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Abstract: Mercury (Hg) is one of heavy metals with the highest toxicity and negative impact on
the biological functions of living organisms. Therefore, many studies are devoted to solving the
problem of Hg separation from wastewater. Membrane-based separation techniques have become
more preferable in wastewater treatment area due to their ease of operation, mild conditions and also
more resistant to toxic pollutants. This technique is also flexible and has a wide range of possibilities
to be integrated with other techniques. Graphene oxide (GO) and derivatives are materials which
have a nanostructure can be used as a thin and flexible membrane sheet with high chemical stability
and high mechanical strength. In addition, GO-based membrane was used as a barrier for Hg vapor
due to its nano-channels and nanopores. The nano-channels of GO membranes were also used
to provide ion mobility and molecule filtration properties. Nowadays, this technology especially
nanofiltration for Hg removal is massively explored. The aim of the review paper is to investigate
Hg removal using functionalized graphene oxide nanofiltration. The main focus is the effectiveness
of the Hg separation process.

Keywords: mercury; nanofiltration; graphene oxide

1. Introduction

Mercury (Hg) is one of heavy metals with the highest toxicity and negative impact
on the biological functions of living organisms (mainly humans) [1]. Mercury contami-
nation in the environment pollutes water systems mainly due to atmospheric deposition
(e.g., rainfall) and effluents from industrial processes primarily as Hg [2,3]. There are a
lot of potential industries that contribute to mercury pollution such as chloroalkyl com-
pound, vinyl chloride, plastics, electrical equipment, batteries, pulp and paper, and paint
manufacturing [4].

Hg pollution in waterways is a well-known problem and some countries such as
U.S.A., Brazil, Indonesia, India, Iraq and China have detected mercury at harmful lev-
els [5–7]. Potentially harmful concentrations of Hg has also been observed in drinking
water supplies [6,7] as well as reservoirs that could serve as drinking water sources [8–10].
The World Health Organization has set 1 ppb as the maximum concentration of mercury in
drinking water while the US EPA has set 2 ppb. The challenges associated with mercury
removal are the generation of brine solutions or waste products that have to be disposed
of or need regeneration, adding an additional process [11]. Therefore, Hg recovery in a
more concentrated form is preferred and offers more benefits. Hg is typically present in
very low concentrations along with other pollutants that will compete in e.g., chemical
precipitation, ion exchange or adsorption processes, increasing the amount of material that
must be processed to remove Hg. This introduces secondary pollution when chemical or
biological treatment is used, lowering drinking water quality

Membrane technology has experienced rapid development of late, mainly due to its
advantages and potential for various applications in many sectors [12–19]. In addition
to providing a selective layer for one of the reaction components, the membrane can also
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act as a catalyst support and even be catalytically actively itself. Therefore, membrane
technology is widely applied in the world of synthesis and waste treatment [20–25].

One of the membrane technology techniques considered to separate ions is nanostruc-
tured membrane technology. Graphene is one of the materials that has a nanostructure
can be used as a thin and flexible membrane sheet with high chemical stability and high
mechanical strength [23–30]. Monolayer graphene membranes are accepted to be able to re-
move metal ions very effectively and efficient for wastewater due to their nanopores [31,32].
Graphene membranes with functionalized nanopores have proven separation performance.
The metal ion separation performance is promoted by nanopore size, temperature, driv-
ing pressure and carboxyl groups on the membrane surface, which increase the selectiv-
ity [31,32]. In addition, one of the graphene derivatives that is most applied to separate
metal ions is graphene oxide (GO), which has a two-dimensional structure. Nowadays,
GO membranes are a widely used kind of nanomaterial sheet for wastewater processing
in industry due to their high selectivity properties for the separation the matrix ions of
samples. Besides, many studies have modified the surface of the GO membranes, therefore
their metal ion separation performance is increased significantly [33,34]. Furthermore, the
laminated GO functions as a two-dimensional water channel due to its planar construction,
good dispersity, and hydrophilicity [35,36]. GO membranes have nano-channels to provide
ion mobility and molecule filtration properties [37].

Mercury removal has been long term task for industries. There are various ways
to remove mercury from wastewater so that it will not end up in our drinking water.
This paper will briefly discuss general trends in mercury removal from aqueous solutions.
Special attention will be given to nanofiltration using GO membrane materials. The
effectivity of separation and also the benefits and drawbacks of GO-based nanofiltration
will also be deeply discussed in the next sections.

