinal cell walls. The strain must also be safe
and not pose a threat to the host. The probiotic microorganisms most extensively isolated
from fermented foods and from the animal/human digestive systems include Lactobacillus,
Pediococcus, Bifidobacterium, Lactococcus, Streptococcus, and Leuconostoc [7,47].

Various mechanisms underlying the action of probiotics have been considered. In
general, probiotics elicit a positive effect on the human body, e.g., by competing with
pathogenic bacteria to bind to the cells of the intestinal epithelium; enhancing the func-
tion of the intestinal epithelial barrier; inhibiting the growth of pathogens by secreting
antimicrobial peptides; stimulating the production of immunoglobulins; enhancing phago-
cytosis; increasing the activity of NK (Natural Killer) cells; promoting cellular immunity
against pathogens; and preventing inflammation [7]. In addition to lactic acid, probiotic
LAB produce several bioactive metabolites (antimicrobial and shelf-life extending), such
as organic acids, short-chain fatty acids, carbohydrates, antimicrobial peptides, enzymes,
vitamins, cofactors, or immune signaling compounds—these substances are also known as
postbiotics [48].

Consuming probiotics is beneficial to many aspects of health, especially in the pre-
vention and treatment of infections and gastrointestinal diseases. The therapeutic uses of
probiotics also include the prevention of genitourinary diseases, constipation relief, protec-
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tion against traveler’s diarrhea, management of hypercholesterolemia, protection against
colon and bladder cancer, as well as prevention of osteoporosis and food allergies [7,8,49].
Additionally, the consumption of probiotic bacteria prevents obesity, type II diabetes and
cardiovascular diseases, while also stimulating the immune system. Probiotics help relieve
the symptoms of lactose intolerance by producing the enzyme galactosidase (lactase), which
breaks down lactose into simple sugars [7,8,29,49,50]. The health benefits of consuming
probiotic LAB may result from the combination of viable microorganisms contained in
fermented foods and bioactive ingredients released into the food as by-products of the
fermentation process [51]. Healthy benefits of foods fermented with probiotic LAB are
summarized in Table 1.

Table 1. Healthy benefits of foods fermented with probiotic LAB.

Type of Food Product Probiotic Microorganisms Used for
Fermentation Healthy Effects References

Milk Lacticaseibacillus casei Shirota
• improvement of stool quality and frequency, lower

water content in stools;
• increase in the intrinsic Bifidobacteria

Matsumoto et al., 2010 [52]

Dairy drink Lacticaseibacillus casei DN-114 001
• reduction of the average duration and of common

infectious diseases Guillemard et al., 2009 [53]

Milk
Bifidobacterium breve YIT 12272,

Lactococcus lactis YIT 2027,
Streptococcus thermophilus YIT 2021.

• increase in the hydration levels of the stratum
corneum, defecation frequency, feces quantity, and
clearness of the skin

Mori et al., 2016 [54]

Milk

Bifidobacterium animalis subsp. lactis,
Streptococcus thermophilus, Lactobacillus

delbrueckii subsp. bulgaricus,
Lactococcus lactis subsp. lactis

• influence activity of brain regions that control
central processing of emotion and sensation Tillisch et al., 2013 [55]

Milk
Lacticaseibacillus casei, L delbrueckii

subsp. bulgaricus, Streptococcus
thermophilus

• reduction in the incidence of antibiotic associated
diarrhea and Clostridium difficile associated
diarrhea

Hickson et al., 2007 [56]

Milk Lactobacillus helveticus
• reduction in the arterial stiffness in hypertensive

subjects Jauhiainen et al., 2010 [57]

Mung and adzuki bean sprouts Lactiplantibacillus plantarum subsp.
plantarum 299v • cytostatic and cytotoxic activity Świeca et al., 2020 [58]

Soybean Lactiplantibacillus pentosus var.
plantarum C29 • ameliorating effect against memory impairments Yoo and Kim, 2015 [59]

Grape Lactiplantibacillus plantarum subsp.
plantarum

• increase in the release and the intracellular content
of inflammatory and anti-inflammatory cytokines;

• potential therapeutic measure to mitigating
neuroinflammation in pathologies such as
Parkinson’s disease and Alzheimer’s disease

Marzulli et al., 2012 [60]

Litchi juice Lacticaseibacillus casei CICC 6117

• enhance the immune organs indexes and the
antioxidant capacity;

• increase in the secretions of cytokines and
immunoglobulins;

• protection of the intestinal tract;
• alleviation of immune dysfunction and beneficial

modification of gut microbiota structure

Wen et al., 2020 [61]

3. Characteristics of Legumes

Legumes are a staple food in many countries around the world. The most commonly
eaten varieties are beans, faba beans, chickpeas, peas, lentils, cowpeas, lupins, and soy-
beans [62–64]. Legumes are suitable for growing under adverse environmental conditions
and in a variety of growing systems due to their low input requirements, short growing
season, and nitrogen fixation capacity [64]. As shown in Table 2, legumes are a rich source
of carbohydrates (30–60% of total content), dietary fiber (9–25%), and protein (19–36%)
containing the necessary amino acids such as lysine, leucine, and arginine [22,65,66]. The
carbohydrates include monosaccharides, oligosaccharides, other polysaccharides, and
starch. In legumes, starch is the main source of available carbohydrates (22–45% of total
content) along with oligosaccharides (1.8–18%) and dietary fiber (4.3–25%). Legumes are
usually low in fat and contain no cholesterol, with a favorable fatty acid profile dominated
by unsaturated fatty acids (Table 2). They are also a good source of iron, calcium, zinc, sele-
nium, magnesium, phosphorus, copper, potassium, and B-group vitamins; however, they
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are poor in vitamin C and fat-soluble vitamins. The moisture content of all dry legumes
varies between 9 and 3%, which makes them suitable for long-term storage [64,67].

Table 2. The nutritional value of selected raw legumes, according to FoodData Central Search Results
by U.S. Department of Agriculture [65].

Type of
Legumes

Energy
(kcal/100 g)

Protein
(g/100 g)

Total Lipid
(g/100 g)

Fatty Acids,
Total

Saturated
(g/100 g)

Fatty Acids,
Total Mono-

and Polyunsat-
urated

(g/100 g)

Carbohydrate
(g/100 g)

Fiber
(g/100 g)

Soybean 446.0 36.5 19.9 2.88 15.7 30.2 9.3

Bean, white 333.0 23.4 0.85 0.2 0.4 60.3 15.2

Bean, black 341.0 21.6 1.42 0.3 0.7 62.4 15.5

Bean, adzuki 329.0 19.9 0.53 0.2 0.2 62.9 12.7

Faba bean 341.0 26.1 1.53 0.2 0.9 58.3 25.0

Chickpea 378.0 20.5 6.0 0.6 4.1 63.0 12.2

Pea, pigeon 343.0 21.7 1.5 0,3 0.8 62.8 15.0

Lentil, red 358.0 23.9 2.2 0.4 1.6 63.1 10.8

Lupin 371.0 36.2 9.7 1.1 6.4 40.4 18.9

Cowpea, catjang 343.0 23.8 2.1 0.5 1.1 59.6 10.7

Legumes contain bioactive substances that play a significant metabolic role in the hu-
man body. Their action can be considered positive, negative, or in some cases, both. Dietary
fiber, resistant starch, polyphenols, and phytosterols are referred to as health-promoting
ingredients [63,68,69]. Legumes are rich in both soluble and insoluble fiber. The seed coat is
rich in water-insoluble polysaccharides, while the cotyledon fiber consists of hemicelluloses,
pectin, and cellulose with varying degrees of solubility. Resistant starch is a non-digestible
fraction of starch, which, after passing into the large intestine, functions physiologically
similarly to dietary fiber [68,70]. Consuming fiber as part of one’s daily diet is essential
for nominal intestine function, which is implied in lowering the risk of development of
many chronic diseases, including colon cancer, heart disease, and diabetes [68,70]. Resistant
starch and fiber pass through the stomach and small intestine in undigested form until
they reach the colon, where they play a prebiotic role. Fiber and resistant starch also help
reduce body weight, increase stool volume, and decrease colon pH, while also lowering
serum cholesterol and triglycerides. In addition, they reduce the glycemic index of legumes,
regulating postprandial glycemia and insulin sensitivity [64,68,70].

The polyphenols present in legumes are bioactive compounds that have a broad thera-
peutic potential due to their antioxidant activity. They work by delaying or preventing the
oxidation of lipids, proteins, and DNA by reactive oxygen species [68,71]. The amino acids
of legume proteins (mainly tyrosine, phenylalanine, tryptophan, and cysteine) also exhibit
antioxidant properties that result from their ability to donate protons to free radicals [72].
Epidemiological evidence shows that dietary intake of legume antioxidants provides a
protective effect against certain chronic diseases associated with oxidative stress such as
cardiovascular disease, cancer, obesity, diabetes, and hypercholesterolemia [67,68,72].

Phytosterols are plant sterols with a structure similar to cholesterol. These compounds
belong to the group of steroid alcohols that occur naturally in legumes. As a natural
component of plant structures, phytosterols contribute to the regulation of the fluidity and
permeability of cell membranes [73,74]. The most common phytosterols are β-sitosterol,
campesterol, and stigmasterol [73,74]. Phytosterols are well known for a wide range of
health benefits, the most important of which are lowering blood LDL cholesterol and
reducing its absorption in the intestine [64,68].
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Certain bioactive substances of legumes have been found to be ANFs. Some of them
play an important role in the mechanisms used by plants to protect themselves against
predators or environmental conditions, while others are storage compounds, accumulated
in seeds as an energy reserve [62,75,76]. The major ANFs of legumes include oligosac-
charides from the raffinose family, protease inhibitors, phytates, and saponins. These
factors, apart from their negative impact on the body, often also have a positive and health-
promoting effect, which has provoked some debate as to whether it is necessary to reduce
their content in legumes [62,75].

Oligosaccharides are carbohydrates from the raffinose family, including, i.e., raffi-
nose, stachyose, and verbascose [62,68]. They are well known as ANFs that cause gas
and discomfort upon consumption of legumes as a result of α-galactosidase depletion in
the human body [62,77]. When ingested, they pass into the large intestine, where they
are anaerobically fermented by intestinal bacteria to produce hydrogen, carbon dioxide,
and methane [75]. However, these oligosaccharides are also considered a component of
dietary fiber and may show prebiotic effects by stimulating the growth of Lactobacilli and
Bifidobacteria beneficial for the intestines and limiting the development of putrefactive
Enterobacteria in the colon [62,68,75].

Protease inhibitors in legumes inhibit the action of digestive enzymes, such as trypsin
and chymotrypsin, through competitive binding [22,75]. These inhibitors can reduce
protein digestibility and nutrient absorption. On the other hand, they are considered to be
natural bioactive substances that may have anti-cancer effects [62,75,78].

Phytates are salts of phytic acid, which, when consumed in tandem with legumes,
may reduce the bioavailability of minerals and limit enzymatic digestion of starch and
proteins [62,64]. Excess phytic acid forms insoluble complexes with copper, zinc, iron,
and calcium, limiting their availability in the intestine [64,78]. However, there are some
beneficial effects of phytic acid, such as reducing bioavailability and toxicity of heavy metals
(e.g., cadmium and lead) present in food. Phytates also elicit antioxidant, anti-cancer, and
DNA-protective effects [64,75].

Saponins are irritating to the stomach and can also inhibit the absorption of nutrients
in the intestine [64,75]. The potential benefits of consuming saponins include reduced risk
of development of cardiovascular disease and certain cancers. Some research suggests that
saponins may lower cholesterol by forming insoluble complexes with it in the intestine [75].

ANFs in legumes are usually removed by applying a number of technological treat-
ments such as soaking, microwaving, extrusion, steaming, boiling, roasting, infrared, starch
modification, germination, and fermentation [22,69,75,76]. These treatments also improve
the taste of these raw materials, increase the bioavailability of nutrients, and increase the
digestibility and absorption of starch and protein [64,75]. Modification of starch (total or
partial gelatinization) not only contributes to reducing the content of ANFs in legumes but
also affects the technological properties by improving emulsifying, foaming, water retention
capacity, and thickening [79,80]. Some of the ANFs in legumes are reduced during initial
processing—heat treatment and soaking of the raw materials. Soaking partially reduces
the oligosaccharide content. Higher levels of oligosaccharides have been demonstrated in
legumes that have not been soaked before the heat treatment [77]. For example, in lentils,
heat treatment almost completely eliminates the trypsin inhibitors—tannins and phytic acid.
However, it also reduces the content of minerals and some amino acids (lysine, tryptophan,
and sulfur-containing amino acids) [81]. Some of the ANFs (e.g., tannins and saponins) are
thermally stable, but their content can be reduced by sprouting and/or fermentation [75].
Fermentation reduces the content of thermostable ANFs in legumes, which leads directly
to an increase in digestibility of proteins and bioavailability of certain nutrients [77,78].

