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Abstract: Carrier-free enzyme immobilization techniques are an important development in the
field of efficient and streamlined continuous synthetic processes using microreactors. Here, the use
of monolithic, self-assembling all-enzyme hydrogels is expanded to phenolic acid decarboxylases.
This provides access to the continuous flow production of p-hydroxystyrene from p-coumaric
acid for more than 10 h with conversions >98% and space time yields of 57.7 g-(d-L)7'.
Furthermore, modulation of the degree of crosslinking in the hydrogels resulted in a defined
variation of the rheological behavior in terms of elasticity and mesh size of the corresponding
materials. This work is addressing the demand of sustainable strategies for defunctionalization of
renewable feedstocks.

Keywords: biocatalysis; phenolic acid decarboxylase; hydrogel; enzyme immobilization;
SpyCatcher/SpyTag; microreactor

1. Introduction

The current transformation of the chemical industry calls for a constant intensification of the use
of biomass as feedstock for the sustainable synthesis of fine chemicals. However, the high complexity
of this renewable raw material and especially the high mass fraction of oxygen in comparison to fossil
carbon resources is limiting its widespread utilization. Decarboxylation is an important method for
defunctionalization, which can be employed to alleviate these impediments [1-5].

In order to add value to ubiquitously available bio-derived phenolic acids [6-11], and to provide
alternatives to chemical methods often relying on transition metal catalysis [2,10,12], phenolic acid
decarboxylases (PADs) offer an elegant enzymatic route to catalyse the elimination of carbon dioxide
from hydroxyphenacrylic acids [13-15]. The resulting styrene derivatives are of great industrial
relevance since the terminal alkene provides a versatile handle for further chemical functionalization
or polymerization reactions [16-18]. In contrast to other (de)carboxylases, several PADs found in
bacteria [19-22] and plants [23] act on an acid-base mechanism via a quinone methide intermediate [24]
and do not require a cofactor, therefore eliminating the need of a laborious and expensive cofactor
regeneration system [25,26].

The versatility of PADs has been demonstrated by integration of the decarboxylation reaction into
biocatalytic [6,27] and chemical [28-30] reaction cascades. However, limitations can arise due to the
product inhibition [28,29] frequently observed for this class of enzymes. The transfer of the process
from batch stirred tank reactors to fluidic, micro- and macrostructured reactors can provide a viable
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solution, as the convective product removal can avoid the accumulation of high and adverse product
concentrations [31]. Therefore, much effort is currently devoted to the development of continuous
flow reactors employing immobilized enzymes [32-36]. In general, such reactors can be prepared
by anchoring the enzyme of interest on the reactor surface using a variety of chemical methods or
else by entrapment or crosslinking of the enzymes [34,37,38]. Immobilizing the enzymes on the
planar surfaces of a reactor wall can result in a single monolayer, limiting the catalytic performance.
Here, employing immobilization strategies which result in three-dimensional structures, can lead to a
significant increase of the enzymatic activity per reactor volume. This approach can be facilitated with
so-called crosslinked enzyme aggregates or crystals (CLEAs or CLECs) [39-43]. Another advantage
of this strategy is the minimization of carrier materials, so that only a small volume of the valuable
reactor space is needed for supporting structures. However, since the crosslinking process usually
relies on non-specific chemical crosslinkers, this method can lead to the inactivation of enzymes.