2. The Toxicity of Mercury and Its Removal

Mercury is a neurotoxin that can cause damage to the central nervous system. High
concentrations of mercury cause impairment of pulmonary and kidney function, chest
pain and dyspnoea [38]. The classic example of mercury poisoning is the Minamata Bay
incident in Japan [39]. Moreover, Hg accumulated in the body of organisms can attack
the central nervous system, and excess exposure of the body for a long time can have
a hard impact on human organs such as brain damage, gastrointestinal damage, and in
extreme cases, death [11]. The dangers of mercury exposure have led to an increase of
international restrictions on mercury levels in waterways [11]. Mercury can be present as
elemental mercury (Hg0), oxidized mercury (Hg2+), and particulate mercury (Hgp) [40,41].
All orbitals of Hg0 are filled with electrons and it has no unoccupied orbitals (5d106s2 outer
electron configuration) [42]. This makes Hg0 the most difficult species to remove due to
its very high volatility, low water solubility, and relatively inertness [43–46]. On the other
hand, Hg2+ is water soluble and can easily enter water bodies and be converted into methyl
mercury (MeHg) and then accumulate in living organisms, including humans [47,48]. Hgp
has a relatively short atmospheric lifetime and usually spreads along with flue gasses [49],
causing respiratory and chromosome damage [45,50].

Mitigation of mercury pollution of drinking water can be done by direct treatment of
drinking water or treatment of pollution sources such as industrial wastewater streams
where Hg concentrations are much higher. The common methods to remove mercury
from wastewater are precipitation [51], cementation [4], ion exchange [52], adsorption [53],
nanofiltration [54], and solvent extraction [55]. Slow kinetics, low capacities due to hetero-
geneous reactions and interface transfer are the main limitations of said methods that make
development of new techniques for mercury separation interesting [56,57]. In addition,
adsorption of mercury can be carried out using several materials. Among sorbent materials,
activated carbon is a commonly used sorbent because of its high removal capacity [58].
Moreover, addition of chlorine-, iodine- and sulfur-treated activated carbon boost its ca-
pacity to capture elemental mercury [59], and the efficiency of mercury removal can also
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be enhanced by increasing the oxygen concentration [60]. Zhang et al. [54] reported that
a sulfur-functionalized polyamide-based nanofiltration membrane can effectively reduce
Hg2+ concentrations in drinking water sample from 10 ppm to a low level of 0.18 ppb
where the acceptable limit of Hg in drinking water is around 2 ppb. Single metals can also
be used to adsorb mercury. Copper and some noble metals such as gold, silver, platinum
and palladium have also been used for mercury removal. In particular, gold is preferred
for Hg removal due to its efficiency. Moreover, gold is more immune to impurities such as
organic substances or sulfur-containing species [61]. On the other hand, the efficiency of
Hg removal is highly dependent on the temperature [62]. Metal oxides such as Fe2O3, CuO
and CaO also exhibit significant mercury removal ability [63]. Specifically, MnO2-based
materials have high efficiency for mercury removal, better regeneration, and high activity
for a long time [64]. Other materials such as surfactants containing oxygen, nitrogen, and
phosphorous also show promising mercury removal capacity [65].

Another method to remove mercury is selective catalytic reduction (SCR). By SCR,
Hg0 is oxidized into Hg2+ that is easier to remove. Moreover, the catalyst will bind
chemically with mercury so that the water effluent will be mercury-free. Gold is a promising
catalyst for SCR by chlorine. Cl2 can easily chemisorb on the Au surface and will easily
oxidize mercury [66]. V2O5 is another important SCR catalyst. The presence of HCl,
strongly influence mercury adsorption and oxidation on vanadium catalysts [65]. H-ZSM-
5-supported Fe and Cu have been synthesized for SCR of mercury as Fe/HZSM-5 and
Cu/HZSM-5 have strong ability for Hg0 removal [67,68].

3. Membrane Separation for Mercury and Heavy Metals

Many researchers have developed various solutions in the area of mercury separation
from wastewater [69,70]. Several methods are used to remove mercury such as adsorption,
extraction, electrolysis, and modern ones with better performance, e.g., membrane technol-
ogy [11,70–72]. Membrane technology (ultra-, micro- and nanofiltration) work based on
the selectivity and the pore size of membranes. The separation mechanism firstly involves
adsorption prior to extraction or rejection of chemicals from the permeate part [73–76].
Adsorption is frequently used for metal ion separation due to its low cost, simple design,
and mild operation conditions.