4. Fermentation of Legumes Using LAB

Fermented legumes have been consumed by humans for centuries [82]. Currently,
legume fermentation is widely used in the production of intermediate bakery products (e.g.,
cookies, pasta, bread), ingredients for Asian cuisine, substitutes for dairy products, and as
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an ingredient of animal feed [83–86]. The addition of fermented legumes to food products
may improve their technological properties and nutritional value, e.g., by increasing the
protein digestibility and mineral availability, reducing the ANFs content, and improving
the viscosity of the final product [87–98]. The use of legumes fermented with LAB as
ingredients of various types of food is summarized in Table 3.

Table 3. The use of legumes fermented with LAB as ingredients of various types of food.

Type of Food Type of Legume Used as A
Food Ingredient

Microorganisms Used for
Fermentation Effect of the Addition of Fermented Legumes References

Bread Lupin
Lactiplantibacillus plantarum

subsp. plantarum C48,
Levilactobacillus brevis AM7

• increase in the concentrations of free
amino acids, soluble fiber, γ-aminobutyric
acid (GABA) and total phenols;

• increase in the antioxidant activity

Curiel et al., 2015 [91]

Bread Faba bean Weissella confusa VTT
E−143403 (E3403)

• increase in the viscoelastic properties and
specific volume;

• decrease in the crumb hardness
Wang et al., 2018 [92]

Bread Chickpea Lactiplantibacillus plantarum
subsp. plantarum

• decrease in the oligosaccharide content;
• increase in the free amino acids, lysine,

and total phenolic content
Galli et al., 2019 [87]

Cookies Lupin
Latilactobacillus sakei subsp.

sakei, Pediococcus pentosaceus,
Pediococcus acidilactici

• decrease in the asparagine and sugar
contents;

• decrease in the acrylamide content

Bartkiene et al., 2016
[93]

Pasta Faba bean
Lactiplantibacillus plantarum

subsp. plantarum
DPPMAB24W

• increase in the protein digestibility,
nutritional indexes, and resistant starch
content;

• decrease in the starch hydrolysis rate,
without adversely affecting technological
and sensory features

Rizzello et al., 2017
[94]

Tempeh White bean Lactiplantibacillus plantarum
subsp. plantarum DSM 20174

• increase in the protein, in vitro protein
bioavailability, and antioxidant capacity;

• decrease in the stachyose, verbascose, and
condensed tannins content

Starzyńska-
Janiszewska et al.,

2013 [95]

Ogi Soybean Lactiplantibacillus plantarum
subsp. plantarum

• increase in the protein, fat, iron and
calcium content;

• decrease in the raffinose content;
• improvement of organoleptic attributes

Adeyemo and
Onilude, 2018 [96]

Yogurt-style snack Chickpea, lentil

Lactiplantibacillus plantarum
subsp. plantarum DSM33326,

Levilactobacillus brevis
DSM33325

• increase in the concentration of free amino
acids and in vitro protein digestibility;

• decrease in the ANFs (i.e., phytic acid,
condensed tannins, saponins and
raffinose) content;

Pontonio et al., 2020
[97]

Camel milk and cow
milk yogurt Soybean

Lactobacillus acidophilus LA-5,
Bifidobacterium Bb-12,

Lacticaseibacillus casei LC-01,
Streptococcus thermophilus Th-4

and Lactobacillus delbrueckii
spp. bulgaricus

• increase in the antioxidant activity;
• increase in the viability of LAB Shori, 2013 [98]

LAB often represent the indigenous microflora of legumes. Therefore, in the produc-
tion of fermented legumes, fermentation is induced not only by inoculation of raw material
with LAB but also through spontaneous fermentation [84]. The use of LAB induces changes
in the organoleptic, functional, and technological properties of legumes. The type and
extent of these changes depend on the raw material, the bacterial species used, and the
fermentation parameters. LAB are characterized by a variety of pathways to produce acids
and other metabolites [99]. The fermentation of plant matrices is dependent upon their
ability to adapt rapidly and metabolize the available nutrients. Adaptation is species- and
strain-specific, as well as determined by the plant material. This is due to the diversity
of plant environments and inherent chemical/physical parameters, such as phenols, fer-
mentable carbohydrates, and environmental pH, which determine whether conditions are
optimal for bacterial growth. The same microorganisms can behave differently in plant
and animal matrices. Not all strains are endowed with an optimal portfolio of enzymes
and metabolic traits, and therefore it is necessary to properly adapt the plant matrix and
microorganisms for fermentation [100].

The selection of suitable microorganisms is based on whether they improve or im-
pair the properties of the raw material. Poorly chosen microorganisms may negatively
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affect functional properties, e.g., by reducing protein solubility and emulsifying capac-
ity [99]. Strain-specific metabolic features of the LAB, in synergy with the activity of plant
enzymes, can improve the bioavailability and bioactivity of phytochemicals while also
significantly boosting functional microbial metabolites, with beneficial consequences for
human health [100–102]. Landete et al. (2015) [103] fermented flours from yellow soy
beans and Mung beans. Fermentation with Lactiplantibacillus plantarum subsp. plantarum
promoted bioactivity due to conversion of glycosylated isoflavones into bioactive aglycones.
Moreover, an increase in the content of the bioactive vitexin tryptophan was observed [103].

In the production of fermented foods, optimization of the process parameters is crucial.
Excessive fermentation time may result in compounds with undesirable properties. For ex-
ample, fermenting pea protein isolate for 24 h yielded more acceptable products compared
to the 48 h fermented samples [99]. Longer fermentation time induced the production of
metabolites unappealing to consumers. In another study, by Shi et al. (2021) [104], the
fermentation parameters influenced the properties of fermented legumes. The soluble
protein levels in pea protein isolate (PPI) decreased at longer fermentation times, and the
protein profile changed after 15 h of fermentation. A 10-hour fermentation process was
found to be optimal for Lactiplantibacillus plantarum subsp. plantarum in terms of removing
off-flavor while maintaining protein functionality. About 42% of the aldehydes and 64% of
the ketones were removed and a small amount of alcohol was produced. This change in the
aroma profile was found desirable for PPI products that would be used in the production
of yoghurt substitutes [104].

Legumes subjected to fermentation are often of higher nutritional value than unfer-
mented seeds [82]. Legume fermentation may improve protein digestibility and related nu-
tritional values while increasing the biological availability of total fiber and phenols [84,105].
Fermentation can increase the levels of vitamins, amino acids, minerals, and short-chain
fatty acids [106]. The improvement in the nutritional profile of legumes upon LAB fer-
mentation is mainly due to the release of amino acids and bioactive compounds, reducing
the amount of ANFs through direct (activation of microbial enzymes) and indirect action
(activation of endogenous enzymes), while also enhancing in vitro protein digestibility and
antioxidant potential [107,108].

Soybean fermentation by Lactiplantibacillus plantarum subsp. plantarum has been
shown to improve protein digestibility and the total phenolic content by the end of fermen-
tation [109]. In addition to increasing the nutritional value of legumes, fermentation also
facilitates biological preservation of food by action of the various antimicrobial compounds
produced by LAB, including bacteriocins, H2O2, CO2, and organic acids that inhibit the
growth of harmful microorganisms [106,110].

Consumption of selected fermented legumes has been linked to a reduction in the
incidence and severity of chronic diseases such as cardiovascular disease, breast and
prostate cancer, menopausal symptoms, and bone loss [82,111–114]. Fermentation of
bean extracts with Lactiplantibacillus plantarum subsp. plantarum may have a potential
antihypertensive effect due to the high content of GABA (gamma-aminobutyric acid)
and the activity of ACEI (angiotensin converting enzyme) [114]. Likewise, fermentation
of pea seeds with Lactiplantibacillus plantarum subsp. plantarum resulted in potentially
antihypertensive peptides being released during in vitro digestion [115]. Sweet lupine
flour fermented with Lactiplantibacillus plantarum subsp. plantarum and Limosilactobacillus
reuteri has shown noticeable antiproliferative activity against Caco-2 and MCF-7 cancer cell
lines [116].

Fermentation increases the content of antioxidant components such as phenolic com-
pounds, peptides, protein derivatives, and vitamins that are released or produced by a
complex microbial enzyme system [117–119]. The metabolic activity of microorganisms
varies across species and strains, which is why the exact increase in antioxidant activity in
the fermented material is determined by the starter culture used [118]. Polyphenols are the
main natural antioxidants present in food; however, they are often bound to the cell wall,
glycosylated or in polymeric form, which affects their bioavailability [118]. The metabolic
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activity of LAB may induce their release or conversion into more active forms. Fermentation
also influences the bioavailability of other compounds, such as vitamins and exopolysac-
charides, further enhancing their antioxidant activity in vitro and in vivo [100,118].

The main limitation in the development and consumption of legume-based foods
lies in the ANFs contained within [106]. The presence of these factors leads to reduced
digestibility of proteins and bioavailability of certain nutrients [83,120]. Legumes con-
tain heterogeneous and species-dependent ANFs, such as oligosaccharides, phytic acid,
tannins, alkaloids, lectins, pyrimidine glycosides (e.g., vicin and convicin), and protease
inhibitors [84]. ANFs reduce the digestibility and bioavailability of other nutrients as well.
Some of them are thermolabile (e.g., protease inhibitors and lectins) and easily removed
by heat treatment. Others (e.g., phytic acid, raffinose, tannins, and saponins) remain un-
changed by heating. Thermostable components can be removed efficiently using biological
methods (including fermentation) [83,84].

Fermented soy products have a low content of trypsin inhibitors and phytates [121].
Fermentation of mung beans and soybeans with Lactobacillus delbrueckii subsp. bulgaricus,
Lb. acidophilus, and Lacticaseibacillus casei has been found to reduce the content of phytic acid
compared to unfermented seeds [122]. Red kidney beans fermentation with Lactobacillus
acidophilus, Bifidobacterium, and Streptococcus thermophilus results in reduction of phytates,
trypsin inhibitor activity, saponins, tannins, and raffinose oligosaccharides [123]. Faba
bean seeds fermented with Lactiplantibacillus plantarum subsp. plantarum have shown
reduced trypsin inhibitor activity, condensation of tannins, and better in vitro protein
digestibility [124].

LAB-fermented products may affect the sensory perception of legume products [125].
LAB produce different types of metabolites during the fermentation of proteins, carbohy-
drates, and lipids, including diacetyl, acetoin, ethyl acetate, and ethyl propanoate, which
impart flavor and aroma to the product. LAB produce various organic acids, such as
acetic acid, lactic acid, and propionic acid, during the metabolism of food ingredients
that impart the product a sour taste. Organic acids and such substances as alcohol and
aldehydes react to form various flavor compounds that enhance the taste of the fermented
product [106,125]. Pea protein products fermented with LAB starter culture and yeast have
been shown to incite better sensory perception than unfermented pea protein products.
Most of the molecules responsible for the unpleasant notes of legumes have been found
to degrade during the fermentation process [126]. The effect of fermentation by LAB on
selected properties of legumes is summarized in Table 4.
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Table 4. The effect of fermentation with LAB on selected properties of legumes.

Types of
Legumes Form of Raw Material Microorganisms Used for

Fermentation
Fermentation

Conditions Effect of Fermentation References

Soybean

soybeans (Glycine max
L.)

Lactiplantibacillusplantarum
subsp. plantarum B1-6 37 ◦C, 30 h

• reduction of the total saponin content,
phytic acid content, and trypsin inhibitor
activity;

• significant increase in the total phenolic
content by the end of fermentation;

• improvement in the protein digestibility

Rui et al., 2017
[109]

flour from soybeans
(Glycine max L.) and

fava beans (Vicia faba L.)

Leuconostoc mesenteroides
subsp. mesenteroides DSM

20343
30 ◦C, 24 h

• increase in the viscosity;
• decrease in the oligosaccharides content

Xu et al., 2017
[90]

flour from soybeans
(Glycine max L. Merr.)