We have recently demonstrated the construction of self-assembling all-enzyme hydrogels
constructed from ketoreductases and glucose dehydrogenases, which were genetically fused with
either the SpyTag (ST) peptide or the SpyCatcher (SC) protein, respectively [44—46]. This highly efficient
autocatalytic bioconjugation system is based on the rapid formation of a covalent isopeptide bond
through the SpyTag-SpyCatcher complex that occurs under physiological conditions [47-50]. To render
the all-enzyme hydrogel immobilization strategy applicable to a broader range of biocatalysts, we here
report, for the first time, on the use of recombinant variants of a highly active homodimeric PAD
(molecular weight of a monomer 20 kDa) obtained from Enterobacter sp. [51]. By creating SC- and
ST-tagged PAD variants we demonstrate the fabrication of all-enzyme hydrogels. The functionality of
the novel biocatalytic materials is demonstrated by the continuous production of p-hydroxystyrene in
a microfluidic flow reactor (Figure 1).
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Figure 1. (a) Continuous synthesis of substituted styrenes from readily available bio-derived phenolic
acids through biocatalytic decarboxylation, as exemplified here for p-hydroxystyrene, is achieved by
implementation of a microreactor (b). This reactor is filled with an all-enzyme hydrogel (c) comprised
of the dimeric Phenolic Acid Decarboxylase (PAD), crosslinked via isopeptide bonds spontaneously
generated through genetically fused SpyTag/SpyCatcher complexes (d). Note that the protein hydrogel
loaded into the micro reactor (b) is stained with coomassie brilliant blue.

2. Materials and Methods

All chemicals were purchased from Sigma Aldrich (St. Louis, MI, USA) or VWR (Radnor, PA,
USA) if not stated otherwise.

2.1. Synthesis of p-Hydroxystyrene Via Wittig Reaction

For calibration curves and as positive control, p-hydroxystyrene was synthesized as described
previously (Scheme 1) [52]. In brief, potassium tert-butoxide (>98%, 2.81 g; 25 mmol) was added
to a mixture of methyl triphenylphosphonium bromide (>98%, 5.36 g; 15 mmol) in anhydrous
tetrahydrofurane THF (ACS grade, 20 mL) under argon atmosphere. The mixture was stirred for 10 min
at ambient temperature. Subsequently p-hydroxybenzaldehyde (>98%, 1.52 g; 10 mmol) dissolved in
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THF (10 mL) was added dropwise. The reaction was stirred for 4 h and the product formation was
monitored by thin layer chromatography (TLC). After quenching of the reaction mixture with saturated
NH,4Cl solution and the removal of THF under reduced pressure, the crude product was extracted with
CH,Cl; (analytical grade). The organic layer was washed with a saturated NaCl solution, dried over
anhydrous NaySOy, and after filtration and evaporation of the solvent, purified by chromatography
column (S5iOy, 5% ethyl acetate in n-hexane) to give pure p-hydroxystyrene, 834.5 mg (6.945 mmol)
in a 69.5% yield as white crystals. R¢ = 0.44 (16% ethyl acetate in n-hexane). The nuclear magnetic
resonance (NMR) spectra matched with literature data.
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Scheme 1. Synthesis of p-hydroxystyrene.
2.2. Plasmid Construction

Plasmid construction was carried out using the isothermal recombination as described by Gibson
et al. utilizing oligonucleotide primers with 20-30 bp homologous overlaps [53]. The products of
the in vitro recombination were then incubated for 1 h at 37 °C with Dpnl (New England Bioloabs,
Beverly, MA, USA) to ensure the sample did not contain any methylated DNA templates from
previous polymerase chain reactions. The purification of dissolved plasmids was carried out using
the ZR Plasmid Miniprep-Classic (Zymo Research, Freiburg, Germany). Sequences were verified by
commercial sequencing (LGC Genomics, Berlin, Germany). The sequences of the primers can be found
in Table 1. pET_PAD-His was used as a template for further cloning steps [30].

Table 1. Primers used in this study.