In a membrane-based separation process, the membrane itself acts as a contactor layer
through which ion complexes and particles pass via diffusion [73,77]. The nanopores of
graphene membranes provide a significant pathway for ion penetration, therefore the ion
selectivity facilitates the metal ion separation, Furthermore, the ion diffusion of porous
graphene membranes can be enhanced by acid addition. To develop a metal ion separation
performance, the pores of a graphene membrane can be modified by using oxide functional
group derivatives [78–80]. The membrane modules often used in separation of mercury
and heavy metals are hollow fibers and sheet layers [71,81,82]. Previous researchers have
investigated various thickness and pore sizes of the membrane to enhance the mobilization
of metal ions while using an immobilized solvent to achieve a more selective separation
process [72,83,84]. However, a thick membrane still has advantages i.e., in the form of a
transverse flow contactor which is better than the parallel flow contactor that could be
more unstable. Besides, a supported liquid membrane method has drawn attention as an
alternative in extractive separation for metal ion removal or neutral molecules from dilute
solution. Such a method is more simple and offers advantages compared to conventional
extraction methods [75,85,86]. Moreover, emulsion liquid membranes are also often used
to separate mercury from wastewater and metal ion mixtures supported by trioctylamine
(TOA) [74,87,88] and bulk liquid membranes represent a potential method [83]. Further-
more, ion exchange membranes are another potential method for mercury removal [89].

A lot of research has been done in the field of mercury removal and given good mem-
brane utilization performance. Several materials can be used to separate of mercury and
heavy metal ions via membrane filtration (e.g., using polyaniline, polypyrrole, cellulose
triacetate, nylon, chitosan, polypyrrole, polyethersulfone, graphene-based membranes,
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zeolite-based membranes, polyvinylamine, etc [69,73,77,81,90,91]). Those kinds of poly-
mers have the properties which are required in membrane-based separation for mercury
removal such as low cost, high stability, high selectivity for mercury ions, thermal stability,
high chemical resistance, good ion-exchange capacity, reproducibility, high selectivity for
heavy metals, the possibility of forming coordinating ligands with mercury and adsorb
anions through electrostatic interaction or hydrogen bonding [85,92–95].

To get good separation results via a membrane-based process the separation process
is designed based on the sample source of mercury and the characteristics of the sample as
main factors. As an example, Koopman et al. [96] used a hollow fiber membrane contactor
for heavy metal separation in the phosphoric acid industry where its sample preparation
and conditions were optimized. The examples of treatments for mercury come from the
chlor-alkali industry, electrical and electronic industries (in the manufacture of mercury
vapor lamps and fluorescent tubes, batteries, electric switchgears, etc.), plastics industry (in
the manufacture of vinyl chloride), paper and pulp industry and pharmaceutical industries
which each have suitable conditions for mercury separation.

Some authors have already reported membrane-based separation processes for mer-
cury and heavy metals in various industries. Khan et al. [91] have reported a polypyrrole
polyantimonic membrane with acid-based ion exchange which is highly selective for
mercury ion extraction. Some important divalent ions including Hg2+–Zn2+, Hg2+–Ni2+,
Hg2+–Cu2+, Hg2+–Fe3+, Hg2+–Cd2+, Hg2+–Mg2+, etc. were separated using an organic-
inorganic composite system [91]. In another study [97] mercury was separated using a
supported catalytic membrane, e.g., a Mn/Mo/Ru/Al2O3 membrane which achieved
95% Hg removal at 423 K. Moreover, Ura et al. [74] used Nylon 6,6 as a support, triocty-
lamine (TOA) as a carrier and dichloroethane as the solvent to separate mercury and
lignosulfonate. The results showed that the removal of mercury and LS from mixtures was
about 52.6% and 50.2%, and even in pure solution an 81% removal was achieved. Huang
and co-workers [98] separated mercury using polyvinylamine as the mercury-binding
polymer which achieved 99% removal. In their study, the ultrafiltration technique was
used. The separation occurred on the surface of the amine polymer that created binding
between mercury and the polymer. A graphene-based membrane that used graphene as
nanostructured membrane with good mercury removal performance was reported by Jafar
and co-workers [81]. A summary of the performance of different membrane separation
techniques for mercury and heavy metals is shown in Table 1 and further discussion of
graphene-based membrane (nanofiltration) will be provided in the next section.

Table 1. Performance of Membrane Separation for Mercury and Heavy metals.

Membrane Mixture
Components Separation Conditions Rejection %

or Removal % Ref.