(LAB)-consortium:
Lactiplantibacillus
plantarum subsp.

plantarum WCFS1,
Levilactobacillus brevis

ATCC 14869,
Lacticaseibacillus rhamnosus

GG ATCC 53/03,
Companilactobacillus

nantensis LP33,
Limosilactobacillus

fermentum CIP 102980,
Limosilactobacillus reuteri
DSM 20016, Pediococcus
acidilactici DSM 20284

spontaneous
fermentation with

12 h intervals

• decrease in the bulk density with
increase in fermentation period;

• decrease in the swelling capacity;
• decrease in the later holding capacity;
• increase in the oil holding capacity;
• increase in the emulsion capacity

Ogodo et al.,
2018 [89]

soybean (Glycine max L.)
whey

Lactiplantibacillus
plantarum subsp.
plantarum B1–6

37 ◦C, 24 h

• increase in the total phenolic and
isoflavone aglycone content;

• increase in the radical scavenging activity
and protection against oxidative DNA
damage

Xiao et al.,
2015 [101]

flour from yellow
soybeans (Glycine max

cv.
Merit) and flour from
Mung beans (Vigna

radiata)

Lactiplantibacillus
plantarum subsp.

plantarum CECT 748 T
30 ◦C, 48 h

For fermented samples:

• increase in the bioactivity because of
conversion of glycosylated isoflavones
into bioactive aglycones;

• increase in the bioactive vitexin;
• increase in the tryptophan content

Landete et al.,
2015 [103]

soybeans
(var. Rudoji and

Progress) and
wholemeal from lupin
(Lupinus luteus, L. albus)

seeds

Latilactobacillus sakei subsp.
sakei KTU05-6, Pediococcus

acidilactici KTU05-7, P.
pentosaceus KTU05-8 (each
strain applied separately)

30–35 ◦C
(depending on the

strain), 24 h

For all fermented samples:

• increase in protein digestibility;
• capacity to degrade phenylethylamine,

spermine and spermidine by tested LAB
strains;

• capacity to produce putrescine,
histamine, and tyramine (biogenic
amines) by tested LAB strains, but at
levels lower than those causing adverse
health effects

Bartkiene et al.,
2015 [105]

Pea

pea (Pisum sativum L.)
protein isolate

Lactiplantibacillus
plantarum subsp.

plantarum DSM-20174,
Lactobacillus perolens

DSM-12744,
Limosilactobacillus

fermentum DSM-20391,
Lacticaseibacillus casei DSM-

20011, Leuconostoc
mesenteroides subsp.
cremoris DSM-20200,

Pediococcus pentosaceus
DSM-20336 (each strain

applied separately)

30–37 ◦C
(depending on the

strain), 24 h and
48 h

For all fermented samples:

• after 24 h—aroma attributes and bitter
taste decreased;

• after 48—cheesy aroma, acid and salty
tastes were increased;

• decrease in the protein solubility and
emulsifying capacity;

• foaming capacity remained constant;
• reduction in the intensity of the

allergenic protein fractions

Garcia-
Artegoa et al.,

2021 [99]

pea (Pisum sativum L.)
protein isolate

Lactobacillus acidophilus
NCFM, Lb. delbrueckii

subsp. bulgaricus,
Streptococcus thermophilus,

Bifidobacterium lactis
HN019 (strains applied in
combination) with one of
the yeasts: Kluyveromyces

lactis, Kluyveromyces
marxianus, Torulaspora

delbrueckii

30 ◦C, until
reaching pH 4.55

For all fermented samples:

• degradation of most of the molecules
responsible for the leguminous and green
off-notes;

• the presence of yeasts triggered the
generation of esters;

• decrease in the intensity of the
leguminous and green perception
compared to strains without yeasts

Youssef et al.,
2020 [126]
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Table 4. Cont.

Types of
Legumes Form of Raw Material Microorganisms Used for

Fermentation
Fermentation

Conditions Effect of Fermentation References

pea (Pisum sativum L.)
protein isolate

Lactiplantibacillus
plantarum subsp.

plantarum
37 ◦C, 25 h

• decrease in the water-soluble protein
content;

• reduction in off-flavor;
• desirable changes in aroma profile

(removing the part of aldehyde and
ketone content)

Shi et al., 2021
[104]

pea seeds (Pisum
sativum var. Bajka)

Lactiplantibacillusplantarum
subsp. plantarum 299v

3 h, 72 h, and 168
h at 22, 30, and 37

◦C

• ACE inhibitory activity after in vitro
digestion of fermented seeds for all
samples

Jakubczyk
et al., 2013

[115]

flour from grass pea
(Lathyrus sativus L.)

Lactiplantibacillus
plantarum subsp.

plantarum
30 ◦C, 24 h

• reduction in the level of trypsin
inhibitors;

• elimination of inositol phosphates;
• increase in the amount of total phenolics;
• partial improvement of the antiradical

activity (with DPPH• assay)

Starzyńska-
Janiszewska
et al., 2011

[108]

Lupin

lupine flour (Lupinus
angustifolius)

Lactobacillus delbrueckii
subsp. bulgaricus,

Streptococcus thermophilus
(strains applied in

combination)

30 ◦C, 20 h

• increase in the mushroom, soil, green,
and nutty aroma characteristics;

• modification of the overall aroma
characteristics and potential
improvement of the consumer
acceptability of lupine products

Kaczmarska
et al., 2018

[125]

flour from sweet lupin
(Lupinus

angustifolius)

Lactiplantibacillus
plantarum subsp.
plantarum K779,

Limosilactobacillus reuteri
K777 (strains applied in

combination)

35 ◦C, 72 h

• noticeable antiproliferative activities
against Caco-2 and MCF-7 cancer cell
lines;

• pronounced antihypertensive activities;
• α-glucosidase inhibition;
• increase in the antioxidant activities

Ayyash et al.,
2019 [116]

lupin (Lupinus
angustifolius L.) protein

isolate treated with
papain, alcalase 2.4 L,

and pepsin

Latilactobacillus sakei ssp.
carnosus DSM 15831, Lb.

amylolyticus TL 5, Lb.
helveticus DSM 20075 (each
strain applied separately)

37–42 ◦C
(depending on the

strain), 24 h

For all fermented samples:

• increase in the foaming activity while
maintaining proper emulsification
capacity as a result of the combination of
enzymatic hydrolysis and fermentation;

• increase in the protein solubility at acidic
conditions;

• combination of enzymatic hydrolysis and
fermentation was effective in breaking
down large polypeptides into low
molecular weight peptides and
degrading with it the major allergen Lup
an 1 of lupin

Schlegel et al.,
2021 [85]

lupin seeds (Lupinus
luteus L. and Lupinus

albus L.)

Latilactobacillus sakei subsp.
sakei KTU05-6, Pediococcus

acidilactici KTU05-7,
Pediococcus pentosaceus
KTU05-8 (each strain
applied separately)

30–35 ◦C
(depending on the

strain), 24 h

For all fermented samples:

• increase in the protein digestibility;
• increase in the total phenolic compounds

content;
• increase in the antioxidant activity

Krunglevičiūtė
et al., 2016

[119]

Bean

red beans (Phaseolus
vulgaris)

Lactobacillus delbrueckii
subsp. bulgaricus, Bacillus

subtilis
30 ◦C, 120 h

• increase in the concentration of
antioxidant substances, including total
phenolics, anthocyanin, flavonoids,
vitamins C and E;

• nattokinase activity exhibition

Jhanet al., 2015
[117]

flour from kidney beans
(Phaseolus vulgaris var.

Pinto)

Lactiplantibacillus
plantarum subsp.

plantarum CECT 748
37 ◦C, 96 h

• exhibition of potential antihypertensive
activity due to their large
γ-aminobutyric acid (GABA) content;

• activity of angiotensin converting
enzyme inhibitory (ACEI)

Limón et al.,
2015 [114]

Mung bean (Vigna
radiata), kidney bean
(Phaseolus vulgaris L.),
and soybean (Glycine

max. L.),

Lactobacillus delbrueckii
subsp. bulgaricus

EMCC1102, Lb. acidophilus
EMCC1324,

Lacticaseibacillus casei
EMCC1643 (each strain

applied separately)

37 ◦C, 72 h

For all fermented samples:

• decrease in the phytic acid content

Mohamed
et al., 2011

[122]
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Table 4. Cont.

Types of
Legumes Form of Raw Material Microorganisms Used for

Fermentation
Fermentation

Conditions Effect of Fermentation References

red kidney beans
(Phaseolus vulgaris L.)

Lactobacillus
acidophilus, Bifidobacterium,
Streptococcus thermophilus

(strains applied in
combination)

42 ◦C, 96 h

• increase in the protein digestibility;
• reduction of phytates, trypsin inhibitor

activity (TIA), saponins, tannins, and
raffinose oligosaccharides

Worku et al.,
2017 [123]

Faba bean

flour from faba bean
(Vicia faba cv. Kontu)

Lactiplantibacillus
plantarum subsp.

plantarum VTT E-133328
30 ◦C, 48 h

• decrease in the vicine and convicine
contents;

• reduction of trypsin inhibitor activity
and condensed tannins;

• increase in the amount of free amino
acids, especially of the essential amino
acids and GABA (γ-aminobutyric acid);

• enhancement in the in vitro protein
digestibility;

• decrease in the hydrolysis index

Coda et al.,
2015 [124]

faba bean seeds (Vicia
faba L. var. White

Winston)

Lactiplantibacillus
plantarum subsp.
plantarum 299v

3 h, 72 h, and
168 h at 22, 30,

and 37 ◦C

For all samples:

• ACE-inhibitory activity;
• antiradical activity against ABTS·+;
• LOX inhibitory activity

Jakubczyk
et al., 2019

[111]

Lentil lentil seeds (Lens
culinaris var. castellana)

Lactiplantibacillus
plantarum subsp.

plantarum CECT 748T
37 ◦C, 96 h

• increase in the GABA content;
• increase in the antioxidant capacity and

angiotensin I-converting enzyme
inhibitory (ACEI) activities;

• increase in the total phenolic compounds

Torino et al.,
2013 [112]

Chickpea flour from chickpea
(Cicer arietinum) seeds

Pediococcus pentosaceus, P.
acidilactici

spontaneous
fermentation at
37 ◦C, 24 h with
back-slopping

for 10 days

• reduction in the concentrations of
raffinose and stachyose;

• elimination of verbascose;
• reduction of phytic acid;
• increase in the total phenolic contents;
• higher water-holding capacity of

sourdoughs

Xing et al.,
2020 [120]

5. Legumes as Raw Materials for the Production of Fermented Plant-Based Beverages
5.1. Characteristics of Plant-Based Beverages

Plant-based beverages are products that do not have a specific definition and classi-
fication in the literature. They are most often categorized as products obtained by water
extraction of shredded plant materials, in the form of colloidal suspensions or emul-
sions [19,127,128]. Plant-based beverages are made from a variety of raw materials:

• cereals (e.g., oats, rice, millet, spelled);
• legumes (e.g., soybean, lupine, peas);
• nuts (e.g., hazelnuts, pistachios, almonds, walnuts);
• seeds (e.g., sesame, flax, hemp, sunflower);
• pseudocereals (e.g., quinoa, amaranth, buckwheat);
• other materials (e.g., coconut) [19,127,129,130].

Plant-based beverages are becoming more and more popular every year [19]. This
has been prompted, in large part, by the shift away from cow’s milk and its derivatives
among consumers, which is spurred by multiple factors. The most common motivator
behind this trend is allergy and/or intolerance to milk components, especially lactose and
casein [19,127,131]. The main consumers of plant-based beverages are vegetarians and
vegans, who avoid animal products for ethical reasons and prefer plant-based beverages
for their health benefits. Their popularity is further driven by the growing environmental
awareness of consumers [16,132–134]. Intensive animal farming leads to depletion of water
resources and high greenhouse gas emissions, which is why reining in growth of this sector
should be prioritized in environmental governance [135,136].

Plant-based milk substitutes are usually designed to have a similar appearance, taste,
and shelf life to cow’s milk, so that they can be used in a similar manner. In practice,
however, each type of plant-based beverage has its own unique properties, which are a
function of their composition and the unit operations involved in their production [15].

The production technology of each plant-based beverage is tailored to the raw mate-
rials used, but the general outline of the process is usually the same [131]. Initially, raw
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materials are inspected and cleaned to prepare them for further processing. They are then
subject to the process of soaking, grinding, and water extraction. The resulting slurry is
filtered and/or centrifuged to remove solid matter. The filtered fluid is subject to stan-
dardization processes wherein the composition of the beverages is unified, and various
types of ingredients are added to improve the technological and functional properties of
the product [127,131]. Emulsifiers and stabilizers are added to increase the stability of
the product (e.g., cellulose, tapioca, gella, guar, carrageenan, locust bean gum, lecithin).
The beverages are usually amended with vegetable oils (such as peanut or sunflower oil)
and sweeteners (such as sugar, agave syrup, fructose, and maltodextrin). Salt is added to
shape palatability. Additionally, the plant-based beverages are fortified with calcium and
vitamins (e.g., A and D) to make their nutritional value more similar to cow’s milk, then
homogenized to reduce the particle size and unify the structure. The resultant beverage is
heat treated (pasteurized or sterilized) in order to improve the stability of the suspension
and inactivate microorganisms [127,129,131,137]. An overview of the general plant-based
beverages production technology is shown in Figure 1.

Microorganisms 2022, 10, x FOR PEER REVIEW 16 of 42 
 

 

and inactivate microorganisms [127,129,131,137]. An overview of the general plant-based 

beverages production technology is shown in Figure 1.  

 

Figure 1. The general production technology of plant-based beverages. 

Plant-based beverages are complex media that contain small particles (e.g., fat drop-

lets, protein particles, or plant cell fragments) dispersed in an aqueous medium [15]. The 

characteristics of these colloidal particles (i.e., their composition, structure, size, interfacial 

properties, and interactions) ultimately determine the physical, functional, sensory, and 

nutritional properties of plant-based milk substitutes. They determine the appearance, 

texture, taste, and stability of the drink, as well as bioavailability of individual nutrients. 

The characteristics of the particles contained in plant-based beverages and their stability 

are often determined by the type of processes used in their production technology and the 

storage conditions [15,19]. 

The most frequently consumed plant-based beverages include soy, almond, coconut, 

oat, and rice beverages [15,127,138]. The growing popularity of such products has 

prompted producers to employ a wider range of raw materials in making their products 

[131]. Categorizing cow’s milk substitutes is an oft-raised issue. They are often referred to 

as “plant milks”, but this is a misnomer as they do not meet the definition and do not have 

the nutritional value of milk [20,139]. Commission Regulation (EU) No 605/2010 of 2 July 

2010 laying down animal and public health and veterinary certification conditions for the 

introduction into the European Union of raw milk and dairy products intended for human 

consumption defines ”raw milk” as milk produced by the secretion of the mammary 

gland of farmed animals [140]. Naming plant-based beverages as milk is therefore a gen-

eralization that may mislead consumers. 

