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Abstract: Novel two-dimensional (2D) membranes have been utilized in water purification or
seawater desalination due to their highly designable structure. However, they usually suffer from
swelling problems when immersed in solution, which limits their further applications. In this study,
2D cross-linked MXene/GO composite membranes supported on porous polyamide substrates are
proposed to improve the antiswelling property and enhance the ion-sieving performance. Transition-
metal carbide (MXene) nanosheets were intercalated into GO nanosheets, where the carboxyl groups
of GO combined the neighboring hydroxyl terminal groups of MXene with the formation of -COO-
bonds between GO and MXene nanosheets via the cross-linking reaction (−OH + −COOH = −COO−
+ H2O) after heat treatment. The permeation rates of the metal ions (Li+, Na+, K+, Al3+) through the
cross-linked MXene/GO composite membrane were 7–40 times lower than those through the pristine
MXene/GO membrane. In addition, the cross-linked MXene/GO composite membrane showed
excellent Na+ rejection performance (99.3%), which was significantly higher than that through pristine
MXene/GO composite membranes (80.8%), showing improved ion exclusion performance. Such a
strategy represents a new avenue to develop 2D material-derived high-performance membranes for
water purification.

Keywords: membrane separation; two-dimensional membrane; MXene; GO; ion rejection; swelling;
supported membrane

1. Introduction

Membrane-based separation technology has played an increasingly important role
in water purification because of its cost-effectiveness, energy efficiency, and easy opera-
tion [1–5]. In particular, two-dimensional (2D) nanosheet membranes have attracted intense
attention due to their excellent mechanical properties and adjustable molecule/ion sieving
ability [6–11]. In recent years, 2D membranes have been widely studied in molecular sieving,
including gas, metal ions, solvent, dye, etc. [12,13].

As one kind of crucial 2D nanomaterial, graphene oxide (GO), has great potential for
separation application processes [14]. Due to their superior ion selectivity, good mechanical
strength, versatile chemical modification, and antifouling potential, GO membranes are
promising for water purification [6,15–21]. Moreover, MXene, an emerging family of 2D
transition metal carbides, and nitrides, breaks new ground for membrane separation [7,22–27],
whose abundant surface functional groups provide more possibilities for structural design.
Ti3C2Tx, as the most studied MXene (its detailed structure can be found in Figure S1 of
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Supporting Information), has been used to assemble 2D lamellar membranes for different
separation applications [7,28–30], especially in water treatment [22,28,30].

However, there is one big challenge for 2D lamellar membranes applied in the field
of ion rejection. When immersed in water or salt solutions, most 2D membranes tend
to absorb water molecules, leading to increased d-spacing and thus decreased stability
and ion rejection performance, which is known as the notorious swelling problem [31–36].
Hence, suppressing the swelling is of great importance to improve the ion sieving ability
of 2D membranes. In the last few years, many strategies have been used to enhance the
water stability of GO membranes, and the most common method is to incorporate other
nanomaterials, such as graphene, graphitic carbon nitride, or carbon nanotubes into the
GO membranes [37–39]. Great efforts have been made to solve the swelling problems of
2D membranes, mainly by fixing the interlayer spacing using cross-linking agents [40–42].
However, most cross-linking processes are always too complicated to scale up. Therefore,
new ways are needed to improve the antiswelling properties of 2D membranes.

Here, we propose MXene (Ti3C2Tx)-GO composite membranes for ion sieving. It was
reported that Ti3C2Tx could easily enter the graphene sheet layer when Ti3C2Tx was com-
bined with graphene [43]. Furthermore, there are abundant surface functional groups
(O, -OH, and -F) on the nanosheet surface of MXene. The carboxyl groups on the GO
nanosheets [21] are expected to react with the hydroxyl groups of MXene nanosheets to
form -COO- in the interlayer sub-nanochannels. As a result, the swelling behavior of
the MXene-GO membranes would be hindered, which is beneficial for the MXene-GO
membranes to block metal ions. As shown in Figure 1, herein, the cross-linked MXene/GO
composite membranes have been successfully prepared via −OH + −COOH = −COO− +
H2O between the neighboring GO nanosheets and MXene nanosheets after heat treatment
followed by vacuum filtration of the mixed MXene and GO solutions. The cross-linked MX-
ene/GO composite membranes exhibit a significantly improved ion sieving performance
with suppressed swelling compared to the pristine MXene/GO composite membranes
before cross-linking.
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Figure 1. Cross-linking process between the neighboring GO nanosheets and MXene nanosheets in
the MXene/GO composite membranes.