Two micro-porous PP supported
membrane loaded with a mixed

N/O/S-donor
Ag+ and Hg2+

Na2S2O3 (0.04 M) and EDTA
disodium salt (0.025 M) as
stripping agents in 3.5 h

95.3% Ag+ and 94.7%
Hg2+ [75]

30% cellulose triacetate (CTA), 60%
2-nitrophenyl octyl ether (NPOE),

and 10% w/w
Cyanex 471

HgCl2
Hg [2+] in HCl + NaCl at

pH 12. 81 % [82]

D2EHPA (CAS No. 298-07-7) with
98.5% purity HgCl2

1 M H2SO4 with 0.5 M
thiourea 92% [84]

polyethyleneimine (PEI) Hg in a heavy metal
mixture

pH 5.5 cadmium/polymer
ratio about 0.35

mercury/polymer ratio
about 0.39

98% Hg and 97% Cd [99]

1,1,7,7-tetraethyl
4(tetradecyl)diethylenetriamine

(TE14DT)

Cd2+/Pb2+ and Hg2+/
Cu2+ mixtures

pH 2.5 90% [100]

poly(benzylsulfone) Hg2+ Diluted in hydrochloric acid >90% [101]
Mixed-matrix membranes (sorbent

particles and polysulfone) Ca2+, Ag+, Hg2+ Diluted in HCl at pH 4 95% Hg2+ [102]
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Table 1. Cont.

Membrane Mixture
Components Separation Conditions Rejection %

or Removal % Ref.

Cyanex 302 (bis(2,4,4-trimethyl-
pentyl)thiophosphinic acid) in

kerosene
Cu2+ and Hg2+ Diluted in phosphoric acid

slurry 70% [96]

Mn/Mo/Ru/Al2O3 membrane Hg Diluted in hydrochloric acid 95% [97]

Polyvinylamine mercury - sodium
chloride and sulfate

feed mercury concentration
range tested (0–50 ppm) 99% [98]

Cross flow membrane filtration
cell (CF 042, Sterlitech, California) Hg2+ higher operating pressures

(≥34.5 bar) 95% [103]

4. Graphene-Based Membranes

Graphene is a novel material that consists of a one layer honeycomb-like carbon
structure (Figure 1). Thus, it is known as an ultrathin two-dimensional material regard-
ing its one-molecule-thickness. Consequently, graphene has very unique properties as
an ultra-thin, light, transparent [104,105] yet mechanically strong and thermally stable
material [106,107]. Moreover, graphene is also reported to have a good optical [108] and
electrical [106,109] properties. Many researchers have functionalized graphene in order to
improve its performance by introducing graphene-based derivatives, including graphene
oxide (GO), reduced graphene oxide (rGO) and other composites. In composite forms,
graphene may be strengthened by addition of other materials [110–114] or strengthening a
conventional material by incorporation of graphene [115].

Figure 1. Structural Illustration of a Graphene Sheet.

Edwards and Coleman [116] categorized two types of graphene synthesis, namely
bottom-up and top-down. In a bottom-up process, graphene is formed via reformation of
some other component (mostly silicon carbide). On the contrary, in a top-down process
graphite is exfoliated into a single layer graphene. Most researchers refer to the infamous
Hummers [117] method as the top-down graphene synthesis, especially for graphene
oxide. The improvement of Hummers-based method has been of interest for some re-
searchers [2,118,119] to make it more feasible for massive production. More specifically, the
synthesis method may affect the properties of the resulting graphene. Therefore the modi-
fications of synthesis methods should consider the intended application of the graphene
itself regarding its required properties [106].

Due to its unique properties, graphene and its derivatives have been explored in a
wide range of applications, including electrical devices [104,109], adsorbents [112,120,121]
and also as a separation membrane [122]. Considering its very small openings between the
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carbons, a perfect graphene sheet is impermeable to a lot of gases as small as helium [122].
However, researchers have modified graphene by creating holes to make it semipermeable
to certain gases. The porous graphene sheet has been developed and reported to have a
very high selectivity for hydrogen in the presence of many other gases including methane,
nitrogen, carbon dioxide, oxygen, ammonia, and argon [105,123–126].