Primer DNA-Sequence

EMO1 GGTCATCATCACCATCATCATTAAGATCC

EMO02 GCTACCACCACCACCTTTCAGATTATC

EMO03 CCGGATAATCTGAAAGGTGGTGGTGGTAGCGTTGATACCCTGAGCGGTCTGAG

EM04 CGGATCTTAATGATGATGGTGATGATGACCAATATGTGCATCACCTTTGGTTGCTTTACC
EMO05 TGGTTGATGCATATAAACCGACCAAAGGTCATCATCACCATCATCATTAAGATCC

EMO06 CGGTTTATATGCATCAACCATAACAATATGTGCGCTACCACCACCACCTTTCAGATTATC
EMO07 CACAATTCCCCTATAGTGAGTCGTATTAATTTC

EMO08 GTGAAAGCATCTATAAAATCAGCTGGACC

pET_PAD-SC-His: The backbone encoding for a N-terminal PAD and C-terminal 6x His-Tag
separated by a glycine spacer was amplified using primers EM01 and EM02 with pET_PAD-His as the
template. This backbone was then recombined with a SC encoding insert, which had been generated
by polymerase chain reaction (PCR) using the primers EM03 and EM04 with pTF16_Lpp-OmpA-SC
as the template [48]. pET_PAD-ST-His: The C-terminal ST sequence were inserted into plasmid
pET_PAD-His by PCR using the primers EM05 and EM06. pET_ST-PAD-ST-His: The plasmid
pET_PAD-ST-His was amplified by PCR using the primers EM07 and EMO08 resulting in a linearized
plasmid backbone which was then complemented to the full-length PAD with a DNA-fragment
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containing an additional N-terminal ST-GGGGS and matching overlaps (synthesized via “GeneArt
Gene Synthesis” by ThermoFisher, Waltham, MA, USA) using Gibson assembly, as described above.

2.3. Gene Expression and Protein Production

Chemically competent Escherichia coli BL21 (DE3) were transformed with the corresponding expression
vector. E. coli cells containing the expression vector were selected overnight at 37 °C on lysogeny broth
(LB)/agar plates containing 100 pg/mL ampicillin. For expression, a single colony was transferred to a
suitable volume of LB medium containing 100 ug/mL ampicillin and the culture was incubated overnight
at 37 °C and 180 rpm in a shaking incubator. The overnight culture was then used to inoculate a 20 times
larger volume of 25 °C warm ampicillin containing LB medium. This culture was then incubated for
approximately 1.5-2 h up to an ODgg of 0.6-0.9 at 37 °C and 180 rpm. After reaching the appropriate cell
density, the culture was cooled down to 25 °C for at least 15 min and subsequently induced with isopropyl
B-D-1-thiogalactopyranoside (IPTG) to a final concentration of 0.5 mM. The induced culture was then
incubated overnight at 25 °C and then harvested by centrifugation (10,000x g, 10 min, 4 °C). The cells
were then resuspended in cold sodium phosphate buffer containing 10 mM imidazole (NPI 10; 50 mM
NaH;POy, 500 mM NaCl, 10 mM Imidazole, pH 8) and frozen at —80 °C.

2.4. Protein Purification

The cell pellets were thawed at 25 °C in a water bath and then incubated with DNasel and lysozyme
for 30 min at 25 °C. Further cell disruption was then carried out using ultrasonification. The lysate was
subsequently centrifuged for 1 h at 45,000 rcf and 4 °C. The pellet was discarded and the supernatant
sterile-filtered through a 0.45 um Durapore PVDF membrane with Steriflip® Filter Units (Merck, Darmstadt,
Germany). For protein purification, the cleared lysate was loaded on 2 x 5 mL Hisgy Ni Superflow Cartridge
(Clontech, Palo Alto, CA, USA) mounted on an Akta Pure liquid chromatography system (GE Healthcare,
Freiburg, Germany). The purification was carried out with NPI 10 as running buffer and sodium phosphate
buffer containing 500 mM imidazole (NPI 500,50 mM NaH,PO4, 500 mM NaCl, 500 mM Imidazole, pH 8)
as elution buffer. After applying the lysate onto the column, the column was washed with 2% NPI 500 and
the protein was eluted using a linear gradient (2% to 100% NPI 500). The column outflow was collected in
900 uL fractions and protein containing fractions (detected at 280 nm) were pooled. Subsequently, the buffer
was exchanged to phosphate buffered saline (PBS) using Vivaspin 20, 5000 MWCO concentrators (Sartorius,
Gottingen, Germany).