The composition and properties of milk and plant-based beverages differ on several 

levels. The nutritional value of plant-based beverages varies depending on the raw mate-

rial from which they are produced and the production technology used [16]. Nevertheless, 

in most cases they are high in carbohydrates and low in protein, containing up to 30 times 

less protein than cow’s milk. Soy beverages have the most similar protein content to cow’s 

Figure 1. The general production technology of plant-based beverages.

Plant-based beverages are complex media that contain small particles (e.g., fat droplets,
protein particles, or plant cell fragments) dispersed in an aqueous medium [15]. The
characteristics of these colloidal particles (i.e., their composition, structure, size, interfacial
properties, and interactions) ultimately determine the physical, functional, sensory, and
nutritional properties of plant-based milk substitutes. They determine the appearance,
texture, taste, and stability of the drink, as well as bioavailability of individual nutrients.
The characteristics of the particles contained in plant-based beverages and their stability
are often determined by the type of processes used in their production technology and the
storage conditions [15,19].

The most frequently consumed plant-based beverages include soy, almond, coconut,
oat, and rice beverages [15,127,138]. The growing popularity of such products has prompted
producers to employ a wider range of raw materials in making their products [131]. Cate-
gorizing cow’s milk substitutes is an oft-raised issue. They are often referred to as “plant
milks”, but this is a misnomer as they do not meet the definition and do not have the
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nutritional value of milk [20,139]. Commission Regulation (EU) No 605/2010 of 2 July 2010
laying down animal and public health and veterinary certification conditions for the in-
troduction into the European Union of raw milk and dairy products intended for human
consumption defines “raw milk” as milk produced by the secretion of the mammary gland
of farmed animals [140]. Naming plant-based beverages as milk is therefore a generalization
that may mislead consumers.

The composition and properties of milk and plant-based beverages differ on several
levels. The nutritional value of plant-based beverages varies depending on the raw material
from which they are produced and the production technology used [16]. Nevertheless, in
most cases they are high in carbohydrates and low in protein, containing up to 30 times
less protein than cow’s milk. Soy beverages have the most similar protein content to cow’s
milk [16,141]. Even so, vegetable protein is inferior, mainly due to the presence of limiting
amino acids (lysine in cereals, methionine in legumes) and poor digestibility [127,129].
In most cases, plant-based beverages are low in fat unless supplemented with vegetable
oils. Compared to milk, plant-based beverages have a low content of saturated fatty acids
(less than 0.7 g/100 g), with the exception of coconut beverage, which is SFA-rich (about
1.7 g/100 g) [137]. Plant-based beverages are dominated by unsaturated fatty acids, mainly
in the form of oleic, linolenic, and linoleic acids [127,137,141]. Cow’s milk is a natural
source of calcium (120 mg/100 g on average), and plant-based beverages tend to be low in
this nutrient if not fortified during production. Cow’s milk contains naturally-occurring
vitamins A and trace amounts of vitamins D, E, K, C, and B. It is also a source of phosphorus,
potassium, zinc, and easily digestible magnesium, as well as small amounts of sodium and
iron [129].

Table 5 shows the nutritional value of selected plant-based beverages. The values
for the individual nutrients are presented as a range of values due to the discrepancies
between literature sources. This variability is mostly attributable to different authors using
different technologies for the production of plant-based beverages.

Plant-based beverages, compared to cow’s milk, have a nutritious fatty acid profile due
to the low content of saturated fatty acids and the dominant share of unsaturated fatty acids
in total fat [165,166]. In addition, plant-based beverages contain bioactive ingredients with
health-promoting effects, such as β-glucans (present, e.g., in oat beverages), phytosterols,
and polyphenols (present, e.g., in soy and almond beverages) [131,137,141]. These products
do not contain lactose, which cannot be consumed by people allergic to this component,
and cholesterol, which is often avoided by people with hypercholesterolemia [16]. Scien-
tific reports indicate that individual components of plant-based beverages have a positive
effect on health. Unsaturated fatty acids and phytosterols in such products provide health
benefits, including reducing the risk of heart disease, stroke, and heart attack, as well as
lowering cholesterol, preventing cancer, modulating the immune system, and slowing
aging [167,168]. In addition, plant-based beverages are rich in antioxidants, the consump-
tion of which can prevent cancer of the ovary, breast, stomach, prostate, and lung, mainly
by reducing oxidative stress in the body [169,170].
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Table 5. The nutritional value of selected plant-based beverages.

Category of
Plant-Based
Beverages

Type of
Plant-Based
Beverages

Protein
(g/100 g)

Total Lipid
(g/100 g)

Carbohydrate
(g/100 g)

Fiber
(g/100 g) References

Cereal-based
beverages

Oat-based beverage 0.4–1.0 0.7–1.9 6.5–27.0 - Mäkinen et al., 2015 [127]; Parrish
2018 [142]; Veber et al., 2021 [143]

Rice-based
beverage 0.1–0.8 0.9–2.6 9.1–27.0 0.0–0.1

Chalupa-Krebzdak et al., 2018
[144]; Mäkinen et al., 2015 [127];
Vanga and Raghavan, 2018 [145]

Legume-based
beverages

Soy-based beverage 2.1–3.0 1.3–3.2 1.8–4.7 0.7–1.3

Manzoor et al., 2017 [146]; Shen
et al., 2019 [147]; Giri and

Mangaraj, 2012 [148]; Jiang et al.,
2013 [149]

Pea-based beverage 2.8–7.9 0.1–4.5 10.0–27.0 n.d.
Parrish 2018 [142]; Veber et al.,
2021 [143]; Pandhi and Poonia

2021 [150]

Lupin-based
beverage 1.8–3.5 1.3–1.4 1.2–3.3 n.d.

Vogelsang-O’Dwyer et al., 2021
[151]; Lopes et al., 2020 [152];

Laaksonen et al., 2021 [86]

Nut-based
beverages

Cashew-based
beverage 0.4–2.2 1.0–5.2 3.7–5.7 0–1.1

Manzoor et al., 2017 [146];
Chalupa-Krebzdak et al., 2018
[144]; Singhal et al., 2017 [153];

Almond-based
beverage 0.3–2.1 0.8–4.4 0.2–3.3 1.0–1.6

Chalupa-Krebzdak et al., 2018
[144]; Jeske et al., 2017 [131];

Mäkinen et al., 2015 [127]; Vanga
and Raghavan 2018 [145]

Hazelnut-based
beverage 2.3–4.5 1.5–6.5 2.3–3.2 - Atalar 2019 [154]; Aysu et al., 2020

[155]; Gul et al., 2021 [156]

Seed-based
beverages

Sesame-based
beverage 2.6–2.9 6.4–7.8 4.0–16.5 0.0–0.5

Afaneh et al., 2011 [157]; Sethi
et al., 2016 [19];

Ahmadian-Kouchaksaraei et al.,
2014 [158]

Hemp-based
beverage 0.8–1.9 1.2–7.0 2.2–7.9 0.0–0.2

Chalupa-Krebzdak et al., 2018
[144]; Mäkinen et al., 2015 [127];

Parrish 2018 [142]

Pseudocereal-
based

beverages

Quinoa-based
beverage 0.4–4.5 0.2–6.0 9.0–15.5 -

Kaur and Tanwar, 2015 [159]; Sethi
et al., 2016 [19]; Pineli et al., 2015

[160]

Buckwheat-based
beverage 0.2–4.3 0.0–1.2 4.6–8.8 0.0–0.9

Cardinali et al., 2021 [161];
Kowalska and Ziarno 2020 [162];

Zhou et al., 2019 [163]

Other
plant-based
beverages

Coconut-based
beverage <1 3.2–5.0 0.7–30.1 0.0–1.0

Vanga and Raghavan, 2018 [145];
Sethi et al., 2016 [19]; Lu et al.,

2019 [164]

n.d.—no data.

5.2. Legume-Based Beverages

From a nutritional point of view, legume seeds are high in protein, vitamins, and
minerals [171]. Of all plant-based beverages, legume-based beverages have the most
balanced composition while also having a low glycemic index [152]. Their protein fraction
is around 3.0–4.0 %, similar to cow’s milk (i.e., 3.3–3.5%), while other types of cereal- and
nut-based beverages usually have a protein fraction of between 0.1% and 1.0% [152,171].

So far, soybeans are the most commonly used to produce plant-based beverages and
the most widely described in the literature among the group of legumes. Though soybean
beverages are mainly produced on an industrial scale, other types of legumes may also be
a suitable matrix for the production of plant-based beverages [21]. In the case of beverages
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from legumes other than soybean, most of the production technologies have not yet been
entirely refined, whereas their composition and properties are variable, directly determined
by the technological processes applied [172].

Generally, plant beverages are typically an oil-in-water (O/W) emulsion with water as
the aqueous phase and oil as the dispersed phase. These two phases are immiscible and
thermodynamically unstable, tending to separate into fractions and aggregate particles as a
result [173]. Legume-based beverages are a complex colloidal system formed by dispersed
particles such as proteins, oil droplets, and solids from raw materials. These factors make it
difficult to obtain stable products [152,173]. Legume proteins exhibit emulsifying properties,
which result from their ability to adsorb at the oil–water interface and form stabilizing
protein films around the oil droplets. Such properties have been identified in the proteins
of soybean, chickpeas, peas, and beans and indicated them to be plant proteins that may
potentially affect the stabilization of O/W emulsions [171,174].

The basic technology for the production of beverages from legume seeds includes the
following stages: raw material selection, soaking, grinding, water hydrolysis, filtration,
homogenization, and thermal treatment [21,152]. Apart from technological measures, the
process of making legume-based beverages also employs sweeteners, salt, aromas, and
other food additives, as dictated by the local market. These treatments are used to increase
the overall acceptance of beverages [175].

In the production of vegetable beverages from legumes, it is vital to include processes
designed to reduce the content of anti-nutrients and increase the digestibility of proteins.
For example, ingredients such as trypsin inhibitors, lectins, and hemagglutinins inhibit
the action of proteolytic enzymes, resulting in reduced digestibility and absorption of
proteins [175]. The processes that directly reduce ANFs include, among others, soaking,
cooking, enzymatic treatment, protein extraction, germination, and fermentation [172,176].
The use of enzymatic treatment, fermentation, and germination processes increases the
bioactivity and bioavailability of phenolic compounds, while activating the release of
bioactive peptides. Such treatments make it possible to obtain functional food products or
beverages with improved health-promoting properties [172,177].

Legume germination increases the amount of protein and dietary fiber, reduces the
content of tannins and phytic acid, and improves the bioavailability of minerals [178].
During the germination process, proteolytic enzymes are activated, changing the protein
profile of legumes and, consequently, of their derived beverages. The protein content in
lentil-based beverages made of germinated seeds has been shown to be 3.3% higher (in
terms of dry matter) than in a beverage made of non-germinated seeds. The germinated-
lentil beverage contained more B vitamins and minerals compared to the beverage made
from non-germinated lentils. This is attributed to the activity of α-amylase, which cleaves
the high molecular weight carbohydrates that form cell membranes in plant materials.
This leads to increased extractivity and thus more nutrients being transferred into the
beverage [179]. In the soy-based beverage, the germination process increased the protein
content while reducing fat, trypsin inhibitors, saponins, and phytic acid, with the added
effect of inducing the proteolysis of the main storage proteins and releasing peptides that
were easier to digest [152]. Compared to its non-germinated counterpart, the germinated
bean-based beverage was characterized by higher “milk” yield, good color, and high
sensory acceptability due to the lack of “beany” flavor and aroma [152].

Protein extraction is used to produce isolates or concentrates that not only have high
protein content, but also better protein digestibility due to the elimination of ANFs [180].
Commercial protein isolates are usually obtained from legumes via alkaline protein ex-
traction, which is followed by precipitating the extracted proteins at their isoelectric
point [176,180]. To obtain legume-based beverages with greater stability, the formation of
protein–polysaccharide conjugates can also be induced by spray drying and preparing a
powder, which is then dissolved and reconstituted as a plant-based beverage [181].

The properties of the proteins may vary due to the use of processes such as high
shear mixing, homogenization, and ultra-high temperature (UHT) processing in the pro-
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duction of legume-based beverages [174]. The associated pressure and thermal effects
can lead to changes in the stability of protein emulsions [174,182]. Heat treatment, such
as pasteurization, can increase the viscosity of the legume-based beverage, affecting its
stability. This is important when the legumes are high in starch, such as chickpeas and
peas [152]. Accordingly, additional processing techniques are also used to improve the sta-
bility of legume-based beverages. Advanced processes such as High Hydrostatic Pressure
(HHP), Pulsed Electric Field (PEF), and Ultra High Pressure Homogenization (UHPH) have
been successfully employed to improve the acceptability and properties of chickpea and
faba bean beverages. These technologies are being rapidly developed thanks to ongoing
research efforts, which could lead to the production of high-quality legume-based milk
alternatives [21,173]. In addition to technological treatments, additives of various types of
stabilizing substances are also used. The most common of those are hydrocolloids, which
induce molecular interactions between the ingredients of the beverage, helping ensure a
uniform consistency [183].