In liquid applications, graphene-based membranes are mostly used in multilayer
form [127–130]. The transport mechanism across the membrane utilizes the imperfections
of the graphene sheet to create a channel for water (or another solvent). The defects include
holes, wrinkles, inter-edge and inter-layer spaces [122,127,130–133]. The modification of
graphene membranes in this application is related to widened water channels within the
multi-layer membrane [122,131] which thus increase the flux while still considering the
affected separation properties (e.g., rejection, selectivity). The modifications that have been
reported includes the utilization of GO [131,133–137], creating holes within the sheet [122],
increasing the space between layers, which can be done via crosslinking or incorporating
carbon nanotubes [120,138] and synthesizing the composites [139]. Compared to pure
graphene, GO is reported to have more functional groups on the surface [111,131] hence
widening the interlayer channel and increasing the flux. SEM photos (Figure 2a–d) show
that the GO composite membrane is more dense due to layer by layer interactions. A
schematic of a GO membrane for wastewater treatment is presented in Figure 2e.

Figure 2. (a–d) SEM photos of a GO composite membrane and (e) a schematic of a GO compos-
ite membrane for wastewater treatment. The figures are reproduced with permission from [111].
Copyright Elsevier, 2021.
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Graphene membranes are reported to work within the nanofiltration range which
is suitable for separation of ionic species [127,134,137,140], metals [141,142], and also
dyes [133,136–138,143]. In some references it was shown that nanofiltration process (the
exclusion mechanism) depends on the steric, electric and dielectric properties of the metal
ions [127,134,137,140]. Similar to most nanofiltration membranes, the separation process in
a graphene nanofiltration membrane occurs by two types of mechanism, namely sieving
and Donnan exclusion. In the sieving mechanism, the comparison of molecule size and the
pore size does matter. The membrane will totally reject molecules which are bigger than
the membrane pore size. In the Donnan exclusion mechanism, the separation considers the
interactions between the membrane and the solutes related to their charges [144]. Unlike
the original graphene, a GO membrane is charged, thus giving better performance in
rejecting ionic species, including dyes [137].

5. Graphene Oxide-Based Nanofiltration Membrane Preparation

In general, the main route for making GO is chemical oxidation and exfoliation
of graphite using the Brodie, Staudenmaier, or Hummers methods. Brodie reported
that an oxidizing KClO4 solution with fuming HNO3 can form GO only with graphite
carbon containing a graphite-structured region. Staudenmaier showed that GO formation
occured when graphite was reacted with strong acids (i.e., H2SO4, HNO3, and KClO4).
Hummers and Offeman found a very practical method to prepare GO using H2SO4 and
KMnO4 [35,145]. At present, GO is usually synthesized according to the modified Hummer
method in which the rate of reaction is carefully controlled to keep the reaction temperature
below 20 ◦C. The appearance of GO and graphene can be analyzed by SEM, as seen in the
example results shown in Figure 3. The GO profile is more rigid and thick than that of
graphene, therefore GO is very promising as a high selectivity membrane to separate Hg
from wastewater.

Several review papers have described the preparation of Fe3O4/GO nanocomposites
by two different routes: impregnation (denoted as mGOi) and coprecipitation (denoted
as mGOp). In particular, Fe3O4 nanoparticles can be synthesized by the Massart method
with mixtures of FeCl3·6H2O and FeCl2·4H2O heated to 60 ◦C. The clear yellow solution
product is separated under vigorous agitation. Then, aqueous ammonia solution is added
to the solution until the pH of the solution reaches 10. The reaction was maintained for
an additional 30 min under vigorous stirring. Nitrogen was used as the protective gas
throughout the experiment. After completion of the reaction, the resulting black precipitate
was collected by an external magnetic field, followed by washing several times with water
and ethanol. Finally, the Fe3O4 nanoparticles were freeze-dried. The next step is GO
membrane preparation by using a coating method. A GO aqueous solution was made by
dissolving GO powder in deionized water. To form the GO nanosheets, the GO solution
was subjected to ultrasonic irradiation several times. Usually, a ceramic hollow fiber
membrane is used as GO membrane material due to its properties like being easily stacked
on the surface with pressure driving. Then the as-prepared GO membrane was dried in a
vacuum chamber at 40 ◦C and is ready to be used for Hg separation [28,127,146].
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Figure 3. The SEM photos of GO (a,b) and graphene (c,d), and a schematic of GO membrane
preparation (e). The figures are reproduced with permission from [112] Copyright Elsevier, 2021.

6. Utilization of Graphene Oxide-Based Nanofiltration for Mercury Removal

The method of mercury separation via membrane filtration has been discussed in the
previous section. Besides the mentioned sieving and Donnan exclusion mechanisms, the
separation process in a membrane system can be enhanced by introducing external forces
or modifying the component of interest. Some researchers introduce other agents such
as polyethyleneimine (PEI) [147] or iron sulfide [93] to form a complex thus promoting
the separation process. These complexes may either be bigger in size or have a special
interaction with the membrane surface hence promoting the separation. A complex with
bigger size allows the process to be performed in the ultrafiltration range thus the utility
requirements are less.