2. Materials and Methods
2.1. Materials

The preparation of the MXene nanosheet solution, the raw materials used in this
process and the calculation of its concentration are described in our previous work [44]. The
GO nanosheets were purchased from Nanjing Jicang Nano Technology Co. Ltd., Nanjing,
China. The porous polyamide was obtained from Jinteng Experimental Equipment Co.,
LTD (Tianjin, China) with a diameter of 0.45 mm and pore size of 0.22 µm.

2.2. Preparation of the Pristine MXene/GO Composite Membranes

A certain amount of MXene solution (1 mg mL−1) was mixed with 25% GO solution
(1 mg mL−1) and stirred for 30 min to obtain a homogenous mixed MXene/GO solution.
Further studies on composite membranes with various ratios are still ongoing. The pristine
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MXene/GO composite membranes were prepared by vacuum-assisted filtration of the
MXene/GO solution on the porous polyamide substrate. Then the membranes were dried
in a vacuum dryer at room temperature (25 ◦C) for 12 h. During membrane preparation, the
length of time of vacuum-assisted filtration will affect the tightness between the nanosheets,
and thus affect the ion rejection performance of the membranes. Therefore, we strictly
ensured a uniform vacuum-assisted filtration time of each membrane to eliminate this factor.

2.3. Preparation of the Cross-Linked MXene/GO Composite Membranes

After room temperature drying, the membrane was transferred to a drying oven for
cross-linking treatment, where the oven temperature was controlled exactly at 170 ◦C
with feedback mode via thermocouple. Then the cross-linked MXene/GO composite
membranes were obtained after heat treatment at 170 ◦C for 12 h in a vacuum drying
oven for cross-linking followed by cooling down to room temperature. The membrane
thicknesses before and after heat treatment were 447 nm and 317 nm, respectively (detailed
calculation is shown in the Supplementary Note S1).

2.4. Ion Permeation

The measurement of the ion permeation of the MXene/GO composite membranes
was carried out via a homemade U-shaped device (Figure 2a). Before measurement, the
membranes were sealed in the middle of the device, and the feed cabin and permeation
cabin were filled with salt solution (0.2 M) and DI water, respectively. In addition, the solu-
tion in both cabins was magnetically stirred to avoid the concentration polarization effect
near the membrane. The ion permeation rates were calculated via the ionic conductivity
detected by the ion conductivity meter (DDSJ-319L, Shanghai Leici Instrument Factory,
Shanghai, China) (Figure 2b). Calculation details of the ion rejection are described in our
previous work [44].
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Figure 2. (a) The home-made U-shaped device for ion permeation test. (b) Photo of the ion conductor
meter device.

2.5. Characterizations

The atomic force microscopy (AFM) images were obtained using a Bruker Dimension
Icon scanning probe microscope (SPM) in PeakForce tapping mode. The scanning elec-
tron microscopy (SEM) images were obtained from the Hitachi SU8220 device (Ibaraki,
Japan). The water contact angle was measured using an automatic contact angle measur-
ing instrument (Biolin, Attension Theta, Gothenburg, Sweden). The X-ray photoelectron
spectroscopy (XPS) analysis was carried out using a theta probe spectrometer (Thermo
Fisher, Brno, Czech Republic) with monochromatic Al-Kα radiation (1486.6 eV). Raman
spectroscopy was performed on a Renishaw inVia Reflex Raman microscope (London,
England) with 633 nm laser excitation. The FTIR characterization was carried out using a
Thermofisher IS50 spectrometer (Brno, Czech Republic) in attenuated total reflection (ATR)
mode in the wavenumber range of 400–4000 cm−1. The X-ray diffraction (XRD) analysis
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was performed using Rigaku Smart Lab X-Ray Diffractometer (Japan) with filtered Cu-Kα

radiation (40 kV and 40 mA, λ = 0.154 nm).