The sensory acceptability of legume-based beverages is the main limiting factor due to
their characteristic “beany” flavor. This flavor is associated with the presence of endogenous
lipoxygenases in the legumes, which oxidize unsaturated fatty acids [152,184]. Thermal
inactivation is an effective technique for removing the “beany” flavor in legume-based bev-
erages. The flavor has also been suppressed in a soy-based beverage by high-temperature
(approx. 130 ◦C) steam treatment, or traditionally by boiling the beans prior to the grinding
process, and finally by the germination process [152].

5.2.1. Soy-Based Beverages

Among the legume-based beverages, the one most consumed and most widely avail-
able is derived from soy [152,173,185]. Soybeans are believed to be the first plant used in
the preparation of plant-based beverage substitutes in China some 2000 years ago [21]. The
soybean beverage has a high nutritional value and contains a similar amount of protein to
cow’s milk (minimum 3%) [152]. Arnoldi et al. (2007) [186] report that soy proteins exhibit
hypocholesterolemic properties. A soy-based beverage is an inexpensive, refreshing, and
nutritious product with additional health-promoting ingredients, including isoflavones
(such as genistein and daidzein) [20]. These ingredients are phytoestrogens, which have
a chemical structure similar to that of estrodiol-17β, the most potent mammalian estro-
gen [187,188]. Isoflavones can help relieve postmenopausal symptoms and are well known
for their protective effect against certain diseases such as hormone-dependent cancers (e.g.,
breast and endometrial cancer), cardiovascular disease, and osteoporosis [20,21,188,189].

Soybean beverages contain fiber, minerals (mainly iron, calcium, and zinc), B-group
vitamins, unsaturated fatty acids, and plant sterols [20]. These products are also rich
in phytochemicals such as phytosterols, which are known for their cholesterol-lowering
properties [21]. Soy isoflavones elicit an antioxidant effect [187]. A study by Rossi et al.
(2001) [187] showed that consumption of soybean beverage over 3 weeks (two servings per
day providing 40 g protein and 44 mg genistein) increased the total plasma antioxidant
values in each of the 10 male adolescents.

The traditional basic method of producing a soybean beverage mainly consists of
soaking, hulling cooking, wet grinding, filtering, and heat treatment to obtain the final
product. The soybean beverage is similar in appearance to cow’s milk and is sold both
sterilized and pasteurized, with or without flavoring [175].

Consumption of soybean beverages has been met with barriers in the form of consumer
health concerns regarding genetic modification of soy, allergens in soy (mainly proteins
β-conglycinin and glycinin), high levels of isoflavones, and trace CO2. Accordingly, it
would be expedient to develop other milk alternatives from legumes—ones which may
exhibit sensory properties similar or superior to those of soybeans [152]. The available
products of this type which have been researched thus far include beverages made of peas,
chickpeas, lupins, beans, and lentils.
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5.2.2. Pea-Based Beverages

Peas are a raw material that is widely available on a commercial scale [190]. Peas
contain about 20–25% protein, which has properties similar to soybean protein and includes
a large amount of the amino acid lysine. Compared to soybeans, peas have a higher
level of dietary fiber, minerals, and vitamin C, as well as a lower fat content [190]. Pea
proteins show promising functional properties, such as gelling or the ability to emulsify
and foam across almost all pH ranges. What is more, these properties are retained after
heat treatment [21,171]. Pea protein isolate is one of the most useful functional protein
sources due to its high nutritional profile, high antioxidant potential, and low allergenicity
compared to protein sourced from other plants [21]. These factors make peas a very good
matrix for the production of plant-based beverages. Pea protein emulsions are more stable
than other plant protein emulsions. However, the stability of pea-based beverages is highly
dependent on the method used to process or prepare the beverage [21].

The nutritional value of peas varies depending on the degree of maturity [21]. For
example, peas reach their highest concentration of sucrose, glucose, and fructose in the
early stage of ripening, while these values decrease in fully ripe seeds with a concomitant
increase in proteins and oligosaccharides. This trait makes it possible for manufacturers
to pick and choose pea seeds with a specific degree of maturity, depending on the target
nutritional value of the plant-based beverage [21].

Under laboratory conditions, a beverage was made from pigeon peas by first produc-
ing a powdered pea extract through the shelling, soaking, cooking, drying, and pulverizing
of raw seeds [190]. The resultant beverage was shown to have hypoglycemic, hypocholes-
terolemic, and antioxidant properties in diabetic and hypercholesterolaemic rats. This
indicates the potential of the pigeon pea-based beverage as a functional anti-diabetes
product.

5.2.3. Chickpea-Based Beverages

Chickpea is another legume that is a good source of protein and can be used to make
plant-based beverages [171]. It is a good source of macro- and micronutrients, vitamins
(such as thiamine and niacin), and minerals (such as magnesium, calcium, iron, and zinc)
and is considered to be a suitable source of dietary protein due to its good balance of amino
acids and high bioavailability [21]. Chickpea beverage is high in threonine, glycine, alanine,
and arginine. Chickpea protein isolate can be used to make chickpea protein hydrolysates
as it has good solubility and high protein quality compared to the protein found in raw
seeds [171,184].

Though commercial chickpea beverages are available on the market, research into their
properties is relatively limited [21]. Wang et al. (2018) [191] produced a garbanzo chickpea-
based beverage by soaking, mixing, cooking, and filtering the liquid from its solid residues.
Compared to soybean beverage, the chickpea beverage contained less protein, less fat,
and more carbohydrates. Nevertheless, fresh chickpea beverage was determined to have
potential as a substitute for soy-based beverages in terms of nutritional and organoleptic
quality [191]. Other studies have also shown that the sensory acceptability of chickpea
beverages was the same as that of soybean beverages [192].

5.2.4. Lupine-Based Beverages

The main variety used in the production of lupine-based beverages is sweet lupine,
grown on a large scale in Australia [82]. Lupine protein is a good source of arginine but
has less sulfur-containing amino acids such as cysteine. Lupine contains mainly insoluble
dietary fiber; however, its properties have been described as very similar to those of pectin
and not to other insoluble non-starch polysaccharides. Its high carotenoid content gives
lupine products a yellow color. Compared to its bitter cousins and other legumes, sweet
lupine has negligible levels of anti-nutritional phytochemicals such as alkaloids, saponins,
lectins, and phytates. Therefore, unlike most other legumes, sweet lupines do not require
heating or chemical treatment to denature ANFs [82,173].



Microorganisms 2022, 10, 91 20 of 39

Lupine proteins have very good technological and functional properties, such as
solubility and emulsification, which makes them a suitable raw material for the production
of cow’s milk and soybean beverage substitutes [21]. Various methods have been developed
to produce lupine-based beverages, but the basic process involves grinding the soaked
lupine grain and mixing it with water to make a thick paste. This paste is then forced
through a filter to obtain a milk substitute. However, this particular product has been shown
to feature low stability, and some years later a beverage was produced based on a lupine
protein extract obtained from lupine flour under alkaline conditions. The formulation
was then diluted and blended with fat, carbohydrates, and bleaching agents, producing a
lupine beverage with the desired organoleptic properties and nutritional value [21,186]. In
addition to having favorable technological properties, sweet lupine also exhibits health-
promoting attributes; it has hypoglycemic effects, induces satiety, promotes energy balance,
and regulates the function of the circulatory and digestive systems [173,186].

5.2.5. Bean-Based Beverages

Beans come in many varieties (including white, red, adzuki, and mung beans), but all
of them are characterized by a high protein content, which is two to three times higher than
in cereal grains. In addition, beans contain large amounts of dietary fiber, starch, vitamins,
and minerals, as well as a wide range of phytochemicals [176]. Their glycemic index is low,
not exceeding 27, so they are usually recommended for diabetic patients [20]. The basic
bean-based beverage is prepared mainly by rinsing, soaking, grinding, and cooking the
raw material. The obtained suspension is filtered and then thermally treated [20,172,193].
The resultant bean-based beverage contains the essential amino acids isoleucine, leucine,
tyrosine, valine, asparagine, serine, glutamine, and proline [171]. Bean-based beverages
are not produced on a large scale but have been successfully produced under laboratory
conditions [193].

5.2.6. Lentil-Based Beverages

Lentils are a valuable raw material that serves as a source of protein with a balanced
amino acid composition and low fat content. It is also a valuable source of complex
carbohydrates, soluble and insoluble fiber, vitamins, and minerals (including Na, Ca, Fe,
P, and Cu) [171,179]. Lentil proteins have similar properties to soy proteins in terms of
functionality and organoleptic properties [194]. Much like other legume-based drinks,
lentil-based beverages are prepared by cleaning the grains, soaking the raw material,
grinding, cooking, filtering, and heat-preserving [194]. Such products have not been
produced on a commercial scale so far, but laboratory tests have been carried out to study
their properties. A technology which has been used to successfully produce a lentil-based
beverage harnesses the germination process, which increases its nutritional value and the
protein digestibility of the final product [179].

5.2.7. Legume-Based Beverages as Elements of Beverage Blends

Legume-based beverages are often used in research as elements of beverage blends,
where they mainly serve to boost the protein content. The other ingredients are largely
intended to improve the organoleptic properties and stability of the final product.

Agrahar-Murugkar et al. (2020) [178] prepared beverages primarily composed of
sorghum and finger millet (5.8% each), sprouting soy flour (1.1%), sprouting green-gram
flour (0.7%), milk whitener (1.6%), and desiccated coconut (1.8%). In addition, one of the
beverage variants contained jaggery (8.3%) and water (75%), whereas the other contained
buttermilk (67%), cumin/black salt (1% each), and water (15%). Both variants were stable
and rich in minerals, flavonoids, and antioxidants compared to most beverages on the
market. Both products were acceptable to consumers. Sprouting legumes improved the
solubility and nutrient extractability, while also increasing the level of antioxidants and
flavonoids [178].
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In a study by Rincon et al. (2020) [184], a new milk substitute based on chickpeas and
coconut was developed, containing 70% chickpea extract, 30% coconut extract, and 0.3%
vanilla extract. The beverage had beneficial nutritional composition (protein, calcium, and
lipid content) compared to cow’s milk and other common cow’s milk substitutes such as
oat, almond, and rice beverages. However, the sensory acceptance scores for the beverage
were quite low [184].

Felberg et al. (2009) [175] developed a product based on a soybean beverage and
Brazil nut beverage. The latter, with a dry matter concentration of about 10%, was added
to soybean milk with a dry matter concentration of 7% at ratios ranging from 10 to 50%
(based on the final beverage), after which 3% sugar and 0.2% salt were added. The addition
of Brazil nut beverage to a soybean beverage positively influenced consumer response. The
blend was more stable than the Brazil nut-based beverage alone [175].

Cereal proteins contain little lysine and tryptophan but provide optimal levels of
sulfur amino acids (such as methionine and cysteine) [195]. The amino acid profile of
legumes is rich in lysine but quite low in methionine and cysteine. Therefore, combining
grains and legumes can improve the quality of the protein consumed [195]. Oladeji et al.
(2014) [195] produced a beverage containing dried and ground preparations of sorghum
and soybeans with the addition of cocoa powder and defatted melon flour. Cocoa powder,
malted sorghum, soy flour, and skim melon flour were mixed to the ratio of 60:10:20:10
and 65:05:20:10. Thus prepared beverages had good physicochemical and organoleptic
properties. It was also estimated that the production cost of such a beverage is low, which
would make it a competitive product on the market [195].

5.2.8. Other Potential Raw Materials for the Production of Legume-Based Beverages

Some legume seeds have yet to be used in the production of plant-based beverages,
neither in commercial nor laboratory conditions. However, their properties make them
potentially a good matrix for their production. These legumes include faba bean and
cowpea.

So far, faba bean protein has only been used to a limited extent on an industrial
scale, but that is gradually changing. It is a good source of macro and micronutrients
and minerals such as sodium, magnesium, calcium, iron, and zinc [21]. Faba bean is a
protein-rich legume with similar properties to soybean proteins. Due to these properties,
it can potentially be used as a soybean substitute in plant-based milk alternatives [174].
So far, to the best of the authors’ knowledge, faba bean-based beverages have not been
commercialized, though there do exist faba bean concentrates with a favorable, neutral
taste [21].

Cowpea is an important legume used mainly in East and West Africa, as well as in
other developing countries. The total protein content of cowpea is approximately two
to four times higher than that of tubers and cereals. In addition, cowpea protein is rich
in amino acids such as lysine, phenylalanine, and histidine [21,171]. It is also a good
source of bioactive and functional ingredients, such as phenols with antioxidant, anti-
inflammatory, anti-cancer, hypolipidemic, and hypoglycemic effects. There are indications
that any potential production of a cowpea-based beverage should best involve a sprouting
process, as it significantly reduces the content of oligosaccharides [21].