2.5. Sodium dodecyl sulfate—polyacrylamide gel electrophoresis (SDS-PAGE) Analysis

Samples were mixed with 4x SDS-PAGE loading buffer (200 mM Tris-Cl, pH 6.8, 400 mM DTT, 8%
SDS, 0.4% bromophenol blue, 40% glycerol), boiled at 95 °C for 10 min and loaded onto a 1 mm thick
SDS-PAGE gel containing 16% acrylamide. The gels were run at 100 V and stained with coomassie
Brilliant Blue G-250. PageRuler (Plus) Prestained (Thermo Fisher Scientific) was used as molecular
weight reference marker.

2.6. Determination of Decarboxylase Activity

Fifty uL of an enzyme solution in KP; buffer (25 mM KP;, pH 6) were transferred in an ultraviolet
(UV) transparent 96 well microtiter plate and 150 puL of p-coumaric acid to a final concentration of 1 mM in
KP; buffer were added. The consumption of p-coumaric acid was recorded at 294 nm using a Synergy
MX microplate reader (BioTek, Winooski, VT, USA) over a period of 10 min at 25 °C. The activity was
determined by calculating the slope in the linear range of the decrease of the absorption intensity (OD/min).

2.7. Hydrogel Prepration

Protein solutions of PAD-SC and PAD-ST/ST-PAD-ST were diluted in KP; buffer to a final total
protein concentration of 1 mM in 20 uL for analysis of ST/SC complex formation. For microrheology
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measurements a total volume of 200 uL was used and 0.2 mg/mL “dragon” green fluorescent polystyrene
microspheres (200 nm diameter; Bangs Laboratories, Fishers, IN, US) were added. Polymerization was
carried out for 1 h at 30 °C, 1000 rpm in a thermoshaker. Subsequently, the buffer was evaporated
under constant centrifugation at 2200 g for overnight at 30 °C.

2.8. Microrheology Measurements

Prior to multiple particle tracking (MPT)-analysis, the dried hydrogel samples were swollen
by adding 25 pL KP; buffer for 30 min under continuous shaking at 25 °C, 500 rpm. To perform
MPT experiments, we used green fluorescent polystyrene microspheres of 200 nm diameter as tracer
particles. Images of the beads were recorded onto a personal computer via a sSCMOS camera Zyla X
(Andor Technology, 50 {/s, Belfast, Northern Ireland) mounted on an inverted fluorescence microscope
(Axio Observer D1, Zeiss, Kohen, Germany) equipped with a Fluar 100X, N.A. 1.3, oil-immersion lens.
Movies of more than 100 fluctuating microspheres were analysed using the software Image Processing
System (iPS, Visiometrics, Terrassa, Spain) and a self-written Matlab code, based on the widely used
Crocker and Grier tracking algorithm [54].

To characterize sample heterogeneities, we examined the distribution of mean square displacements
(MSDs), known as Van Hove correlation function [55] and calculated the non-Gaussian parameter
a [56]: \

CS )N 0
3x2(1))
where x is the distance of particle center of mass along the x coordinate. This quantity is zero for
a Gaussian distribution which is expected for a homogeneous and uniform sample, while higher a
values reflect the presence of spatial heterogeneities.