3. Results and Discussion
3.1. Characterization of the MXene Nanosheets and GO Nanosheets

The AFM images (Figure 3a–d) and the SEM images (Figure 3e–h) of the MXene and
GO nanosheets indicate that the MXene nanosheets exhibited an average thickness of
~1.3 nm with a lateral size in the range of several hundreds of nanometers to a few microns,
while the average thickness of the GO nanosheets was ~1.2 nm with lateral dimensions
ranging from a few microns to a dozen microns.
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To further characterize the materials, XPS analysis of the MXene and GO nanosheets
was conducted. The XPS spectra shown in Figure 4a,b reveal that the MXene nanosheet
is made up of C, O, F and Ti, while the GO nanosheet contains C and O. Furthermore,
it was identified from Figure 4c,d that MXene was rich in terminating functional groups,
while GO was rich in groups of −COOH, −OH, and C−O−C. In particular, the hydroxyl
groups on the MXene nanosheets and the carboxyl groups on the GO nanosheets made
cross-linking possible between the neighboring GO nanosheets and MXene nanosheets in
this composite membrane.
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3.2. Characterization of the MXene/GO Composite Membranes

The AFM (Figure 5a,b) and SEM (Figure 5c,d) images show that the surface of the
cross-linked MXene/GO composite membranes became significantly rougher after thermal
treatment. The roughness parameters of Rq (root-mean-square roughness) and Ra (arith-
metic average roughness) increased from 96 and 78 nm to 143 and 116 nm, respectively.
Besides that, the water contact angle (Figure S2) of the cross-linked MXene/GO composite
membranes slightly increased compared to the pristine MXene/GO composite membranes,
due to the esterification during cross-linking between the neighboring MXene nanosheets
and GO nanosheets, as well as the dehydration and decrease of oxygen-containing func-
tional groups in the crosslinking process. The increased number of hydrophobic channels
in the cross-linked MXene/GO composite membrane were also more conducive for the
blocking of hydrated ions.
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composite membranes surface and (d) cross-linked MXene/GO composite membranes surface.