5.3. Fermentation of Legume-Based Beverages Using LAB

An important direction in the development of plant-based beverages as milk substi-
tutes is the use of fermentation in their production technology. Fermentation can lead
to the production of a new range of products with a better sensory profile, nutritional
properties, and improved microbiological safety [24,128,194,196]. Plant matrices are a good
carrier for probiotic bacteria. Products made by plant fermentation with probiotics can
meet consumers’ demands for health-promoting, dairy-free products [129,197–200]. Most
of the plant-based beverages described in the literature are fermented using Lactobacillus,
Streptococcus, and Bifidobacterium [24,129,194,201]. Fermentation of plant matrices is usu-
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ally done through four main stages—obtaining a plant-based beverage; conditioning the
beverage to reach the temperature optimal for the growth of the microorganisms; fermen-
tation under specific conditions; and cooling to a temperature of about 4 ◦C [201]. These
procedures may vary depending on the raw material, the type of the starter cultures used,
and the final product characteristics. The fermentation of plant-based beverages is typically
longer (around 12–24 h) than standard fermented dairy production and ends when the pH
value is around 4.2–4.5 [21,201].

Fermentation of plant-based beverages significantly improves their nutritional and
health-promoting properties. As in the fermentation of raw legumes, the content of oligosac-
charides, tannins, protease inhibitors, and phytic acid is reduced, which increases the
bioavailability of calcium, iron, and zinc [196,202–204]. In addition, the organic acids pro-
duced during fermentation have the ability to increase the absorption of iron and zinc by
forming soluble ligands, while also producing a low pH that optimizes the activity of the
endogenous phytic acid-reducing phytase [196,200]. Fermentation of legume-based bever-
ages also increases antioxidant capacity and, as a result, anti-radical activity [200,205–207].
Some strains of LAB have the ability to synthesize B vitamins (including folic acid, ri-
boflavin, and vitamin B12) in legume-based beverages, e.g., those made with soy and
beans [31,208–210]. Microbial activity can also increase the content of minerals and protein
in the product [196]. The use of the germination process before fermentation improves the
growth rate of probiotic strains by increasing the content of fermentable monosaccharides
and amino acids [127,193].

So far, out of all legume-based beverages, soybean beverages are the ones most
commonly processed via fermentation. To that end, bacteria of the genus Lactobacillus,
Lactococcus, and Streptococcus are generally used [211–213]. In order to select suitable
LAB strains for the production of functional food based on a soybean beverage, the
fermentation properties of 14 strains of LAB belonging to the genera Bifidobacterium,
Lactobacillus, Lactococcus, and Streptococcus were assessed. All 14 strains were able to
grow in the soybean beverage, and the strains Bifidobacterium breve, Bifidobacterium bifidum,
and Lacticaseibacillus rhamnosus showed the most promising results [214]. Soy-based bev-
erages fermented by LAB have a higher content of aglycone isoflavones. The increase
of isoflavone aglycone contents during fermentation is a result of β-glucosidase activity
towards isoflavone glucosides [205,212,215,216]. The use of LAB to ferment legume-based
beverages can also have an anti-mutagenic effect. Fermentation of soy-based beverages
using strains of the genera Lactobacillus, Streptococcus, and Bifidobacterium has been shown
to significantly enhance anti-mutagenicity, but the extent of that increase varied across
different starter organisms and types of mutagen tested [217].

Soymilk fermented by LAB can improve aroma, flavor, and overall acceptability [212].
Furthermore, they can be used to modulate and enhance the texture properties of soymilk,
such as its water holding capacity and apparent viscosity [211,218]. Exopolysaccharide-
producing (EPS-producing) LAB are used in the production of fermented soy beverages,
due to their effect on consistency and rheology. Exopolysaccharides can modify the flow
characteristics of fluids, stabilize suspensions, flocculate particles, encapsulate materi-
als, and produce emulsions [211]. Fermentation of soybean beverages with LAB also
reduces ANFs, e.g., fermentation with Leuconostoc mesenteroides removes phytates [203],
whereas raffinose is removed during fermentation by bacteria of the genera Lactobacillus
and Streptococcus [204]. LAB involved in soybean beverage fermentation may also ex-
hibit anti-pathogen properties in food. Soybean beverage fermented with Pediococcus
pentosaceus and Lacticaseibacillus paracasei subsp. paracasei demonstrated antimicrobial ac-
tivity against selected foodborne pathogens, e.g., Bacillus cereus, Staphylococcus aureus, and
Pseudomonas aeruginosa [219].

Bean, faba bean, lentil, chickpea, and cowpea beverages can also be good matrices
for the fermentation process. Fermentation of a red bean-based beverage, using bacteria
of the genera Lactobacillus and Streptococcus, has been shown to produce an increase in
the total phenolic content and promote antioxidant activity [220], while fermentation of
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a navy bean-based beverage with Lactobacillus has been found to boost ACE-inhibitory
activity [221]. An adzuki bean-based beverage fermented with Lactococcus lactis subsp.
lactis and Lacticaseibacillus rhamnosus GG has shown increased levels of γ-aminobutyric acid
(GABA) [222]. Fermentation of a bean-based beverage with the use of Lactobacillus strains
can increase the share of palmitic, stearic, and oleic acids in the fatty acid profile compared
to raw bean seeds [193]. Fermentation of a beverage made from germinated beans using
yoghurt starter cultures Yo-Mix 205 LYO (S. thermophilus, Lb. delbrueckii subsp. bulgaricus,
Lb. acidophilus, B. lactis) and FD-DVS ABY-3 Probio-Tec (S. thermophilus, Lb. delbrueckii subsp.
bulgaricus, Lb. acidophilus, and B. animalis subsp. lactis) has been found to reduce stachyose
and raffinose, while increasing riboflavin, niacin, and pyridoxine in the manufactured
products [223].

Fermentation of a faba bean-based beverage using starter cultures containing bac-
teria from the genera Lactobacillus, Lactococcus, Streptococcus, and Leuconocstoc has been
demonstrated to enhance the DPPH radical scavenging ability and total phenol content.
The resultant beverage had higher complex viscosity values, which were expressed in
a weak, gel-like structure [224]. A study by Verni et al. (2020) [194] showed that the
strains of Lactobacillus spp., Lb. helveticus, Lb. acidophilus, Lb. johnsonii, Lacticaseibacillus
casei, Limosilactobacillus reuteri, Limosilactobacillus fermentum, and Lacticaseibacillus rhamnosus
were able to ferment a lentil-based beverage within 24 h, while strains Lb. acidophilus,
Limosilactobacillus fermentum, and Lacticaseibacillus paracasei subsp. paracasei boasted the
highest growth rates and the lowest pH values. The fermented beverages showed reduced
levels of phytic acid and oligosaccharides [194].

A study by Wang et al. [191] demonstrated that a chickpea-based beverage can be
a promising alternative to a soy-based beverage after some optimization. Compared to
soymilk, the chickpea beverage contained lower amounts of protein, fat, and sugar, due
to a higher starch content. Sensory analysis revealed that the fresh chickpea beverage
was as acceptable as the soy one. However, the fermented chickpea beverage did receive
lower appearance scores compared with the soy product [191]. A chickpea-based beverage
fermented with Lactiplantibacillus plantarum subsp. plantarum has been demonstrated to
have higher reducing power, and reduced content of β-conglycinin and glycinin, which are
considered to be food allergens [225].

The cowpea-based beverage turned out to be a good fermentation matrix using
probiotic cultures containing bacteria from the genera Lactobacillus, Bifidobacterium, and
Streptococcus [198]. The obtained fermented beverage showed faster microbial growth
during the first two weeks of storage. During this period, no significant differences were
observed in terms of sensory attributes (taste, texture, and overall acceptability). However,
the authors recommend that more work should be done to improve the sensory acceptabil-
ity of the products, and that their potential health benefits should be determined through
in vivo studies. The effect of fermentation with LAB on selected properties of legume-based
beverages is summarized in Table 6.
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Table 6. Effect of fermentation with LAB on selected properties of legume-based beverages.

Type of
Legume-

Based
Beverages

Ingredients of the
Beverage

Microorganisms Used for
Fermentation

Fermentation
Conditions Effect of Fermentation References

Soy-based
beverages

soybean seeds, water

Lactobacillus acidophilus ATCC®

4356™, Lacticaseibacillus casei
ATCC® 393™ (strains applied

as a mixed cultures)

37 ◦C, 12 h

• increase in the viscosity;
• increase in the antioxidant activity;
• increase in the isoflavones (genistein and

daidzein) content;
• improvement of the sensory evaluation

for parameters: color, texture, aroma,
flavor, overall acceptability

Ahsan et al.,
2020 [212]

soybean seeds, water,
sucrose,

Lactiplantibacillus plantarum
subsp. plantarum 70810,

Lacticaseibacillus rhamnosus
6005, yogurt starter culture
DVS YC-X11 (Lb. delbrueckii

subsp. bulgaricus, Streptococcus
thermophilus) (strains applied

separately)

37 ◦C, 12 h

• increase in the water holding capacity,
apparent viscosity, and
exopolysaccharide (EPS) amount
(highest with Lactiplantibacillus plantarum
subsp. plantarum 70810);

• EPS-protein improved the texture of
fermented beverage;

• increase in the concentration of the
characteristic flavor compounds and
decrease in the beany off-flavor
(investigated only for Lactiplantibacillus
plantarum subsp. plantarum 70810)

Li et al., 2014
[211]

soybean seeds, water Leuconostoc mesenteroides KC51 30 ◦C, 18 h • decrease in the phytate content
Oh et al., 2009

[203]

soybean seeds, water

Lactobacillus helveticus R0052,
Bifidobacterium longum R0175,
Streptococcus thermophilus ST5
(strains applied single or as a

mixed cultures)

30 ◦C, until pH
4.7 was reached

• decrease in the isoflavones level with L.
helveticus R0052 and combination of S.
thermophilus ST5 + L. helveticus R0052;

• fermentation did not significantly modify
vitamin B1 or B6 levels

Champagne
et al., 2010

[218]

commercial soymilk

Lactobacillus acidophilus CCRC
14079, Streptococcus

thermophilus CCRC 14085,
Bifidobacterium infantis CCRC
14633, B. longum B6 (strains
applied single or as a mixed

cultures)

37 ◦C, 24–32 h
(depending on

the strain)

• major reduction in the contents of
glucoside, malonylglucoside, and
acetylglucoside isoflavones along with a
significant increase of aglycone
isoflavones content

Chien et al.,
2006 [215]

commercial soymilk,
yeast extract, glucose

Lactobacillus acidophilus LAFTI
L10, Lb. delbrueckii ssp.
bulgaricus Lb1466, Lb.

acidophilus La4962,
Lacticaseibacillus casei LAFTI

L26, Lacticaseibacillus casei
Lc279, Bifidobacterium lactis

LAFTI B94, B. longum Bl 536,
Streptococcus thermophilus

St1342 (strains applied as a
mixed culture)

42 ◦C, 48
• reduction of raffinose content;
• release of bioactive peptides with

ACE-inhibitory activities
Donkor et al.,

2007 [204]

soybean seeds, water

Lactobacillus acidophilus CCRC
14079, Streptococcus

thermophilus CCRC 14085,
Bifidobacterium infantis CCRC
14633, B. longum B6 (strains
applied single or as a mixed

cultures)

37 ◦C, 32 h

• fermentation significantly enhanced the
antimutagenicity of soymilk (the levels of
increased antimutagenicity of fermented
soymilk varied with the starter organism
and the type of mutagen tested)

Hsieh et al.,
2006 [217]

Bean-based
beverages

navy bean seeds,
water

Lactiplantibacillus plantarum
subsp. plantarum B1-6,

Lactiplantibacillus plantarum
subsp. plantarum 70810, Lb.

delbrueckii subsp. bulgaricus, Lb.
helveticus MB2-1 (strains

applied separately)

31–42 ◦C
(depending on
the strain), 6 h

• increase in the ACE inhibitory activity;
• decrease in the protein content with Lb.

delbrueckii subsp. bulgaricus and
Lactiplantibacillus plantarum subsp.
plantarum B1-6

Rui et al., 2015
[221]

red bean powder,
water, refined sugar

Lacticaseibacillus casei 388,
Lactiplantibacillus plantarum

subsp. plantarum 299v,
Streptococcus thermophilus

TISTR 894 (strains applied
single or as mixed cultures)

37 ◦C, 18–20 h
• increase in the total phenolic contents

and antioxidant activities
Naprasert
et al., 2019

[220]
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Table 6. Cont.