2.9. High Performance Liquid Chromatography (HPLC) Analysis

All high performance liquid chromatography (HPLC) analyses were performed on an Agilent
Technologies (Palo Alto, CA, USA) 1260 Bioinert Series with autosampler and diode array detector (DAD).
P-hydroxystyrene and p-coumaric acid were detected and quantified by reverse phase HPLC using an
Eclipse XDB C18 column (5 um, Agilent) with a precolumn of the same material. The separation was
realized at 10 °C with an isocratic mobile phase consisting of 60% acetonitrile and 40% ddH,O with 0.1%
(v/v) trifluoroacetic acid. The flow rate was 1.5 mL/min. Absorption was detected simultaneously at 260,
275 and 370 nm and a suitable wavelength for calibration and evaluation was chosen for each substrate.
For calibration, dilutions of p-hydroxystyrene and p-coumaric acid in the range of 0.5-5 mM were prepared.
For measurements, 150 uL of each sample were diluted with 150 pL acetonitrile additionally containing 40
uM p-hydroxyazobenzene as internal standard and 250 mM HCl prior to application.

2.10. Microfluidic Setup and Analysis of the Hydrogels Under Continuous Flow

The microfluidic reactor was prepared as previously described [44]. The upper part containing
the reaction channel was prepared by pouring of polydimethylsiloxane (PDMS) (Sylgard 184, Dow
Corning, Midland, MI, USA) over molds to generate replicas. The channel architecture featured a
straight channel which was 3 mm wide, 1 mm high and 54 mm long and a total volume of 150 uL.
To serve as spacers for later fluidic connectors, cannulas (Sterican, B. Braun Melsungen AG, Melsungen,
Germany) were integrated in the brass replica molds. The PDMS was cured at 60 °C for at least 3 h.

The microreactor was typically mounted inside an incubator (set to 30 °C), filled with 150 L 1 mM
protein solution (PAD-SC/ST-PAD-ST 2:1) and incubated for 60 min. The PDMS chips were then sealed
with a polyolefin foil (HJ-BIOANALYTIK GmbH, Erkelenz, Germany). Low pressure syringe pumps
(neMESYS 290N) equipped with 10 mL syringes were connected to a manual switching valve that
was connected to the reactor for perfusion of reaction media at a flowrate of 10 uL/min. The syringes
were filled with 10 mL substrate solution containing 5 mM of p-coumaric acid in KP; buffer and 0.01%
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(v/v) sodium azide to avoid fouling. The reactor outflow was connected to the Compact Positioning
System rotAXYS360 (CETONI, Korbussen, Germany) to allow for automatic fractioning into 96-well
plates, previously loaded with 150 uL 250 mM HCI in acetonitrile to stop all enzymatic reactions and
40 uM p-hydroxyazobenzene used as standard for internal calibration. The flow was generated using
a CETONI neMESYS Base module. Syringe pump and positioning system were controlled by the
QmixElements-Software. The flow modules were connected via tubing (inlets: silicone Tygon tubing
R3603, ID = 1.6 mm, Saint-Gobain, Cavaillon, France; outlets: conventional PTFE tubing, ID = 0.5 mm).

3. Results and Discussion

In order to develop a PAD-based all-enzyme hydrogel, we initially generated expression plasmids
for PAD variants that were genetically fused with polypeptide domains of SC or ST. Overexpression in
E. coli and purification via an additional 6x His-Tag allowed to obtain the biocatalytically active
recombinant proteins in near homogeneous purity, as judged from SDS-PAGE analysis (Figure 2a).
This high purity allowed us to later produce materials with precisely defined properties. All variants
expressed with very high expression yields >100 mg/L culture in a non-optimized process. To assess
the catalytic performance of these PAD species, a first benchmark test was performed following the
decrease of substrate by monitoring its absorption at 294 nm. The results in Figure 2b show the direct
comparison of the activity of the various enzyme variants to convert the model substrate p-coumaric
acid. It is clearly evident that all variants show comparable activities, however, the addition of one or
two tags slightly decreased the activity as compared to the enzyme without an additional tag (dark
blue bar, Figure 2b).