Besides modifying the aqueous mercury into a complex species which has special
surface properties, it is also possible to modify the membrane thus enhancing the separation
process. Some researchers [81,148–150] have introduced functionalized graphene sheets
constructed by holes in a graphene sheet which is modified by some agents that improve
the surface properties. Figure 4 illustrates a functionalized graphene where the holes are
modified by other functional groups. The functional groups introduced in the graphene
holes include chlorine [81], xanthate [149] and thiol groups [150]. Besides the holes, the
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surface of the graphene membrane itself can be modified forming a composites, such as an
iron-graphene composite [149].

Figure 4. Illustration of a functionalized graphene sheet. This Figure is adopted and reproduced
with permission from [81]. Copyright Elsevier, 2021.

Even though functionalized graphene sheets offer special affinity for aqueous mercury
(or its complexes), the functional groups themselves may form a barrier that hinders the
passage of the mercury. Azamat [81] reported that an electrical force was required in order
to support the mercury transfer across the membrane. In another case, Cui [149] used a
magnetic force to enhance the separation. Besides those external factors, some process
parameters such as pH and ion concentration also affect the separation performance.
The performance of graphene oxide-based membranes for Hg removal is summarized in
Table 2.

Utilization of membrane materials in order to modify the interaction properties be-
tween the solute and membrane surface is closely related to adsorption processes. In
other cases, a graphene-based material showed good affinity for adsorption processes for
organic dyes [112,145,151]. Furthermore, similar materials also give good performance in
nanofiltration processes [120,127,131,138]. Studies of mercury adsorption using graphene
and its derivatives have been carried out by some researchers. Modifications have also
been performed thus an effective removal higher than 99% was achieved [149,150,152–154].

Table 2. The performances graphene oxide-based membranes for mercury Removal.

GO Membrane Type Components Mixture Separation Conditions Rejection % or Removal
% of Mercury Ref.

Xanthate functionalized
magnetic graphene oxide

(Fe3O4-xGO)

Hg2+ and methylene
blue

pH: 7.5, 3 h, 298 K, 1 atm 94.5% [149]

Graphene-Diatom (GN-DE)
Hydrogel Decorated with
αFeOOH Nanoparticles

Hg2+ pH: 10, 90 min, 298 K, 1
atm, pore size: 0.22 µm 80% [150]

mercapto-grafted graphene
oxide–magnetic chitosan

(GO–MC)

Hg2+ in environmental
water samples

60 mg of sorbent, pH of 6.5,
10 min for adsorption time,

3 mL of HCl (0.1 mol
L−1)/thiourea (2% w/v) as

the eluent , 298 K, 1 atm

95% to 100% [152]

GO foams Hg2+
A small dose of 3DGON
(10 mg L−1), pH: 5 and 9,

24 h, 298 K, 1 atm
96% [153]

Three-dimensional
reduced-graphene oxide (3-D

RGO) hydrogel
Hg2+ and F− pH: 6, 24 h, 298 K, 1 atm 65% [154]
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Recently, research in mercury removal via graphene oxide nanofiltration has been
limited to functionalized graphene sheets [81,149]. However, there is huge potential to
utilize graphene oxide-based membranes in other configuration which are discussed in
the previous section. Other studies of adsorption techniques have already presented good
results. Referring to graphene oxide membrane applications in organic dye removal, many
studies were conducted following good results in adsorption processes. Thus, mercury
separation using graphene oxide-based membranes seems to have great potential.

7. Conclusions

Hg is one of the highest toxic substances that should be removed from any wastewater
prior to environmental discharge. Several techniques can be used to perform the removal,
including adsorption, liquid extraction, electrolysis, and membrane separation processes
(i.e., more efficient and effective techniques). The membrane separation process can be
improved by adding complexes or selecting a proper membrane material, including oxide
derivatives. Graphene oxide-based membrane has presented excellent performances in
nanofiltration processes for Hg removal. Recent utilization of graphene oxide-based
membranes in Hg separation is only limited to functionalized graphene sheets, therefore it
needs widely more improvement. Several graphene membrane types can be developed and
have big potential for Hg removal such as layered membranes, intercalated membranes,
crosslinked, and also composites.
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