Type of
Legume-

Based
Beverages

Ingredients of the
Beverage

Microorganisms Used for
Fermentation

Fermentation
Conditions Effect of Fermentation References

white bean seeds,
water

industrial starter cultures:
Yo-Mix 205 LYO (Streptococcus

thermophilus, Lactobacillus
delbrueckii subsp.

bulgaricus, Lb. acidophilus,
Bifidobacterium lactis) and

FD-DVS ABY-3 Probio-Tec (S.
thermophilus, Lb. delbrueckii

subsp.bulgaricus, Lb. acidophilus
La-5, B. animalis subsp. lactis

BB-12) (cultures applied
separately)

43 ◦C, 4 h

• increase in the content of stachyose and
raffinose;

• increase in the levels of riboflavin, niacin,
and pyridoxine

Ziarno et al.,
2019 [223]

adzuki bean flour,
water

Lactococcus lactis subsp. lactis,
Lacticaseibacillus rhamnosus GG

(strains applied as a mixed
cultures)

37 ◦C, 24 h
• increase in the content of γ-aminobutyric

acid (GABA)
Liao et al.,
2013 [222]

white bean seeds,
water

Lactobacillus delbrueckii subsp.
bulgaricus ATCC 11842, Lb.

delbrueckii subsp. lactis ATCC
4797, Lb. acidophilus La3, Lb.

helveticus LH-B01,
Lactiplantibacillus plantarum
subsp. plantarum DSM 9843,
Lacticaseibacillus rhamnosus

LH32, Limosilactobacillus
fermentum ATCC 9338,

Levilactobacillus brevis L342,
Lacticaseibacillus casei 01,

Lacticaseibacillus paracasei subsp.
paracasei BGP1

37 ◦C, 18 h

• increase in the share of palmitic, stearic,
and oleic acids in the fatty acid profile
compared to that in raw bean seeds;

• lower share of palmitic and stearic acids
and higher share of oleic acid in position
sn-2 was observed compared to
non-fermented beverages

Ziarno et al.,
2020 [193]

Faba
bean-based
beverages

faba bean and
chickpea seed, water

Starter culture 1 contains
Streptococcus thermophilus and
Lactobacillus delbrueckii subsp.

Bulgaricus, and starter culture 2
contains Lacticaseibacillus casei,

Lactococcus lactis subsp.
cremoris, Lc. lactis subsp. lactis,
Lc. lactis subsp. lactis bio var.

diacetylactis, Leuconostoc species,
Streptococcus thermophilus

(starters applied separately)

43 ◦C, 10 h

• increase of the DPPH radical scavenging
ability and total phenol content;

• higher complex viscosity values for faba
bean-based products, which displayed a
weak gel-like structure

Vasilean et al.,
2021 [224]

Lentil-based
beverages lentil seeds, water

Lactobacillus acidophilus ATCC
4356, Lb. gasseri ITEM 13541,

Lb. helveticus ATCC 15009, Lb.
johnsonii NCC533,

Lacticaseibacillus rhamnosus
ATCC 53103, Lacticaseibacillus
paracasei subsp. paracasei DSM

20312, Limosilactobacillus
fermentum DSM 20052 (strains

applied separately)

37 ◦C, 24 h
• decrease in the phytic acid and raffinose

content
Verni et al.,
2020 [194]

Chickpea-
based

beverages

chickpea seeds, water,
with addition
of soy sauce or

vanillin sugar and
coconut flakes

Lactiplantibacillus plantarum
subsp. plantarum 299v 35 ◦C, 18 h

• increase in the reducing power;
• decrease in the content of β-conglycinin

and glycinin (which are considered as
one of food allergens)

Skrzypczak
et al., 2019

[225]

garbanzo chickpea
seeds, water

Streptococcus thermophilus,
Lactobacillus delbrueckii subsp.

bulgaricus, Lb. acidophilus
42 ◦C, 16 h

• lower amounts of protein, fat, and sugar,
and higher starch content compared to
soymilk;

• fermented chickpea beverage received
lower ratings than the soy one for
appearance

Wang et al.,
2018 [191]
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Table 6. Cont.

Type of
Legume-

Based
Beverages

Ingredients of the
Beverage

Microorganisms Used for
Fermentation

Fermentation
Conditions Effect of Fermentation References

Cowpea cowpea seeds, water

Probiotic starter cultures:
ABT-5 (Lactobacillus acidophilus
La-5 + Bifidobacterium animalis

Bp-12 + Streptococcus
thermophilus), YFL-903 (S.

thermophilus + Lb. bulgaricus
subs. debulgaricus) and Yoba Fiti

(Lacticaseibacillus rhamnosus
GR-1 + S. thermophilus)

(cultures applied separately)

45 ◦C, 14 h
• decrease in the carbohydrate content;
• increase in microbial growth during the

first two weeks of storage
Aduol et al.,
2020 [198]

6. Prebiotic Ingredients in Legumes and Legume-Based Beverages

Literature studies indicate that one of the most important determinants of human
health is maintaining an optimal balance of the gastrointestinal microflora [226]. The
relationship between gastrointestinal microflora and human health is being increasingly
recognized. The influence of gastrointestinal microbiota on the host has been well charac-
terized, including maintenance of the body’s energy metabolism and immune system [227].
Dysbiosis of the intestinal ecosystem can lead to certain illnesses, e.g., inflammatory bowel
disease, irritable bowel syndrome, infectious and antibiotic-associated diarrhea, diabetes,
and nonalcoholic fatty liver disease. These illnesses can be reversed by probiotics and
prebiotics [228]. Probiotics can be defined as living bacteria or fungi that confer a health
benefit for the host [228].

According to the International Scientific Association for Probiotics and Prebiotics (IS-
APP), prebiotics are substrates that are selectively utilized by host microorganisms, eliciting
health-beneficial effects [229]. The following criteria are used to classify a compound as a
prebiotic:

• It should be resistant to acidic pH of stomach, cannot be hydrolyzed by mammalian
enzymes, and should not be an absorber in the gastrointestinal tract;

• It can be fermented by intestinal microbiota;
• The growth and/or activity of the intestinal bacteria can be selectively stimulated by

this compound, and this process is beneficial to the host’s health [230,231].

Prebiotics are not digested in the upper gastrointestinal tract and enter the cecum
without changing their structure. They are not excreted in the feces as they are fermented
by the flora of the colon, promoting the growth of beneficial bacteria from the genera
Bifidobacterium and Lactobacillus [232–234]. During the fermentation, a mixture of short-
chain fatty acids (SCFA) is produced, including acetate, propionate, and butyrate, as
well as L-lactate, CO2, and H2 [233,235]. These compounds provide a broad range of
important physiological benefits, including anti-inflammatory and immune regulation, as
well as anti-cancer properties and metabolic regulation [235]. The alleged mechanisms
of action of prebiotics may be direct or indirect. The indirect mode of action involves
providing nutrients to the intestinal flora for natural growth, which is beneficial to health.
A prebiotic may also act directly by inhibiting certain pathogenic bacteria, preventing
cancer, removing cholesterol, controlling cardiovascular disease, and finally—preventing
obesity and constipation [226].

Benefits of consuming prebiotics include improved intestinal barrier function and host
immunity, reduction of potentially pathogenic bacterial subpopulations (e.g., Salmonella ty-
phimurium, Listeria monocytogenes, Escherichia coli), and increased production of SCFAs [234],
which helps regulate the absorption of sodium and water and may increase the absorp-
tion of calcium and other minerals. SCFAs lower the pH of the colon, which can inhibit
the growth of potential pathogens and promote the growth of beneficial bacteria such as
Bifidobacterium and Lactobacillus [226,234]. Propionate exerts an anti-inflammatory effect
on colon cancer cells. Butyrate regulates apoptosis and reduces metastasis in colon cell
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lines. It is also the preferred energy source for colon epithelial cells, promotes normal cell
differentiation and proliferation, and protects the body against carcinogens by enhancing
the expression of enzymes involved in detoxification [226,234].

Legumes and legume-based beverages have proven to be a good source of food ingre-
dients that may exhibit prebiotic properties [235–237]. These ingredients mainly include
oligosaccharides, resistant starch, polyphenols, and isoflavones [237]. Legume oligosac-
charides are often considered unbeneficial ingredients. Due to their high fermentability,
they induce the production of gases (mainly CO2, H2, and sometimes CH4) responsible
for the digestive discomfort associated with the consumption of legumes. In addition,
their consumption may reduce the absorption of some nutrients. While it may be de-
sirable to remove these components from legumes, they also exhibit favorable prebiotic
properties [232,233,235].

Among the oligosaccharides of legumes with prebiotic properties, the most important
are those of the raffinose family (RFO), also called α-galactosides [232,238]. They are low
molecular weight, non-reducing carbohydrates that are widespread in the plant kingdom
and soluble in water and hydroalcoholic solutions [238]. Chemically, α-galactosides are con-
sidered to be derivatives of sucrose, as they are a combination of d-galactose units linked to
a group of d-glucose moieties. The oligosaccharides most common in legumes are raffinose,
stachyose, and verbascose [192,232,238]. These compounds are not digested by the human
gastrointestinal tract, as it does not produce α-galactosidase—An enzyme that has the
ability to digest oligosaccharides by cleaving α-galactosyl moieties. As a consequence,
these compounds are not broken down by digestive enzymes, so they are not absorbed
in the upper part of the gastrointestinal tract and pass into the large intestine, where they
promote the growth of bacteria from the genera Bifidobacterium and Lactobacillus [238,239].

Bifidobacterium and Lactobacillus prevent the growth of exogenous pathogenic microor-
ganisms and the excessive growth of native harmful microflora, resulting in the production
of SCFAs (mainly acetic and lactic acid) [232]. The production of SCFAs and subsequent
acidification of the colonic contents affect the availability of minerals. Lower pH leads to
increased solubility of minerals, especially calcium and magnesium, which consequently
increases their absorption [232]. SCFAs strengthen the intestinal barrier by inhibiting the
growth of pathogens and the production of toxic elements [236]. Oligosaccharides can
inhibit bacterial adhesion to the gastrointestinal wall and act as a repressor of virulence
factors by inhibiting gene expression in enteropathogens. They can adhere to bacterial
binding sites on the surface of enterocytes, blocking adhesion of pathogenic bacteria to
intestinal epithelial cells [226]. In a study with rats, prebiotic oligosaccharides from red
gram beans have been shown to be hypolipidemic [240]. The authors pointed out that the
use of prebiotics can be a potential as a preventive measure for overweight and obesity in
humans, and legume prebiotics could be tested as a new prebiotic product candidate for
the consumer market.

Resistant starch (RS) is the total amount of starch and products of starch degradation
resistant to digestion in the upper gastrointestinal tract [241]. RS is a linear a-1,4-d-glucan
molecule, which is a fraction of starch that is resistant to digestion by human pancreatic
amylase in the small intestine, thus reaching the colon unchanged. In the colon, RS is
fermented by intestinal bacteria [231,242]. Legume RS plays a role in improving digestive
health and meets the criteria for classification as a prebiotic [241]. It can be fermented
by the human gastrointestinal microflora, providing a source of carbon and energy for
bacteria present in the gastrointestinal anaerobic environment, thereby potentially altering
the composition of the microflora and its metabolic activity. Fermentation of carbohydrates
by anaerobic bacteria produces SCFAs, mainly composed of acetic, propionic, and butyric
acids, which can lower gut pH [242].

Resistant starch has no calories and does not increase blood glucose levels, having
physiological effects similar to those of dietary fiber [237,241]. Its prebiotic effect can be en-
hanced by combining it with other types of prebiotics with complementary kinetics, such as
fructooligosaccharides (FOS). These prebiotics are characterized by different fermentation
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rates in the large intestine, so their combination may result in a more pronounced probiotic
effect through synergy. This combined effect may provide greater health benefits to the host.
Additionally, the combination of RS and inulin has been shown to elicit a synergistic effect
on intestinal calcium and magnesium absorption in rats. Fermentation of these substrates
in the large intestine to SCFAs is a major cause of the increase in mineral absorption [242].

Scientific reports increasingly report interactions between polyphenols and the gas-
trointestinal microbiota, recommending them as candidates for prebiotics [243]. A growing
number of animal and in vitro models describe the interactions between polyphenols
and the gastrointestinal microbiota and the resulting health benefits, some of which in-
clude protection against cancer, obesity, insulin resistance, hepatitis, sleep deprivation,
and atherosclerosis [244]. Polyphenols are secondary metabolites of plants, characterized
by aromatic rings containing one or more hydroxyl groups in their chemical structure.
Phenolic compounds are the largest group of phytochemicals, comprising over 50,000 het-
erogeneous compounds [245]. Polyphenols found in all types of legumes are characterized
by low bioavailability and extensive metabolism in the large intestine, which promotes in-
teraction with intestinal microorganisms [246]. One mode of two-way interaction involves
polyphenols modulating the intestinal microflora, with microorganisms modulating the
activity of phenolic compounds in turn. This interaction can regulate the metabolism and
bioavailability of the polyphenols, converting them into metabolites that can have various
effects on the health of the host. Overall, polyphenols elicit antioxidant, anti-inflammatory,
anti-obesity, anti-lipidemic, and anti-diabetic effects. The role of polyphenols in the diet is
determined by their metabolic processes, their absorption, and bioavailability, which are
also associated with the modulation of the intestinal microflora [246].

Although polyphenols are currently recognized as modulators of the composition of
the intestinal microflora, there is still no conclusive evidence of their prebiotic effects [247].
The prebiotic activity of each polyphenol can be influenced by the food source and the
chemical structure of the compound, as well as by individual differences in the composition
of the intestinal microflora. Flavonoids, which belong to polyphenols, are consumed with
food mainly in the form of glycosides, which makes it difficult for their absorption through
the small intestine. Polyphenols can act as prebiotics by modulating the microbiome,
promoting the colonization of beneficial gut microbes. By acting as probiotics, the gut
microbes are capable of degrading glycosided polyphenols and producing simple phenolic
metabolites. The glycosylated flavonoids may serve as the sole source of carbon and energy
for certain microorganisms in the intestinal microbiota that preferentially ferment the
sugars associated with the flavonoids. Polyphenols can act as prebiotics to promote the
growth of beneficial gut microbes such as Bifidobacterium and Lactobacillus spp. [245,246].