® ®
4 o
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Figure 2. Variants of phenolic acid decarboxylase (PAD) from Enterobacter sp. containing either one or
two SpyTag (ST) or one SpyCatcher (SC) were expressed in Escherichia coli, purified and tested for their
activity towards p-coumaric acid. Note that all proteins carry a C-terminal 6x His-Tag. (a) Denaturing
16% SDS-PAGE analysis of the purified PAD constructs. The PAD variants used here are homodimers in
their native form. Lane 1: PAD (20 kDa), Lane 2: PAD-ST (22 kDa); Lane 3: ST-PAD-ST (24 kDa); Lane
4: PAD-SC (32 kDa); Lane 5: PageRuler Prestained Protein Ladder (Thermo Scientific). (b) Enzymatic
activity at 25 °C in umol,ca/(tmolpap min) of the four differently tagged PAD variants against 1 mM
p-coumaric acid (pCA) as substrate, determined by an absorbance based depletion assay.

Since the PAD enzyme naturally occurs as a homodimer we generated variants with one (PAD-ST)
or two SpyTags (ST-PAD-ST) in order to study self-assembly properties with the complementary
partner containing one SpyCatcher (PAD-5C) per monomeric subunit. This strategy should allow us to
vary the degree of crosslinking and thus mesh size of the hydrogel by adjusting the stoichiometric molar
ratios of the different enzyme variants, as illustrated in Figure 3a. Several types of PAD-hydrogels
(H1-H4, Figure 3) were produced. For type H1 hydrogel, only PAD-SC and ST-PAD-ST were mixed
in a 2:1 molar ratio, which should result in the highest possible degree of crosslinking. For type
H2, prepared with a ratio of 4:2:1 of PAD-SC:PAD-ST:ST-PAD-ST, a lower degree of crosslinking was
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expected. Likewise, type H3, formed from a molar ratio of 6:4:1 of PAD-SC:PAD-ST:ST-PAD-ST, should
display a further reduced degree of crosslinking. In type H4, where no double-tagged ST-PAD-ST was
used and the PAD-SC:PAD-ST ratio was adjusted to 1:1, linear chains of crosslinked proteins should be
formed without any branching points.

H1 H2 M 1 2 3 4

180 kDa

ré > 70 KDa —— ——— -
b 55 kDa ——Se—
— —— — - ®
35 kDa —— — &

H3. H4

\ 2 Y 15 kDa —

(a) (b)

Figure 3. (a) Different types of PAD-Hydrogels (H1-H4) with different degrees of crosslinking can be
prepared by using different stoichiometries of the SC/ST-tagged PAD variants. The various different
hydrogels are depicted here as simplified and idealized 2D-representations with the individual building
blocks approximately drawn to scale. The molar ratios of PAD-SC:PAD-ST:ST-PAD-ST were 2:0:1 (H1),
4:2:1 (H2), 6:4:1 (H3), 1:1:0 (H4). For each assembly, one repeating unit within the gel is highlighted.
(b) Denaturing 16% SDS-PAGE analysis of the various types of hydrogels (H1-H4). The assembly
reaction was carried out for 30 min at 30 °C and 1000 rpm and was quenched by the addition of 4x
SDS-PAGE loading dye and incubation at 95 °C for 10 min.

To evaluate the ST/SC coupling in these systems, the formation of the covalent isopeptide bond
was monitored by SDS-PAGE analysis (Figure 3b). Indeed, the expected dimeric and trimeric PAD
conjugates were clearly formed. As expected, the ST-PAD-ST variant, which contains two crosslinking
handles, formed trimeric conjugates with monomers of the PAD-SC, as indicated by the dominant
band of approximately 87 kDa in lane H1. This result also proves the accessibility of both the N- as
well as C-terminal SpyTag peptide in the ST-PAD-ST construct. In contrast, no higher conjugates were
observed when single-tagged PAD-ST was used (lane H4).