To further prove the formation of the −COO− bonds, a comparison of the XPS analysis
results of the pristine MXene/GO composite membrane and the cross-linked MXene/GO
composite membrane was performed. The O 1s region of the pristine MXene/GO composite
membrane shown in Figure 6 exhibited that the fraction of TiO2 of the pristine MXene/GO
composite membranes increased only slightly after thermal treatment, indicating that the
composite membrane was barely oxidized, showing excellent stability. In addition, the
fraction of −OH of the pristine MXene/GO composite membranes was 39.35%. After the
thermal cross-linking process, the −OH fraction decreased to 21.71%. Although it was not
enough to prove that the amount of -OH had definitely decreased because the fractions
mentioned here are relative, considering that the amount of stable C=O does not change
during thermal treatment, the ratio of −OH to C=O fraction decreases from 1.82 to 0.73,
indicating that the -OH content of the composite membrane indeed decreases after thermal
treatment. The Raman results (Figure 7a) also demonstrated this change. The peak at
284 cm−1 was assigned to the Eg mode of Ti3C2(OH)2 [44] and compared to the pristine
MXene/GO composite membrane, this peak of the cross-linked MXene/GO composite
membrane decreased obviously, showing the consumption of -OH. More importantly, the
−COO− peak appeared with a fraction of 4.16% in the cross-linked MXene/GO composite
membrane, as shown in Figure 6b. Furthermore, compared to the FTIR result of the pristine
MXene/GO composite membrane shown in Figure 7b, an obvious peak at the wavenumber
of ~1091 cm−1 can be found in that of the cross-linked MXene/GO composite membrane,
which can be attributed to the stretching vibrations of the −COO− bond, further indicating
the formation of −COO− bonds between the MXene nanosheets and GO nanosheets in
the cross-linked MXene/GO composite membrane, which further confirms the process
of esterification.
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Furthermore, the XRD analysis has also proved the cross-linking reaction within the
MXene/GO composite membrane. As shown in Figure 8a, the peak of the GO nanosheets
was almost absent in the XRD patterns of the MXene/GO composite membranes because
of their low content compared to the MXene nanosheets. Therefore, only the peak belong-
ing to the MXene nanosheets was chosen as the representative peak of the MXene/GO
composite membrane for further analysis. As shown in Figure 8b and c, the d-spacing of
the MXene/GO composite membrane calculated from Bragg’s equation slightly decreased
from 1.28 to 1.26 nm after cross-linking in dry state. The d-spacing of the pristine MX-
ene/GO composite membrane expanded to 1.60 nm after immersing in water for 20 h,
due to swelling, while the d-spacing of the cross-linked MXene/GO composite membrane
could be maintained at 1.51 nm even in a wet state, which can be attributed to the swelling
being suppressed, due to the cross-linking reaction via −OH + −COOH = −COO− +
H2O. Moreover, the interlayer spacing change of the membrane with time of both the
pristine and the cross-linked MXene/GO composite membranes is shown in Figure S3
in Supporting Information. Both of the d-spacings increased with the length of time of
membrane immersion in water, due to avoidable swelling of the lamellar membrane. The
d-spacing could almost reach a steady value when the immersion time was longer than
2 h. However, it should be noted that the interlayer spacing of the cross-linked MXene/GO
composite membrane was much smaller than that of the pristine one due to the obviously
suppressed swelling.
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Figure 8. (a) XRD patterns of the MXene/GO composite membrane, GO nanosheets and MXene nanosheets. (b) XRD
patterns of the pristine and cross-linked MXene/GO composite membrane in dry and wet state. (c) The d-spacing of the
pristine and cross-linked MXene/GO composite membranes in dry and wet state.

3.3. Ion Exclusion Performance of the MXene/GO Composite Membranes

The permeation rates of four kinds of metal ions through the pristine MXene/GO
composite membranes and cross-linked MXene/GO composite membranes were mea-
sured. As shown in Figure 9, the pristine MXene/GO composite membranes offered
permeation rates of Li+ (hydrated diameter of 7.64 Å), Na+ (hydrated diameter of 7.16 Å),
K+ (hydrated diameter of 6.62 Å), Al3+ (hydrated diameter of 9.50 Å) [28] of 0.395, 0.191,
0.0833 and 0.226 mol h−1 m−2, respectively. On the basis of the previous XRD results
shown in Figure 8c, the effective nanochannel height for mass transport channel between
neighboring nanosheets can be calculated from the d-spacing (deduced by Bragg equation)
by subtracting the thickness of nanosheet, where both the monolayer MXene and the few
layered GO nanosheets are ~1 nm [44]. Therefore, the effective distances for mass trans-
port in the pristine MXene/GO composite membrane and the cross-linked MXene/GO
composite membrane immersed in solution are 6.0 Å and 5.1 Å, respectively. It was found
that the swollen pristine MXene/GO composite membrane with the effective nanochannel
height of 6.0 Å had no obvious exclusion performance for the metal ions due to the partial
dehydration of the dehydrated ions [34].
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Figure 9. (a) The scatter diagram of permeation rates of Li+, Na+, K+ and Al3+ through the pristine
MXene/GO composite membrane and cross−linked MXene/GO composite membrane. The hollow
sphere curve represents the ion penetration rate of the pristine MXene/GO composite membrane,
while the solid one represents the ion penetration rate of the cross−linked MXene/GO composite
membrane. (b) The histogram of permeation rates of Li+, Na+, K+ and Al3+ through the pristine
MXene/GO composite membrane and cross-linked MXene/GO composite membrane.