Among the ingredients of legumes, isoflavones may also show prebiotic properties.
The highest concentration of isoflavones is found in soybeans [248]. These compounds
belong to the class of hormone-like diphenol phytoestrogens and are similar in structure
to the female estrogen 17β estradiol. The most popular soy isoflavone is genistein, which
is consumed in the form of an α-glycoside called genistin. Upon ingestion, genistin is
hydrolyzed to the aglycone genistein by ß-glucosidases. Enzymes capable of carrying out
this stage of deglycosylation are found on the brush border of the small intestine (lactase-
floridine hydrolase) and in enterocytes (cytosolic b-glucosidases). In addition, several major
groups of colon bacteria have ß-glucosidase activity, including Lactobacillus spp., Bacteroides
spp., and Bifidobacterium spp. It is this ability of these intestinal bacteria to break down
isoflavone glycosides that may be related to the prebiotic effect of isoflavones, which stim-
ulate the growth of these microorganisms. Pharmacokinetic studies confirm that healthy
adults absorb genistein quickly and efficiently. The bioavailability of genistin depends
on deglycosylation by the intestinal bacteria [248]. Equol and O-desmethylangolensin are
active metabolites produced by the action of colonic bacteria on soy isoflavones. These
metabolites also have health benefits, such as estrogenic, antioxidant, anti-inflammatory,
antioxidant, and hepatoprotective effects. [246].
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The prebiotic properties of legume ingredients make them a good matrix for the
fermentation process, also with the participation of probiotic bacteria [226]. Both pre- and
probiotics have been found to work best in combination. This combined effect of both
leads to the formation of the so-called synbiotics. Prebiotic foods remain unchanged in
the digestive tract because gastric enzymes cannot act on them. They reach the large
intestine intact and are selectively fermented for beneficial effects [226]. Probiotics present
in legumes may increase the survival rate of probiotic bacteria involved in the fermentation
process, which pass through the upper part of the digestive tract after ingestion with food.
This is the result of their selective stimulation by prebiotics. Prebiotics can also enhance the
effects of probiotic bacteria that enter the large intestine [242].

7. Conclusions

LAB are widely used in the fermentation of animal and plant products. The most
common use of LAB in food is in dairy production. Due to the growing popularity of plant
diets and the health benefits of consuming fermented products, there has been growing
interest in the fermentation of plant products and the selection of microorganisms suitable
for this process. Research into microorganisms suitable for fermenting plant matrices could
lead to an increase in the range of fermented plant products that can be used as alternatives
to dairy.

Legumes are a suitable raw material for the production of dairy alternatives. This
is mainly due to the high protein content and the presence of ingredients that enable
their fermentation. Currently, legume fermentation is widely used in the production of
intermediate bakery products (e.g., cookies, pasta, bread), ingredients for Asian cuisine,
substitutes for dairy products, and as an ingredient of animal feed. The fermentation has
also been found to elicit a beneficial effect on the bioconservation of legumes and their
sensory properties. Fermentation reduces the content of thermostable ANFs in legumes,
which are the main limitation in the development and consumption of legume-based foods.
This process leads directly to an increase in digestibility of proteins and bioavailability of
certain nutrients. Fermentation leads to an increase in the nutritional value of legume-based
foods by increasing the content of antioxidant components, biological availability of total
fiber and phenols, as well as increasing the levels of vitamins, amino acids, minerals, and
short-chain fatty acids.

Legumes are a suitable matrix for the production of plant-based beverages, which are
the most popular products among dairy alternatives. Among the legume-based beverages,
soybeans are the most commonly used to produce plant-based beverages. Scientific reports
indicate that there are also other legumes highly suitable for the production of plant-
based beverages, e.g., beans, peas, broad beans, chickpeas, lupins, lentils, and cowpea.
Creating beverages from legumes enables the production of plant-based beverages with a
composition similar to cow’s milk. These products can be successfully fermented with LAB,
including, e.g., Lactobacillus delbrueckii ssp. bulgaricus, Lb. acidophilus, Lacticaseibacillus casei,
Leuconostoc mesenteroides, Lactiplantibacillus plantarum subsp. plantarum, Lacticaseibacillus
rhamnosus, and Streptococcus thermophilus.

Both raw legumes and legume-based beverages can be carriers of probiotic bacteria.
This is favored by the presence of natural ingredients with prebiotic properties in legumes,
including oligosaccharides, resistant starch, polyphenols, and isoflavones. The properties of
legumes make it possible to use them to create synbiotic food, which is a source of probiotics
and prebiotics. However, in the production of fermented foods, it is crucial to optimize the
process parameters. Too long fermentation time of legumes and legume-based beverages
may affect the production of compounds with undesirable properties. The development of
fermented products that can be commercialized requires careful development of technology
and parameters of processing.
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35. Cichońska, P.; Pudło, E.; Wojtczak, A.; Ziarno, M. Effect of the Addition of Whole and Milled Flaxseed on the Quality Characteris-
tics of Yogurt. Foods 2021, 10, 2140. [CrossRef] [PubMed]

36. Widyastuti, Y.; Rohmatussolihat, R.; Febrisiantosa, A. The Role of Lactic Acid Bacteria in Milk Fermentation. Food Nutr. Sci. 2014,
5(4), 435–442. [CrossRef]

37. Leroy, F.; Scholliers, P.; Amilien, V. Elements of innovation and tradition in meat fermentation: Conflicts and synergies. Int. J. Food
Microbiol. 2015, 112, 2–8. [CrossRef]

38. LeGrand, K.; Borarin, B.; Young, G.M. Tradition and Fermentation Science of prohok, an ethnic fermented fish product of
Cambodia. J. Ethn. Foods 2020, 7, 12. [CrossRef]

39. Septembre-Malaterre, A.; Remiza, F.; Poucheret, P. Fruits and vegetables, as a source of nutritional compounds and phytochemicals:
Changes in bioactive compounds during lactic fermentation. Food Res. Int. 2018, 104, 86–99. [CrossRef] [PubMed]

40. Nosrati, R.; Hashemiravan, M.; Talebi, M. Fermentation of vegetables juice by probiotic bacteria. Int. J. Biosci. 2014, 4, 171–180.
41. Adebo, O.A.; Medina-Meza, I.G. Impact of Fermentation on the Phenolic Compounds and Antioxidant Activity of Whole Cereal

Grains: A Mini Review. Molecules 2020, 25, 927. [CrossRef]
42. Gemechu, T. Review on lactic acid bacteria function in milk fermentation and preservation. Afr. J. Food Sci. 2015, 9, 170–175.

[CrossRef]
43. Chen, H.; Hoover, D.G. Bacteriocins and their Food Applications. Compr. Rev. Food Sci. Food Saf. 2003, 2, 82–100. [CrossRef]
44. Hernández-González, J.C.; Martínez-Tapia, A.; Lazcano-Hernández, G.; García-Pérez, B.E.; Castrejón-Jiménez, N.S. Bacteriocins

from Lactic Acid Bacteria. A Powerful Alternative as Antimicrobials, Probiotics, and Immunomodulators in Veterinary Medicine.
Animals 2021, 11, 979. [CrossRef]

45. Bharti, V.; Mehta, A.; Singh, S.; Jain, N.; Ahirwal, L.; Mehta, S. Bacteriocin: A novel approach for preservation of food. Int. J.
Pharm. Pharm. Sci. 2015, 7, 20–29.

46. Soomro, A.H.; Masud, T.; Kiran, A. Role of Lactic Acid Bacteria (LAB) in Food Preservation and Human Health—A Review. Pak.
J. Nutr. 2002, 1, 20–24. [CrossRef]

47. Pasolli, E.; De Filippis, F.; Mauriello, I.E.; Cumbo, F.; Walsh, A.M.; Leech, J.; Cotter, P.D.; Segata, N.; Ercolini, D. Large-scale
genome-wide analysis links lactic acid bacteria from food with the gut microbiome. Nat. Commun. 2020, 11, 2610. [CrossRef]

48. Moradi, M.; Kousheh, S.A.; Almasi, H.; Alizadeh, A.; Guimarães, J.T.; Yilmaz, N.; Lotfi, A. Postbiotics produced by lactic acid
bacteria: The next frontier in food safety. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3390–3415. [CrossRef]

49. Evive, S.E.; Huo, G.; Igene, J.O.; Bian, X. Some current applications, limitations and future perspectives of lactic acid bacteria as
probiotics. Food Nutr. Res. 2017, 61, 1318034. [CrossRef] [PubMed]

50. Panesar, P.S. Fermented Dairy Products: Starter Cultures and Potential Nutritional Benefits. Food Nutr. Sci. 2011, 2, 47–51.
[CrossRef]

51. Mathur, H.; Beresford, T.P.; Cotter, P.D. Health Benefits of Lactic Acid Bacteria (LAB) Fermentates. Nutrients 2020, 12, 1679.
[CrossRef] [PubMed]

52. Matsumoto, K.; Takada, T.; Shimizu, K.; Moriyama, K.; Kawakami, K.; Hirano, K.; Kajimoto, O.; Nomoto, K. Effects of a probiotic
fermented milk beverage containing Lactobacillus casei strain Shirota on defecation frequency, intestinal microbiota, and the
intestinal environment of healthy individuals with soft stools. J. Biosci. Bioeng. 2010, 110, 547–552. [CrossRef] [PubMed]

53. Guillemard, E.; Tondu, F.; Lacoin, F.; Schrezenmeir, J. Consumption of a fermented dairy product containing the probiotic
Lactobacillus casei DN-114 001 reduces the duration of respiratory infections in the elderly in a randomised controlled trial. Br. J.
Nutr. 2010, 103, 58–68. [CrossRef] [PubMed]

http://doi.org/10.3390/fermentation6010023
http://doi.org/10.1080/1040841X.2016.1179623
http://doi.org/10.1016/S0924-8579(00)00322-8
http://doi.org/10.3389/fcimb.2012.00086
http://doi.org/10.1111/j.1365-2672.2011.05157.x
http://doi.org/10.15406/jbmoa.2018.06.00182
http://doi.org/10.3389/fmicb.2016.00377
http://doi.org/10.1080/10408398.2012.660251
http://www.ncbi.nlm.nih.gov/pubmed/24915367
http://doi.org/10.3390/foods10092140
http://www.ncbi.nlm.nih.gov/pubmed/34574249
http://doi.org/10.4236/fns.2014.54051
http://doi.org/10.1016/j.ijfoodmicro.2014.11.016
http://doi.org/10.1186/s42779-019-0027-1
http://doi.org/10.1016/j.foodres.2017.09.031
http://www.ncbi.nlm.nih.gov/pubmed/29433787
http://doi.org/10.3390/molecules25040927
http://doi.org/10.5897/AJFS2015.1276
http://doi.org/10.1111/j.1541-4337.2003.tb00016.x
http://doi.org/10.3390/ani11040979
http://doi.org/10.3923/pjn.2002.20.24
http://doi.org/10.1038/s41467-020-16438-8
http://doi.org/10.1111/1541-4337.12613
http://doi.org/10.1080/16546628.2017.1318034
http://www.ncbi.nlm.nih.gov/pubmed/28659729
http://doi.org/10.4236/fns.2011.21006
http://doi.org/10.3390/nu12061679
http://www.ncbi.nlm.nih.gov/pubmed/32512787
http://doi.org/10.1016/j.jbiosc.2010.05.016
http://www.ncbi.nlm.nih.gov/pubmed/20580604
http://doi.org/10.1017/S0007114509991395
http://www.ncbi.nlm.nih.gov/pubmed/19747410


Microorganisms 2022, 10, 91 32 of 39

54. Mori, N.; Kano, M.; Masuoka, N.; Konno, T.; Suzuki, Y.; Miyazaki, K.; Ueki, Y. Effect of probiotic and prebiotic fermented milk
on skin and intestinal conditions in healthy young female students. Biosci. Microbiota Food Health 2016, 35, 105–112. [CrossRef]
[PubMed]

55. Tillisch, K.; Labus, J.; Kilpatrick, L.; Jiang, Z.; Stains, J.; Ebrat, B.; Guyonnet, D.; Legrain-Raspaund, S.; Trotin, B.; Naliboff, B.;
et al. Consumption of Fermented Milk Product With Probiotic Modulates Brain Activity. Gastroenterology 2013, 144, 1394–1401.
[CrossRef]

56. Hickson, M.; Souza, A.L.D.; Muthu, N.; Rogers, T.R.; Want, S.; Rajkumar, C.; Bulpitt, C.J. Use of probiotic Lactobacillus preparation
to prevent diarrhoea associated with antibiotics: Randomised double blind placebo controlled trial. BMJ 2007, 335, 80. [CrossRef]

57. Jauhiainen, T.; Rönnback, M.; Vapaatalo, H.; Wuolle, K.; Kautiainen, H.; Groop, P.H.; Korpela, R. Long-term intervention with
Lactobacillus helveticus fermented milk reduces augmentation index in hypertensive subjects. Eur. J. Clin. Nutr. 2010, 64, 424–431.
[CrossRef]
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