Microrheological experiments were carried out to confirm the polymeric nature of the hydrogels
and to quantitatively determine the degree of crosslinking in the various H1-H4 materials in order
to identify the most stable gel for the subsequent flow experiments (Figure 4). All hydrogels were
obtained as monolithic, elastic materials with rheological properties comparable to hydrogels prepared
from different enzymes, as reported previously by our group [44,46]. Figure 4a shows the variation of
mean square-displacements (MSDs) as a function of lag time for polystyrene particles with a diameter
of 200 nm dispersed in the hydrogel H1. All MSDs are almost independent of time (slope = 0) for
times 7 < 1 s with a narrow distribution of absolute values characterized by a non-Gaussian parameter
a ~ 1. This result is consistent with an elastic trapping of tracer particles in a homogeneous gel-like
network. Similar results were obtained for all hydrogels investigated. The calculation of the elastic
shear modulus Gy using the relation Gy = 2kgT/3rtaAr? where kg is the Boltzmann constant, T the
temperature, a the tracer particle radius and Ar? the time-independent average MSD exhibits a gradual
decrease of Gy from 33 + 5 via 17 £ 2 and 16 + 1 to 11 + 1 Pa for H1, H2, H3 and H4, respectively.
The higher elasticity obtained for H1 is presumably due to the fact that H1 contains the highest amount
of divalent ST-PAD-ST whereas H4 is built solely from fusion proteins with only two binding valences,
which suggests in the latter case the occurrence of much less crosslinking events. Finally, we directly
determined the mesh size £ of the network according to the classical theory of rubber elasticity with

Go = %T and we found a significant £ increase from 50 + 3 nm for H1 to 73 + 3 nm for H4 (Figure 4b),
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which corresponds with a decrease of the crosslinking proportion. Hence, the significantly larger
elasticity and smaller mesh size of H1 reflects the greater connectivity that originates from the higher
amounts of ST-PAD-ST providing four valences as branching points. Hydrogel H1, as the most tightly
connected material, was selected as the formulation for the subsequent experiments in the flow reactor.
Altogether, this study also illustrates that the rheological properties of the novel all-enzyme hydrogels
can be rationally modulated by adjusting the stoichiometric crosslinker ratio.

80
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Figure 4. Multiple particle tracking (MPT) microrheology analysis of local viscoelastic properties of
different types of PAD hydrogels (H1-H4, specified in Figure 3). (a) Mean square displacements (MSDs)
(black curves) of individual fluorescent marker beads of diameter 200 nm dispersed in the hydrogel H1.
The red curve is the ensemble-average MSD. (b) Comparison between mesh size values & as deduced
from MPT experiments for the different hydrogels. All experiments were carried out in duplicates.
Note that the experimentally determined mesh correlate with the fraction of crosslinking proposed for
hydrogel samples H1-H4.

To shed light on the assembly kinetics, the ST/SC-mediated gelation of PAD-SC with the
double-tagged ST-PAD-ST was further investigated by SDS-PAGE analysis (Figure 5). The results
indicated that the coupling reaction is almost completed within the first few minutes after mixing.
In contrast, no polymerization occurred even after prolonged incubation times in control reactions
with variants lacking complementary binding sites (lane 10 in Figure 5). Hence, these results clearly
confirm and emphasize the excellent coupling capabilities of the PAD variants, thereby emphasizing
the specificity and high reaction rates of the ST/SC system [47].

Incubation time (min) 1 min 5min 10 min 30min 120 min 120 min
PAD-SC X X X X X X X
ST-PAD-ST X X X X X X
PAD X X
180kDa _ T ye— — - -
70 kba : —_— * _— — ~— @ ST-PAD-ST/(PAD-SC), (88 kDa)
55 kDa : o
- ‘ - - B ©) ST.PAD.ST/PAD.SC (56 k[)a)
35 kDa
— — — PAD-SC (32kDa)
25 kDa
— — e —— — & ST-PAD-ST (24 kDa)
15 kDa * e — . PAD (20 kDa)
C——