In contrast, the cross-linked MXene/GO composite membranes exhibited significantly
reduced ion permeation rates, where the permeation rates of Li+, Na+, K+, Al3+ were
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(5.71, 0.688, 1.58 and 0.57) × 10−2 mol h−1 m−2, respectively, which were about one to
two orders of magnitudes lower than that through the pristine MXene/GO composite
membranes. In other words, the ion rejection performance of the cross-linked MXene/GO
composite membrane was greatly improved, due to the formation of −COO− bonds,
which is beneficial for obtaining relatively stable sub-nanochannels in solutions after
cross-linking. Moreover, it should be noted that all of the hydrated metal ions would
partially dehydrate when entering the nanochannels of the membrane. Therefore, the
transport behavior of the hydration ions through the membrane with a narrower interlayer
spacing is determined by the energy barrier associated with dehydration. That is why
the permeation rates of K+, Na+, Li+ and Al3+ did not show this tendency with the order
of their hydration diameters, which was also in accordance with our previous work [44].
Herein, the permeation behavior of an ion was mainly determined by the hydration size,
so, the large, hydrated diameter (9.50 Å) of Al3+ resulted in a low permeation rate. Al3+

needed to overcome a large dehydration energy barrier through the nanochannels of the
cross-linked MXene/GO composite membrane, and more bound water molecules needed
to be removed, leading to the large drop of the permeation rate of Al3+. On the other hand,
the higher positive charge of Al3+ would promote its transport through the membrane
due to the Donnan effect, because the membrane surface is negatively charged, which
is not beneficial for ion rejection. From this point of view, the 3+ charge on the Al ion
barely influenced its large drop on permeation rate, but the relatively higher dehydration
energy barrier of Al3+ worked. It can be seen from Table S1 in Supporting Information
that the cross-linked MXene/GO composite membrane prepared in this work had good
ion rejection performance. Additionally, as is known, the ion permeation rate increases
with the decreasing membrane thickness due to an unavoidable defect. However, the ion
permeation rate even decreased through the thinner MXene/GO composite membrane after
cross-linking, which can be attributed to the better membrane structure with suppressed
swelling rather than the influence of thickness change.

4. Conclusions

We propose a type of cross-linked MXene/GO composite membrane with enhanced
ion exclusion performance. The hydroxyl groups on the MXene nanosheets and the car-
boxyl groups on the GO nanosheets within the composite membrane tend to react and form
–COO– bonds to connect neighboring nanosheets tightly even in water or salt solutions,
showing obviously suppressed swelling, which the XRD results can intuitively confirm.
The XPS, FTIR and Raman characterizations confirm the decrease of hydroxyl groups and
the formation of −COO− bonds, demonstrating the occurrence of esterification during
cross-linking of the MXene/GO composite membrane. Compared to that of the pristine
membranes, the permeation rate of the ions (K+, Na+, Li+, Al3+) through the cross-linked
MXene/GO composite membranes was reduced by at least one order of magnitude, i.e.,
the ion sieving performance of the membranes was improved 7–40 times after cross-linking
treatment. Therefore, such cross-linked MXene/GO composite membranes represent
a new avenue to develop 2D material-derived high-performance membranes for water
purification.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/membranes11080621/s1, Figure S1: The schematic illustration of the structure of MXene
(Ti3C2Tx); Figure S2: The water contact angle of five randomly selected points on the pristine
MXene/GO composite membrane and cross-linked MXene/GO composite membrane; Figure S3:
(a) XRD patterns of the pristine MXene/GO composite membranes after immersing in water with dif-
ferent time. (b) XRD patterns of the cross-linked MXene/GO composite membranes after immersing
in water with different time. (c) Trace of the d-spacing of the pristine and cross-linked MXene/GO
composite membranes with different immersing time; Table S1. Comparison of desalination per-
formance of various lamellar membranes from literatures; Note S1: The calculation method of the
thickness of the pristine MXene/GO composite membrane.
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