Figure 5. Kinetic analysis of the ST/SC-conjugation of ST-PAD-ST and PAD-SC analyzed by coomassie
stained 16% SDS-PAGE. Stoichiometric amounts (30 pmol) of both enzymes were incubated for up to 2h
at 30 °C. The reaction was stopped by the addition of 4x SDS-PAGE loading buffer and heat inactivation,
which leads to denaturation of non-covalent protein interactions. As expected, the covalent bond
between ST-PAD-ST and PAD-SC is rapidly formed upon mixing, leading to the formation of dimeric
and trimeric conjugates with sizes of 55 kDa and 87 kDa, respectively. Note that PAD-SC (32 kDa) does
not react with PAD (20 kDa) even after a prolonged incubation of 120 min (lane 10).
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We then used the polymerization of the PAD variants to produce biocatalytic hydrogels that
were mounted into miniaturized flow reactors in order to facilitate the continuous synthesis of
p-hydroxystyrene (Figure 6). To this end, syringes containing a 5 mM solution of p-coumaric acid were
connected to PDMS microreactors loaded with hydrogel H1 and the substrate solution was perfused
at a flow rate of 10 uL-min~! with automated sampling of the outflow (Figure 6a). The microreactor
architecture featured a reactor volume of 150 uLL with dimensions of 3 X 1 X 54 mm. The PAD-based
all-enzyme hydrogel showed a stable and almost complete conversion for time periods of >10 h
(Figure 6b) with only traces of the substrate remaining in the product samples, as determined by reverse
phase HPLC (inset in Figure 6b). The high and constant conversion rates even after longer runtimes
indicate that no significant enzyme leaching takes place, which would otherwise lead to a constant
decline in turnover. Without further optimization, a typical space time yield (STY) of 57.7 g-(d-L)!
with conversions >98% was obtained. Hence, this initial proof-of-concept study clearly indicated
that the novel PAD-based all-enzyme hydrogels hold a great potential for further optimization and
application in biocatalysis.
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Figure 6. Continuous flow, biocatalytic production of p-hydroxystyrene using PAD hydrogel-loaded
microreactors. (a) Microfluidic set-up used in this study. (b) Time dependent synthesis of
p-hydroxystyrene, determined from the outflow of the enzyme-loaded reactor that was perfused
with 5 mM substrate at a flowrate of 10 ul/min at 25 °C. The PDMS reactor had a total volume of 150 pL.
The shown data was determined by reverse phase HPLC (inset) from two separate experiments.

4. Conclusions

In conclusion, we herein describe a novel material, a self-assembling all-enzyme decarboxylase
hydrogel, that was used for biocatalytic flow synthesis of p-hydroxystyrene, which in turn can be
used for the synthesis of fine chemicals and pharmaceuticals. We here demonstrate for the first
time, that a phenolic acid decarboxylase from Enterobacter sp. can be genetically fused with either
ST or SC polypeptide domains without compromising the enzyme’s catalytic performance. We also
demonstrate that the biocatalytic hydrogels can be adjusted in terms of their rheological properties
and mesh size by simply varying the stoichiometric molar ratio of the interconnecting fusion partners.
Further in-depth studies of the modular composition and the resulting changes in polymer properties
will be used to optimize the biocatalytic performance and compare it with other immobilization
methods. The proof-of-concept results presented here already clearly show that the PAD-based
hydrogels are excellently suited for applications in flow biocatalysis. This enabled us to generate
a conversion >98% in a straight channel reactor with a volume of 150 uL and a space-time yield of
57.7 g-(d-L)~!. Therefore, our study does not only expand the scope of all-enzyme hydrogels by adding
a new enzyme with high application relevance to the toolbox. The present work also suggests that our
approach holds great potential for the establishment of advanced microfluidic manufacturing processes
that include numbering up of chips to improve productivity [46] or the implementation of biocatalytic
and chemoenzymatic cascades in machine-assisted compartmentalized production processes [32].
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